
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

42

Manuscript received July 5, 2013
Manuscript revised July 20, 2013

Authentication System for Websites with Paid Content: An
Overview of Security and Usability Issues

Adam Hurkała, Jarosław Hurkała

Warsaw University of Technology, Institute of Control & Computation Engineering, Poland

Summary
Every company that delivers paid content online is faced with
one essential challenge of protecting its content from illegal
access and theft. As the number of users increases detecting and
stopping intruders who illegally access a website becomes more
and more difficult. While many research focus on security issues
of online banking, e-shopping and e-government websites, there
is very little study of what is affecting websites with paid content.
This paper outlines the most common security threats and
explains how to design a secure and user-friendly authentication
system for websites with paid content.
Key words:
security, authentication, usability, websites, paid content

1. Introduction

Paid content refers to content on the Internet – such as text,
images, video and downloads – which is paid for [10].
This typically indicate materials that cannot be accessed
without a payment. Paid content can very often be found
on websites that charge subscription rates. Those websites
usually allow their visitors to view samples of materials,
but charge a fee for full version of those materials.
Websites with paid content are especially vulnerable to
cyber-attacks. If an attacker gains unauthorized access to a
website then file hosting services and Peer-to-peer (P2P)
networks may be used as a means to distribute or share
files without consent of the copyright owner [1]. In such
cases one individual uploads a file to a file hosting service
for others to download. In 2004 there were an estimated 70
million people participating in online file sharing [12].
There are several steps that one can take in order to
prevent usage of paid content in an unauthorized manner.
Some of those methods require preemptive actions such as
using Digital rights management (DRM) solutions [2].
Other methods require taking actions when the harm is
done e.g. by reporting content that warrants removal from
search engines or file hosting services based on applicable
laws.
In this paper we focus on hardening the authentication
system for reducing its surface of vulnerability. Section 2
describes authentication principles and presents methods
that can be used for protecting content on a website.

Section 3 presents an overview of security threats and
describes methods of mitigating them. In Section 4, we
cover the security and usability requirements of
authentication system for websites with paid content.
Section 5 concludes the article.

2. Authentication

2.1 Basics

Authentication is, in an information security sense, the set
of methods that can be used to establish a claim of identity
as being true [11]. It is crucial to note that authentication
only settles whether “you are who you say you are” and it
does not infer or imply about what the person being
authenticated is allowed to do.
There are three categories, referred to as authentication
factors that can be used to establish one's identity [11]:
1. Something the user knows – this includes passwords,

pass phrases, PINs, answers to secret questions, or in
particular any information that a person can
remember.

2. Something the user has e.g., ID cards, security tokens
(hardware or software), email accounts or cell phones.

3. Something the user is or does, which is based on the
relatively unique physical attributes of an individual
e.g., fingerprint, retinal pattern, signature, face, voice
or other biometric identifier.

Multifactor authentication uses one or more of the factors
described above e.g. a website may require users to
provide a password (knowledge factor) and a secret code
which is delivered to the mobile phone (ownership factor).

2.2 Basic Access Authentication

Basic Access Authentication (BA) is a standard method for
enforcing access control to protected web resources which
is commonly used on websites with paid content. A HTTP
client (e.g. a web browser) can provide a username and
password using HTTP Authorization header.
The BA mechanism provides no confidentiality protection
for the transmitted credentials, which are encoded using
base64 algorithm, but not encrypted or hashed in any way.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

43

In many cases it is recommended to access web-pages
protected with BA only via a secure (HTTPS) connection.
Because HTTP Authorization header has to be sent with
each request, the web browser caches the credentials to
avoid constant prompting user for the user name and
password. On the other hand web-server needs to verify
user identity on each request which is not very efficient e.g.
loading a html page with 100 images requires handling of
at least 100 authentication requests.
It is also crucial to note that Basic Access Authentication
does not provide a portable method for a user to "log out"
with the exception of closing the web browser.
Because of security, efficiency and usability issues of BA
nowadays cookie-based authentication methods are getting
more popular among websites with paid content.

