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Abstract 
The main disadvantage of Model Checking is the state-explosion 
problem, which can occur if the system under verification has 
many processes or complex data structures. Although the state-
explosion problem is inevitable in worst case, over the past 2 
decades considerable progress has been made on the problem for 
certain classes of state-transition systems that occur often in 
practice. Using of Decision Diagrams to hold and manipulate the 
state space is an approach for this problem. In this approach the 
state space of the model is preserved in symbolic way instead of 
set. 
An algorithm is proposed in this paper for symbolic state space 
generation on SDES description models. Using SDES which is a 
multi-formalism description makes it possible to transform other 
stochastic discrete event system formalisms like Petri nets, 
stochastic activity networks, etc. to SDES formalism and then 
generate symbolic state space for them. Using symbolic state 
space generation by reduced ordered decision diagrams makes it 
possible to produce larger state spaces; which is used to 
producing state space of models in PDETool in order to alleviate 
its state space explosion problems. 
Key words: 
Symbolic state space generation; reduced ordered binary 
decision diagrams, state space explosion; SDES description; 
stochastic discrete event systems. 

1. Introduction 

As systems become more complex, the need for software 
tools to model and analyze these systems grows. 
Generating a high-level abstracted model of the system 
such as Stochastic Petri Nets (SPNs), stochastic reward 
nets (SRNs), and stochastic activity networks (SANs) and 
then analyzing the model to get some qualitative and 
quantitative properties of the system is a common way to 
analyze it. This model analyzing and checking can be 
assessed by analyzing low-level state space and state graph 
of the model. Since the size of the state space grows 
exponentially with the number of the model’s variables, 
model checking techniques based on explicit state space 
production methods can only handle relatively small 
examples. Even relatively simple models can suffer from 
the commonly called state space explosion problem [1], 

where the number of states reachable from the initial state 
becomes too large to store. 

 
In order to cope with increasingly complex models we 
therefore require advanced techniques for constructing and 
storing state spaces and state graphs. Generating symbolic 
state space of model using Decision Diagrams is a way to 
alleviate the state space explosion problem in tools. 
PDETool was using a traditional way, linked lists, to 
construct and preserve state space of the models. So, it was 
not able to do model checking on complex models. In 
order to makes it powerful encountering complex models 
for model checking, in this paper, we introduce a new 
method for producing symbolic state space of a model 
defined by SDES description by adding a symbolic state 
space generator module to the tool. This module generates 
symbolic state space of the model using ROBDD data 
structure and then delivers it to a symbolic model checker 
module to do symbolic model checking on it. 
The remainder of this paper is organized as follows. In 
section 2, ROBDD and SDES description are briefly 
described. Section 3 reviews related works in this field and 
describes PDETool briefly. Section 4 describes the 
motivations of the paper. In section 5, state space 
generation algorithm including ROBDD algorithm is 
brought besides an example of ROBDD is described in 
section 6. After that, in section 7, an evaluation of the 
implementation is brought. And finally, some concluding 
remarks and a list of future works are mentioned in section 
8. 

2. Background 

2.1 Reduced Ordered Binary Decision Diagram 
(ROBDDs) 

Binary decision diagrams (BDDs) as a data structure for 
representation of Boolean functions were first introduced 
by Lee [2] and further popularized by Akers [3] and Moret 
[4]. They are rooted, directed, acyclic graphs. A BDD is 
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constructed over a finite, ordered set of Boolean variables 
that represents a Boolean function. We represent it as fB: 
𝔹 K → 𝔹 over k  boolean variables xk>….>x1 [5]. 

 
Definition: Let B be a ℘-OBDD. B is called reduced if for 
every pair (v,w) of nodes in B: v≠ w implies fv ≠ fw. Let 
℘-ROBDD denote a reduced ℘-OBDD [6]. 