2.3 Cookie-based authentication

A web cookie is a small piece of data sent from a website
and stored in a user's web browser. Authentication cookies
are the most popular method used by web servers to know
whether a user is logged in or not, and to tell on which
account the user is logged on.
Authentication cookie might store:
1. Session data – which typically might be just a user

name.
2. Session identifier – which is usually a long, random

string that links to session data stored on the server
side.

If cookie stores a session data, it is recommended to
encrypt the data using strong cryptography algorithms to
prevent data tampering. Additionally session identifiers
should be generated using a secure random number
generator and be long enough to decrease the probability
of obtaining a valid one by means of a brute-force search.
In Table 1 we present a comparison of methods of
generating a session identifier in 30 popular open-source
software. The most important finding one can conclude
from this table is that software developers prefer methods
that are easy to implement even though some of those
methods might be not secure. Some platforms indeed do

not provide an easy to use interface for generating
cryptographically strong random numbers, but on the other
hand there are plenty of open-source and cross-platform
libraries such as OpenSSL that can be used for this
purpose.
The security of a cookie-based authentication generally
depends on how the session data was generated, how it is
stored and how it is transmitted. Security vulnerabilities
may allow a cookie's data to be read by a hacker, used to
gain access to user data, or used to gain access to the
website to which the cookie belongs (see section 3.4, 3.6).
For websites that require high level of security it is
recommended for the server to accept authentication
cookie only from original client's IP address and to
transmit the cookie only via secure (HTTPs) connection.

3. Security threats

3.1 Common security threats

There are hundreds of issues that could affect the overall
security of a website with paid content. Some of them are
common to all web applications and some are strictly
related to web sites with paid content. While many
research focus on security issues of e-shopping, online
banking, e-government or typical websites [17], [18], [19]
there is very little study of what is affecting websites with
paid content.
Our study based on security logs from 100 different
websites shows that most common security threats that are
affecting websites with paid content are:
1. Brute-force and dictionary attacks (93%)
2. Account sharing (70%)
3. SQL injection attacks (35%)
4. Security misconfiguration (33%)
5. Cross-site scripting (20%)
In following sections we describe in details those threats
and we propose the way of mitigating them.

Table 1: Comparison of popular methods of generating a session identifier
Method Security Efficiency Ease of Implementation Popularity

Hardware random number
generator

Very High High Low Very Low

Secure block cipher working in
CTR mode

High High Medium Medium

Secure stream cipher High High Medium Medium
CryptGenRandom() WinAPI High High High High

Linux /dev/random High Medium High Medium
rand() / random() API Low High High High

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

44

3.2 Brute-force and dictionary attacks

Brute-force is one of the types of password cracking that
involves trying every possible combination of characters
that the password could be composed of [8]. Brute-force
attacks are usually utilized when it is difficult to take
advantage of other weaknesses in an authentication system.
The rapid growth of computing power and simple to use
automated password cracking software has allowed the
activity to be taken up even by unskilled individuals.
In general, we can distinguish two types of brute-force
attacks:
1. Local brute-force attack
2. Remote brute-force attack
Local brute-force attacks require an attacker to gain access
to the password database. This can very often be possible
when an attacker exploits SQL injection vulnerability or
other security misconfiguration on a website (see section
3.4 and 3.5).
A standard password database contains the list of users and
passwords for authentication as shown on Fig. 1. To
improve security passwords are usually not stored in
clear-text, but instead in digest form [5].

adam : $apr1$WxMC76HE$YHEpYYgsD8dbvPau0ZwA21
Apache-specific algorithm using an iterated (1,000 times) MD5
digest with random salt, encoded using base64

jarek : *94BDCEBE19083CE2A1F959FD02F964C7AF4CFC29
MySQL-specific algorithm using an iterated (2 times) SHA1 digest,
encoded as a hexadecimal string: hex(sha1(sha1(password)))

test : $6$456$yTSeWYNbvZDCsuZIN.Qdeg.0DxY5N1XddpO7q
gFqjnZOqpy5QXIeMM7pd QYWIgu6Y3pSh5eYqJ21fqrlrjhJe/
Linux-specific algorithm using an iterated (5,000 times) SHA512
digest with random salt, encoded using base64:
base64(sha(sha(sha(sha(password + salt) + salt) + salt)...))
Legend:
■ username ■ algorithm tag ■ salt value ■ hash value (digest)