 
In the restricted form of Reduced Ordered BDDs 
(ROBDDs) they gained widespread application because 
ROBDDs are a canonical representation and allow 
efficient manipulations as proved by Bryant [7]. In an 
ROBDD, every reduced cofactor of a function is shown by 
exactly one node. This is a key precondition to prove that a 
ROBDD data structure is universal and canonical. Simply, 
universal means that every function can be shown by a 
OBDD. And, canonical means that any OBDD for the 
same function will be alike if we rename the nodes. On the 
other hand, for a function always there is a ROBDD [5], 
[8]. 

2.2 SDES description 

A discrete-event system is a system that is in a state during 
some time interval, after which an atomic event might 
happen that changes the state of the system immediately. 
Several stochastic discrete-event models have been 
proposed, which all share some common characteristics 
and many algorithms and methods that have been 
developed for one model are applicable for many of them. 
SDES [9], introduced by Zimmermann, is a unified 
description for stochastic discrete-event systems. Popular 
model classes like automata, queuing networks, and Petri 
nets of different kinds with stochastic extensions are 
subclasses of stochastic discrete-event systems and can be 
translated into the SDES description. 
In [9], a stochastic discrete-event system, SDES, is defined 
as a tuple SDES = (SV*, A*, S*, RV*), where SV* describes 
a finite set of state variables and actions A* together with 
the sort function S* and the reward variables RV* 
corresponds to the quantitative evaluation of the model. 
With allocating values to the state variables, all the 
possible states of the model, on the other hand, state space 
of the given model defined in  ∑= ∏ (sv∈SV*)S*(sv) is 
produced.  
Each state variable is defined by a couple sv=(Cond*, 
Val0

*) where Val0
* is a function representing the initial 

value of each estate variable and Cond* indicates whether 
or not a state variable is allowed in a specific state of the 
model. An action a ∈ A* of SDES describes possible state 
changes of the modeled system. It is composed of the 
attribute functions defined as 
a=(Pri*,Deg*,Vars*,Ena*,Delay*,Weight*,Exec*).  
And each item is defined as follows: 

• Pri* associates a global priority to every action. 
• The enabling degree Deg* of an action specifies 

the number of activities that are permitted to run 
concurrently in any state. 

• The action variables Vars* define a model-
dependent set of variables Vars*(a) of an action a 
with individual sorts. 

• The value of the Boolean enabling function Ena* 
of an action variant for a state returns if it is 
enabled or not. 

• Delay* describes the time that must elapse while an 
action variant is enabled in an activity until it 
finishes. 

• The Weight* of an action variant is a real number 
that defines the probability to select it for 
execution in relation to other weights. 

• Exec* defines the state changes that happens as a 
result of an action variant execution and is called 
execution function. 

3. Related works 

3.1 BuDDy and CUDD pachages 

Two well-known packages that are used widely to create 
and manipulate decision diagrams are BuDDy developed 
in IT University of Copenhagen and Cudd which is 
developed in the University of Colorado. BuDDy is a 
powerful library for Boolean expression manipulation; it is 
implemented in C but has a wrapping C++ interface. 
BuDDy combines as easily as a C++ interface and is an 
efficient implementation based on the novel BDD data 
structure. A BDD represents a formula as decision graph 
where the nodes in the graph are vertices and the edges 
coming out of a vertex represent the two possible Boolean 
assignments to that variable. Thus, a complete assignment 
to all variables corresponds to a path in the graph which 
ends in a value of true or false, which is the value of the 
formula when given that assignment. Each node requires 
20 bytes of memory in the implementation of the BuDDy 
[10]. 
The CUDD package provides functions to manipulate 
Binary Decision Diagrams (BDDs), Algebraic Decision 
Diagrams (ADDs), and Zero-suppressed Binary Decision 
Diagrams (ZDDs). BDDs are used to represent 
switching functions; ADDs are used to represent function 
from {0,1}n to an arbitrary set. ZDDs represent 
switching functions like BDDs; however, they are much 
more efficient than BDDs when the functions to be 
represented are characteristic functions of cube sets, or in 
general, when the ON-set of the function to be represented 
is very sparse. They are inferior to BDDs in other cases. 
The package provides a large set of operations on BDDs, 
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ADDs, and ZDDs, functions to convert BDDs into ADDs 
or ZDDs and vice versa, and a large assortment of variable 
reordering methods. 
A C++ interface is included in the distribution of CUDD. It 
automatically frees decision diagrams that are no longer 
used by the application and overloads operators. Almost all 
the functionality provided by the CUDD exported 
functions is available through the C++ interface, which is 
especially recommended for fast prototyping [11]. 
 

3.2 The PDETOOL framework 

There exist many modeling and simulation tools, which 
most of them support only a single simulation or modeling 
language and a few simulation or solution methods. It is 
interested to develop a multi-formalism modeling 
framework to support a wide range of models and easily be 
extensible to support new formalisms. PDETool is a 
framework that developed for verification of the discrete-
event systems. It uses SDES description as a middle 
language to translate all the input models into it, and then, 
do all the wanted operation on the unified SDES model. 
This means that any verification we provide on the SDES 
model can be done on any model that is translated to this 
language. The core engine of the tool is SimGine which 
has been developed to work on SDES models. Every input 
models like stochastic petri nets, stochastic active nets 
(SANs), and etc., given to the tool using its interface is 
translated to the SDES model. The translation is done by 
Model Translator module as shown in the Figure 1. Then 
the input model in the SDES language is given to the 
SimGine engine to do the simulation on the model.  

 

Figure 1.  Architecture of the PDETool [12] 

When the translated model from input is available, it is 
given to the state space generator (SSG) to generate 
reduced state space of the model. SSG and model checker 

modules are shown in PDETool architecture in Figure 2. 
State space generation step is a prerequisite step for model 
checking. Traditional data structures like linked lists, bit or 
hashed map, and etc. to produce and maintain it is not 
efficient. The problem is when a model becomes larger, the 
state space of the model becomes enormously large, and 
then, the state space explosion occurs. This state space 
explosion problem was a big obstacle for PDETool in 
order to do model checking on complicated models 
because it was using linked lists method for storing state 
space of the input models. To alleviate this problem, a 
state space generator module was added to the tools to 
produce reduced ordered decision diagram to preserve 
state space of the input model. 

SPN model

Model Translator

SDES Model

CSAN 
model

PEPA 
model

State Space Generator

Generalized State Space

Non-deterministic 
Model Checker

Probabilistic
Model Checker
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CSL 
Property
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Figure 2 Architecture of state space generator and model checker in 
PDETool 

4. Motivations 

PDETool is a multi-formalism modeling and simulation 
tool for stochastic discrete-event systems which uses 
SimGine, a simulation engine based on a unified abstract 
description named SDES. After getting SDES description 
of the input model in the tools, we have to do some model 
checking on them. But, with growing the input model, and 
hence, growing state space of the model, the PDETool was 
encountering state space explosion problems; because it 
was using traditional method of linked list for saving state 
space of the model. In order to alleviate the problem of the 
tools in this field, we tried to preserve state space of the 
model in the symbolic form using reduce ordered binary 
decision diagrams.  
Since PDETool has been developed using .net framework 
with C# programming language, either we had to use tools 
like Cygwin to use BUDDY or CUDDD libraries which 
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caused speed inefficiency or develop ROBDD in the tool. 
By implementing ROBDD in PDETool with C# 
programming language, we could implement other forms 
of symbolic state space generating methods and then do 
model checking on them all integrated in the tool. So, we 
chose to implement a naval development of ROBDD in our 
tool which is described in the following sections. 

5. State Space Generation Algorithm 

For producing state space of an SDES model, we should 
fire all events of a state and then add new generated states 
to the state space. Two data structures as shown in Figure 3 
are used for state space generation. One is used Utable that 
used to store main BDD and the other one is Htable which 
is used to store implemented functions. When we are 
looking for a function in Utable, if the function is not in it, 
we look for its remaining part of the function in the Htable. 
If the function have been implemented before, we can find 
its index in Utable find in Htable and use it to complete the 
new function implementation, or else, we implement the 
needed function in Utable and index it in Htable in reverse 
mode so that we can find it next time if necessary and use 
it again. This Htable helps us to find implemented 
functions in Utable and avoid redundant function 
implementation. 
Figure 4 shows the general algorithm. Firing all enabled 
events in a state, makes the state space generation (SSG) 
algorithm a BFS search algorithm. After firing an event, 
we add the new generated state to the state space of model 
and also to the newGens Diagram to preserve new 
generated states from current states in out. At the end of 
inner loop, we move existing states in newGens to the out 
and continue main loop. If there was no new generated 
states in out and it was empty, the algorithm will end. 