Fig 1. Digests used in popular open-source software

To authenticate a user, the password entered by the user is

hashed and compared with the stored hash. To make
password cracking even more difficult, the password is
often concatenated with a random, non-secret salt value
that is stored with the password [19]. Each user might have
a different salt, so it is not feasible to compare hashes with
precomputed hash values for common passwords.
One of the most popular methods that increases the time
required to perform local brute force attack is to use
multilevel password hashing (see Fig. 1). Another way of
preventing local brute-force attacks is to force a strong
password policy, which imposes requirements on what
type of password a user can choose. At the time of writing
this article random passwords of at least 11 characters
containing all printable ASCII characters, hashed using a
secure hashing scheme, are not susceptible to local
brute-force attacks (see Table 2).
Remote brute-force attacks on the other hand do not
require an attacker to get access to the password database.
In this type of attack, an attacker is limited by the network
latency and usually is not able to check all combinations of
login credentials. That is why in a general case, each
login-password combination comes from a predefined
dictionary that contains frequently used user names and
passwords.
A common way to protect a website from remote brute
force attacks is to use strong password policy. However,
people can no longer remember passwords good enough to
reliably defend against dictionary attacks. People also tend
to use the same password across multiple sites and once
intruders get access to password database on one of those
websites they can use the stolen credentials to perform
remote brute-force attacks on other websites. Another way
of preventing remote brute-force attacks is to limit the
number of login attempts per IP address. This method
however usually cannot stop attackers who use open proxy
servers i.e. servers that act as an intermediary between an
attacker and a victim. To successfully prevent automated
password guessing a CAPTCHA protection might be used.
CAPTCHA, sometimes described as a reverse Turing test,
is a type of challenge-response test used in computing as
an attempt to ensure that the response is generated by a
human [4]. The process usually involves a computer

Table 2: Seconds required to crack a md5 hash on GPU using oclHashcat
 Password Length (in characters)

Charset 1-7 8 9 10 11 12
lower-case letters (26) 1 38 992 25807 670995 17445878

lower-case letters, digits (36) 14 515 18566 668401 24062468 866248873
lower-case, upper-case letters (52) 191 9773 508209 26426893 1.3742e+09 7.1458e+10

lower-case, upper-case letters, digits (62) 654 39915 2474787 153436812 9.5131e+09 5.8981e+11
all printable ASCII characters (96) 13882 1318810 126605849 1.2154e+10 1.1668e+12 1.1201e+14

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

45

asking a user to complete a simple action to prove that the
user is indeed a human. These tests are designed to be
immensely difficult for a computer to solve, but again easy
for a human. If a correct solution is provided by a user, it
can be presumed to have been entered by a human. Typical
CAPTCHA implementations are distorted text / audio or
math puzzles and general knowledge questions [6].

3.3 Account Sharing

Nowadays, user names and passwords for websites with
paid content are widely published online on forums and
blogs. Sometimes legitimate account owners also share
their passwords with friends and acquaintances. Account
sharing can cause extreme server load and it can result in a
financial loss of a company that delivers paid content.
Detecting account sharing can be performed manually by
web-server log analysis, but as the number of users
increases this task becomes very inconvenient.
Algorithm for automated detection of account sharing
should take into account the following issues:
1. Users might share their passwords or session cookies

online.
2. User might have a dynamic IP address.
3. User might use several devices such as a computer or

a smart-phone to browse the website and each of those
devices might have different IP address.