HNODE{ 
     int var; 
     long low; 
     long high; 
     long donotcare; 
     long ulow; 
     long uhigh; 
     long refs; 
} 
 (B) Htable node structure 

NODE{ 
     int var; 
     long low; 
     long high; 
     long parent; 
     long refs; 
} 
 
 
(A) Utable node staructure 

Figure 3 Utable and Htable data structure 

Algorithm #1: state space generation 
SSG(SDES model) returns ROBDD including state space of 
model 

begin 
ROBDD ss,out,newGens; 
Initialize ss,out,newGens; //initialize the OROBDD Structure 
Ss=initial states; 
Out=initial states; 
newGens=null; 
While out isn’t empty do 
Begin  
 For each state s in out do 
 Begin 
  For each action a in model do 
  Begin 
          If a is enabled in s then 
                                   Begin 
   NewState=s.execute(a); 
   newGens.findOrAdd(newState); 
   ss.findOrAdd(newState); 
                                   End if 
  End for 
 End for 
 Out=newGens; newGens=null; 
End while 
Return ss; 
End algorithm #1; 

Figure 4 general state space generation algorithm 

Function findOrAdd showed in Figure 5, represent the 
algorithm of add a given state to a ROBDD. It starts from 
row 2 of the table. This point is the entry point of function 
containing of state space of the model. Going forward for 
searching in Utable, if state variable is zero, it goes column 
low of the table and if it is one, it goes forward high 
column index of the Utable.  
It goes forward until reaches to row 1 representing that 
state belong to the state space of the model. In this case it 
returns true resembling that state belonged to the state 
space. If it reaches to a row containing zero in its related 
column in low or high depending on the value of state 
variable, it starts to add the this state as a new state to the 
ROBDD by calling addhuTable function shown in Figure 6. 
After adding new state to the state space of the model, it 
returns false, representing that this was a new state and 
added to the space of the model. 
Algorithm #2: findOrAdd a State to ROBDD 
findOrAdd(state s) returns Boolean; 
Begin 
Int varnumber=s.length; 
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Booleab find=true; 
Index=2; 
While varnumer<model.varnumbers+1 AND index>1 do 
Begin 
 If s[varnumber-1]==0 then direction=low else 
direction=high end if 
 If uTable[index].direction>0 then 
  Begin 
          Index=uTable[index].direction; 
          Varnumber=uTable[index].var; 
  End 
 Else 
  Begin 
         find=false; 
         addhuTable(s,varnumber,index); 
        break; 
  End if  
End while 
Return find; 
End function 

Figure 5 algorithm of find or add a state to a ROBDD 

When we are searching a state in ROBDD at Utable, if we 
reach a row containing zero in its low or high column 
depending on the state variable value, we find this state is 
not in ROBDD and should create a new path in Utable 
showing its existence. So we call addhuTable function to 
build reverse route of semi state in Htable that is a BDD 
and at constructing reverse route in Htable, we make the 
rout at Utable too. At the end we connect the created route 
in Utable to the zero branch of row where we had to call 
this function. 
Htable is a table that is used to save reverse of the state to 
use in order to prevent finding same functions that exist in 
ROBDD and prevent building redundant routes. It is called 
semi because we only add the part of state to Htable that 
there is not in Utable. And it has link to the related row of 
the Utable to be used when we need to create new route in 
Utable that in its route to the leaf, it countered to zero and 
the remaining part of state shows function that Htable has 
implemented it before and gives us its index in the Utable. 
Implementing Htable as a semi BDD makes it faster in 
finding functions that is needed to adding new states.  
fnCopy function is called when it is needed to add new 
route to a node and its reference is greater than one. It 
means that more than one function is using this route and 
making any change to this row will affect other functions. 
For preventing this, we have to copy existing route for this 
function form a point where it has the last reference of one 