4. User is usually not browsing the website from many
various locations (IP addresses) simultaneously.

5. Any HTTP header such as User-Agent or
X-Forwarder-For can be spoofed (falsified).

6. Account sharing detection should work in real time.
7. Account should be suspended if and only if there is

high probability that it is used by multiple persons.
8. Account sharing detection should not be dependent on

any third-party service.
Considering aforementioned assumptions we propose a
simple k-sliding-multi-window algorithm for detecting
account sharing. In particular, for each user u∈U at time t,
we call window w of length p and maximum size s, a list
of p pairs, where each pair consist of a unique IP address i
and corresponding last access time a, which expires after
time e, formally:

() () (){ } ksp ≤,a,i,...,a,i,a,i=w pp2211ep,u,t,k, (1)

nmnnmm ii w) a,(i w) a,(i ≠⇒∈∧∈ (2)





>∧=∈∉
>+

⇔∈
mnm

km

aai
tea

nnn
mm iw,) a,(i

w) a,(i

(3)

Account of each user u ∈ U at time t is represented as a set
of k pairs of window w and window size margin α,
formally:

() (){ }uk,ep,u,t,k,u1,ep,u,t,1, ,w,...,,w=u αα (4)

kukk ss −>≥ ,α (5)

We defined a boolean function A which for each user
determines if the account is shared, based on whether any
window size has been exceeded by margin α, formally:

{ } ()












+
=→

ukuk

uk
k s

p
uAUA

,,

,max;1,0:
a

 (6)

We have tested the account sharing algorithm for one
month using different number of configuration parameters
on one website with 740 user accounts. In order to
compare the obtained results with the actual results we
have also checked which user accounts are being used by
multiple persons by manually analyzing web-server logs.
The results for different number of windows with constant
margin α=0 are shown in Table 3.

Table 3: Detecting account sharing with constant margin

Number of
windows

Configuration Correct
results

False
positives

False
negatives

k=1 s1=2, e1=10s 51 % 0% 49%

k=2
s1=2, e1=10s,
s2=3, e2=5m

63 % 1% 36%

k=3
s1=2, e1=10s,
s2=3, e2=5m,
s3=4, e3=1h

70 % 7% 23%

k=4

s1=2, e1=10s,
s2=3, e2=5m,
s3=4, e3=1h,
s4=6, e4=24h

83 % 15% 2%

The numbers in Table 3 clearly indicate that using more
windows increases overall effectiveness of detecting
account sharing, but at the same time increases the number
of false positive errors. Because suspending accounts of
legitimate users is highly undesirable, we introduced
user-specific window size margin parameter αk,u to limit the
rate of suspending accounts of users with dynamic IP
address. Parameter αk,u was set based on statistics on how
often the IP address, within the same Internet Service
Provider (ISP), changed for each user. Applying this
parameter resulted in better overall effectiveness and less
false positive errors as show in Table 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

46

Table 4: Detecting account sharing with user-specific margin

Number of
windows

Configuration Correct
results

False
positives

False
negatives

k=1 s1=2, e1=10s 51 % 0% 49%

k=2
s1=2, e1=10s,
s2=3, e2=5m

63 % 1% 36%

k=3
s1=2, e1=10s,
s2=3, e2=5m,
s3=4, e3=1h

71 % 4% 25%

k=4

s1=2, e1=10s,
s2=3, e2=5m,
s3=4, e3=1h,
s4=6, e4=24h

89 % 6% 5%

3.4 SQL injection

SQL Injection is a technique often used to attack websites
[7]. SQL injection exploits invalid filtering of user
supplied data and allows intruders to include a malicious
SQL statement that is unexpectedly executed by a database
server (see Fig. 2). SQL Injection flaws are introduced
when software developers use dynamic database queries
that contain user supplied input. Websites with paid
content are especially vulnerable to SQL injection attacks
because database schema and password hashing algorithm
are very often imposed by payment service providers.
A successful SQL injection attack may involve the
following security violations:
1. Reading sensitive data from the database e.g. logins,

passwords or session cookies.
2. Modifying or deleting sensitive data from database e.g.

adding / deleting a user account or session cookies.
3. Accessing system files e.g. accessing software

configuration files or user database files.

Fig 2. An example of bypassing authentication using SQL injection

In order to prevent SQL injection attacks, one should
implement secure coding best practices and reduce or
disable debugging information that is displayed on a
web-page. Every software developer should also be aware
of the following techniques of creating dynamic SQL
queries:
1. Prepared statements – software developer has to write

a query template with certain constant values that are
replaced with user supplied data during each SQL
query execution.

2. Stored procedures – software developer writes a
procedure that accesses a relational database system in
a secure manner i.e. user supplied data is treated as
arguments of SQL query.

3. Escaping user supplied input – software developer has
to use vendor specific function in order to escape user
supplied data e.g. to prepend backslashes to certain
special characters.

Other way of securing a website from SQL injection
attacks is to use application layer firewall. Typical
application layer firewall can provide extended logging
capabilities and can monitor the web traffic in real time in
order to detect attacks. There are two approaches
commonly used by application layer firewalls to prevent
SQL injection and other types of network attacks [13]:
1. Negative security model – in this model all requests

are monitored for anomalies, unusual behavior and
known patterns of web application attacks. Every rule
added to the negative security policy increases the
efficiency of blocking hacking attempts.

2. Positive security model – in this model only requests
that are known to be valid are accepted and everything
else is rejected. Every rule added to a positive security
model increases what is detected as known behavior,
and thus allowed. This approach can usually be
applied only for small and medium-sized web
applications that are rarely updated and thus is usually
not suitable for websites with paid content.

3.5 Security misconfigurations

Security misconfigurations allow an attacker to accesses
default system accounts, unprotected files and directories,
and to learn important details about a website or the
underlying applications.
Common security misconfigurations include:
1. Default administrator password is not changed –

attacker can gain full control over a website i.e.
attacker can usually add/modify/delete accounts and
access log files.

2. Test accounts are not disabled after they are no longer
needed – test accounts are an easy target for
brute-force attacks because usernames and passwords
are very often easy to guess.

user Username:

select * from Users where user = 'user'
and password = 'password';

Password: password

‘ or 1=1;--

Username:

select * from Users where user = ' ' or 1=1;--
‘ and password = 'anything';

Password: anything

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

47

3. Directory listing is not disabled on a web-server –
attacker can list directories and possibly find sensitive
data such as log files, configuration files or user
database files.

4. System logs, configuration files, user database or
other sensitive data is located in not protected location
inside web-server's root directory – attacker might
guess filenames and download sensitive files even if
directory listing is disabled.

5. Web-application is configured to output various debug
information such as stack-trace or database errors,
which can be used to learn important details about
website and the underlying application or to perform
various attacks such as SQL injection.

6. Applications are not removed from server after there
are no longer needed – attacker can exploit those
applications even though they should have been
removed from the server. This especially applies to
old applications that are no longer maintained.

Websites with paid content are especially vulnerable,
because most of those sites use the same authentication
software provided by payment service providers. Our
study based on 100 different websites with paid content
shows that 70% of websites use the same default
configuration without taking any additional security
measures.
It is important to note that some of security
misconfigurations can be automatically detected by
automated scanners and security tools, but there are no
tools that can automatically fix those issues. Web server,
database and other software behind a website can be
protected, however it requires a unified approach from
website administrators, software designers and
programmers as well as vast knowledge of IT security.

3.6 Cross-site scripting

Cross-Site Scripting (XSS) is a type of attack that enables
intruders to inject client-side script into a website and to
unexpectedly execute it in the user's web browser [9].
Susceptibility to this type of attack is due to incorrect
processing and filtering of user supplied data on
web-pages with user-generated content as shown on Figure
3. The task of implementing correct and complete content
filter functions might be very difficult, if not impossible.
The primary defense mechanism against XSS attacks is to
escape untrusted user’s input.
Depending on how the output document, which contains
user supplied data, is generated, different
encoding/escaping schemes must be applied:
1. HTML entity encoding.
2. JavaScript escaping.
3. CSS escaping.
4. URL encoding.