in its route form root to the point it is needed to add new 
route. 
Shrink function is called when a node has the same low 
and high index branch. It means this state variable is a 
Don’t care for this route and can be shrunk and moved 
from this route. It is done by linking the indexing row to 
this row to the branch of this row and then frees this row. 
After shrinking a route, its affect be applied to the Htable 
to show the created don’t care. 
Algorithm #3: add new state to Htable and Utable to make 
reverse table. 
addhuTable(state s,int varnumber,long index) 
begin 
    hindex=2; 
    var=1; 
    while  var<varnumber do 
    begin 
        if state[var-1]==0 then 
             direction=low; 
        else 
             direction=high; 
 
        if htable[hindex].direction==0 then 
             createNewuhNodes(hindex,state,var); 
 
        hindex=htable[hindex].direction; 
        var=htable[hindex].var; 
    end while 
    if utable[index].refs>1 then 
       index= fnCopy(state,index); 
 
    if state[varnumber-1]==0 then    
        utable[index].direction=htable[hindex].ulow; 
    else 
        utable[index].direction=htable[hindex].uhigh; 
 
    if utable[uloc].low==utable[uloc].high!=0 AND uloc>2 then 
        shrink(uloc,hindex,state); 
   end if 
End function 

Figure 6 algorithm addhuTable 

The algorithm in Figure 4 is a breadth first search (BFS) 
one that fires all enabled actions in every state and then 
will add any generated states in the state space of the 
model to the ROBDD only one time. The complexity of 
adding one state to the SS is O(∑ (svϵSV^*)[log2(count(S* 
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(sv)))]) which the height of the decision diagram is. 
Because every states is added to the state space one time, 
then the algorithm’s order is liner regard to the state space 
of the model, and hence, is added to the Nss; and because 
every event is considered for every state added to the SS, 
then the total multiplied to the number of events defined in 
the SDES model of the input model (Nevents). In the end, 
the order of generating state space of a SDES model is the 
below formula. 

O(Nss × (Nevents×∑(svϵSV^*)[log2(count(S* (sv)))])) 

6. Example 

In order to clarify the algorithm, an example is bringing in 
this section. This example contains five states that is shown 
in the form of “X4X3X2X1” which contains four variable. 
For variable orders, the highest number variable is the first 
and stays at the highest level of the diagram and so all. The 
states are “0000”, “1111”, ”1101”, “1100” and “1110”. 
Table 1 shows the resulting Utable that impalement 
ROBDD that is used to keep states in the form of symbolic. 

Table 1 resulting Utable of the example 
refs parent high low var index 
0 0 0 0 5 0 
0 0 1 1 5 1 
0 0 8 5 4 2 
1 4 0 1 1 3 
1 5 0 3 2 4 
1 2 0 4 3 5 
0 9 0 0 0 6 
0 6 0 0 0 7 
1 2 1 0 3 8 
0 0 0 0 0 9 
0 7 0 0 0 10 

Table 2 shows Htable that is a reverse table for preserving 
reverse of the states in the form of BDD. Entry point to 
both of them is index 2. Column index in both are brought 
for better understanding and is unnecessary. Column var 
contains the variable number of the state variable. Row 
zero and one’s var number is variable numbers plus one to 
distinguish them from ordinary rows and shows that they 
are reserved rows for false and true. The low column is 
used for False variable value and high for the True variable 
value. Parent column in Utable is used to point the father 
of this node. Column refs is used to maintain number of 
references to this node and there for to this function. It is 
used to prevent changing this function if more than one 
function is using this and instead copy it before changing it. 
In Htable column, Don’tcare column is used to maintain 
dont care courses. Column ulow is used to preserve entry 
point of this function in Utable for low route from route 

until this row and column uhigh is used for the same 
purpose for high route. 