By finding ways of injecting malicious scripts into
websites, an intruder can gain elevated access privileges to
sensitive page content, session cookies, and a variety of
other information stored by the browser on behalf of the
user. In order to mitigate the threat of session cookie theft
via XSS a HttpOnly attribute might be set for cookie on
the server side. If the cookie has this attribute set it cannot
be accessed through a client-side script such as Javascript.
Yet another way of mitigating XSS is to accept cookies
only from original client's IP address. One should take into
account though, that if web-server accepts cookies only
from client’s IP address some features such as “remember
me” might not work properly: e.g. user might be forced to
login each time his IP changes.

Fig 3. An example of cross-site scripting attack

4. Security and usability requirements

Authentication systems for websites with paid content as
any other authentication system have two basic security
requirements: they should allow one to access his own
account and at the same time they should prevent
unauthorized access.
Based on research in web usability [14], [15], [16] we
have defined the following five quality components that
can be used to evaluate usability of website authentication:
1. Learnability: How easy is it for users to login when

they encounter the authentication form for the first
time?

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

48

2. Efficiency: Once users have learned how to login,
how long does it take to authenticate again?

3. Memorability: when users return to the website after a
period of not using it, how easily can they regain the
desired authentication efficiency?

4. Errors: how many login attempts are typically
required for a successful authentication and how easy
can a user recover from the authentication errors?

5. Satisfaction: how pleasant is it to use the
authentication system?

In order to investigate usability of different authentication
methods we tested 6 protection schemes on group of 20
students. Each individual was asked to try and evaluate
different open-source authentication software. Quality
components were rated on a scale from 1 to 100, where 1
is extremely dissatisfied and 100 is extremely satisfied.
The obtained results (see Table 5) were in line with
expectations. Meaning of aforementioned quality metric
reflect the fact that if an authentication system is too
complex, restrictive, or too hard to use, people will not be
able or will not want to use it. While majority of people
might understand the necessity of confirming a bank
transaction using a security token, they most likely will be
very upset when being forced to recognize words in highly
distorted audio CAPTCHAs when executing an
insignificant action. People are used to simple things such
as standard passwords and text-based CAPTCHAs and are
confused when authentication method changes each time
they need to login.
Although CAPTCHA is quite popular solution for
ensuring that action is performed by a human, it should
also be noted that usability issues of CAPTCHAs were
subject of additional researches [3], [4], [6] that showed
that they can pose a major accessibility problem to users
who are blind or color blind, people with dyslexia, people
of advanced age or people with developmental disabilities.
On the other hand simple math problems and general
knowledge questions are usually also convenient for users,
but they present very little level of security unless number
of different puzzles is very high.

5. Conclusions

Authentication systems evolved from simple systems,
where login and password were transferred using clear-text

and stored in unencrypted manner, to complicated
solutions which use strong cryptography and secure
communication channels. Multifactor authentication,
which a few years ago was only used in top-security
systems is no longer excess and it slowly becomes a
standard of website authentication. CAPTCHA protection,
which at first might have seemed unnecessary, can now be
found on almost any website with registration form. Any
security measures might be inconvenient for website users,
but on the other hand they might be necessary. In the end it
is the job of IT security architect to know what level of
security is required and how to keep the right balance
between security and usability.

References

1. Larry E. Daniel, Lars E. Daniel, Chapter 36 - Peer-to-Peer
Networks and File Sharing, Digital Forensics for Legal
Professionals, Syngress, Boston, 2012, Pages 253-261

2. Pilsik Choi, Sang Hoo Bae, Jongbyung Jun, Digital piracy
and firms’ strategic interactions: The effects of public copy
protection and DRM similarity, Information Economics and
Policy, Volume 22, Issue 4, December 2010, Pages 354-364

3. Alessandro Basso, Stefano Sicco, Preventing massive
automated access to web resources, Computers & Security,
Volume 28, Issues 3–4, May–June 2009, Pages 174-188

4. Ying-Lien Lee, Chih-Hsiang Hsu, Usability study of
text-based CAPTCHAs, Displays, Volume 32, Issue 2, April
2011, Pages 81-86

5. I-En Liao, Cheng-Chi Lee, Min-Shiang Hwang, A password
authentication scheme over insecure networks, Journal of
Computer and System Sciences, Volume 72, Issue 4, June
2006, Pages 727-740

6. Jeff Yan, Ahmad Salah El Ahmad. Usability of CAPTCHAs
or usability issues in CAPTCHA design, In Proceedings of
the 4th symposium on Usable privacy and security (SOUPS
'08). ACM, New York, NY, USA, Pages 44-52

7. Dimitris Mitropoulos, Diomidis Spinellis, SDriver:
Location-specific signatures prevent SQL injection attacks,
Journal of Computers & Security, Elsevier, 2009, Pages
121-129.