Table 2 Htable of the example 
uhig

 
ulow dontc

 
high low var index 

0 0 0 0 0 5 0 
0 0 0 1 1 5 1 
0 3 6 0 3 1 2 
0 4 0 0 4 2 3 
0 5 0 0 5 3 4 
0 0 0 0 0 4 5 
0 0 7 0 0 2 6 
8 0 0 8 0 3 7 
0 0 0 0 0 4 8 
0 0 0 0 0 0 9 
0 0 0 0 0 0 10 

7. Evaluation and experimental results 

Type St For observing algorithm’s behavior, the state-time 
diagram is shown in Figure 7. All states were produced 
randomly. The horizontal axis shows the number of states 
added to the ROBDD and the vertical axis shows the time 
it takes to do. To find out the time needed to add a specific 
random state, the algorithm is executed 500 times and the 
times in the diagram is average time of the 500 execution. 
The variance between different execution times for a point 
were always lower than 0.01. For example, in order to 
obtain the time for adding 1000 random states to the 
implemented ROBDD, 1000 states produced randomly and 
then added to the structure, then this process iterated 500 
times. And finally, the result time was calculated the 
average time of all this 500 execution times. The data is 
generated by executing the process on a regular notebook 
computer with a core i5-480M 2.66 processor and 4G ram 
under the Windows 7 operating system.  
The symbolic approach is attractive because it allows 
decision diagram nodes to share not only state encodings 
but also intermediate results, during symbolic state-space 
generation. The more state encoding and intermediate 
results are shared, the greater efficiency symbolic 
approaches exhibit with respect to explicit ones and this is 
shown in Figure 7. It is shown in the diagram that when the 
states are going to be added are few, the needed time to 
build the state space is higher per state. This is because the 
time to initialize the data structure considerable when the 
states are few. But the high number of states shows that the 
needed time per states becomes little. It can be seen from 
the diagram that when the number of states go higher, the 
times increases with lower steep; and hence, the algorithm 
is more effective when it is used for complicated models 
which have huge state spaces. 
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Figure 7 Stat-Time diagram for adding random states to 24 variable 
ROBDD 

In order to evaluate our implementation and compare its 
efficiency with existing and implemented packages, we 
chose BuDDy one of the popular packages for this purpose. 
So, we compare our implementation and BuDDy 2.2 
performance on solving N-Queen problem. The same 
hardware as mentioned above used to execute both of them. 
The result of the execution is shown in the Figure 8. The 
horizontal axis shows the queen number of the problem 
and the vertical axis shows the time need to solve the 
problem which is base 10 logarithmic scale. Although the 
half-logarithmic diagram shows that BuDDy solves the 
problem faster, our solution ‘speed has same slope and 
tend to reach the BuDDy’s speed in complicated problems 
with very large state spaces. This was our first attempt to 
implement ROBDD for state space generator of the 
PDETool framework and we hope we enhance it at our 
next attempts. 

 

Figure 8 Solving -Queen Problem Diagram in PDEToll and BuDDy 2.2 

8. Summery and future works 

This paper presents a naval implementation of symbolic 
state space generation using ROBDD data structure. 
Implementing ROBDD data structure makes the PDETool, 
a multi-formalism framework, able to produce symbolic 
state space of the input models. Since PDETool uses SEDS 
as a uniform language and translates all input models to 
this language, it can produce symbolic state space to the all 
input models like GSPN, SAN, and etc. and then do 
symbolic model checking on them. In brief, now PDETool 
is a tool that can model and analyze more complex systems 
with very large state spaces. 
 Future work will include implementation of other forms of 
decision diagrams like MDDs and ZDDs and other forms 
of the decision diagrams besides implementing the 
functions for transforming between them. Also, working on 
producing distributed state space of the model using 
ROBDD and doing distributed model checking on it is a 
good field to continue to work on it. In addition we are 
going to work on variable reordering algorithms and try to 
make the ROBDD’s size smaller by selecting better 
variable orders. 
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