8. Ido Dubrawsky, Jeremy Faircloth, Chapter 2 - General
Security Concepts: Attacks, How to Cheat at Securing Your
Network, Syngress, Burlington, 2007, Pages 35-64

9. Engin Kirda, Nenad Jovanovic, Christopher Kruegel,
Giovanni Vigna, Client-side cross-site scripting protection,
Computers & Security, Volume 28, Issue 7, October 2009,
Pages 592-604

Table 5: Usability of different authentication methods
 Quality components [1-100]

Authentication Method Learnability Efficiency Memorability Errors Satisfaction
Username + password 97 99 99 91 98

Username + password + text CAPTCHA 90 92 95 81 86
Username + password + audio CAPTCHA 50 60 71 44 30

Username + password + math puzzle 93 98 98 89 94
Username + password + general knowledge question 89 92 89 88 85
Username + password + one random of above tests 60 65 69 54 30

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

49

10. Wojciech Cellary, Paid content a way to electronic
knowledge-based economy, in Proceedings of the 14th east
European conference on Advances in databases and
information systems (ADBIS'10), Springer-Verlag, Berlin,
Heidelberg, 2010, Pages 13-14

11. Jason Andress, Chapter 2 - Identification and Authentication,
The Basics of Information Security: Understanding the
Fundamentals of InfoSec in Theory and Practice, 2011,
Syngress, Pages 17-33

12. Ray Delgado, Law professors examine ethical controversies
of peer-to-peer file sharing, March 2004,
http://news.stanford.edu/news/2004/march17/fileshare-317.h
tml

13. Joseph Migga Kizza, Chapter 11 - Application Proxy,
Computer Network Security, 2005. Pages 198-299

14. Sangwon Lee, Richard J. Koubek, The effects of usability
and web design attributes on user preference for e-commerce
web sites, Computers in Industry, Volume 61, Issue 4, May
2010, Pages 329-341

15. Rafael Tezza, Antonio Cezar Bornia, Dalton Francisco de
Andrade, Measuring web usability using item response
theory: Principles, features and opportunities, Interacting
with Computers, Volume 23, Issue 2, March 2011, Pages
167-17

16. Xiang Fang, Clyde W. Holsapple, An empirical study of web
site navigation structures' impacts on web site usability,
Decision Support Systems, Volume 43, Issue 2, March 2007,
Pages 476-491

17. Jensen J. Zhao, Sherry Y. Zhao, Sherry Y. Zhao,
Opportunities and threats: A security assessment of state
e-government websites, Government Information Quarterly,
Volume 27, Issue 1, January 2010, Pages 49-56

18. Aditya Sood, Richard Enbody, The state of HTTP declarative
security in online banking websites, Computer Fraud &
Security, Volume 2011, Issue 7, July 2011, Pages 11-16

19. OWASP - The Open Web Application Security Project,
https://www.owasp.org

Adam Hurkała received his M.Sc.
degree in computer science with
honors from the Warsaw University of
Technology, Poland, in 2010.
Currently he is a Ph.D. student in the
Institute of Control and Computation
Engineering at the Warsaw University
of Technology. His research area
focuses on information security,
usability, and heuristic algorithms.

Jarosław Hurkała received his
M.Sc. degree in computer science
with honors from the Warsaw
University of Technology, Poland, in
2010. Currently he is a Ph.D. student
in the Institute of Control and
Computation Engineering at the
Warsaw University of Technology.
His research area focuses on
combinatorial problems, heuristics,
fairness and optimization.

