
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

79

Manuscript received July 5, 2013
Manuscript revised July 20, 2013

Implementation of Symbolic State Space Generator using
Reduced Ordered Binary Decision Diagram based on SDES

Description in PDETOOL Framework

Reza Fathi† and Mohammad Abdollahi Azgomi ††,

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract
The main disadvantage of Model Checking is the state-explosion
problem, which can occur if the system under verification has
many processes or complex data structures. Although the state-
explosion problem is inevitable in worst case, over the past 2
decades considerable progress has been made on the problem for
certain classes of state-transition systems that occur often in
practice. Using of Decision Diagrams to hold and manipulate the
state space is an approach for this problem. In this approach the
state space of the model is preserved in symbolic way instead of
set.
An algorithm is proposed in this paper for symbolic state space
generation on SDES description models. Using SDES which is a
multi-formalism description makes it possible to transform other
stochastic discrete event system formalisms like Petri nets,
stochastic activity networks, etc. to SDES formalism and then
generate symbolic state space for them. Using symbolic state
space generation by reduced ordered decision diagrams makes it
possible to produce larger state spaces; which is used to
producing state space of models in PDETool in order to alleviate
its state space explosion problems.
Key words:
Symbolic state space generation; reduced ordered binary
decision diagrams, state space explosion; SDES description;
stochastic discrete event systems.

1. Introduction

As systems become more complex, the need for software
tools to model and analyze these systems grows.
Generating a high-level abstracted model of the system
such as Stochastic Petri Nets (SPNs), stochastic reward
nets (SRNs), and stochastic activity networks (SANs) and
then analyzing the model to get some qualitative and
quantitative properties of the system is a common way to
analyze it. This model analyzing and checking can be
assessed by analyzing low-level state space and state graph
of the model. Since the size of the state space grows
exponentially with the number of the model’s variables,
model checking techniques based on explicit state space
production methods can only handle relatively small
examples. Even relatively simple models can suffer from
the commonly called state space explosion problem [1],

where the number of states reachable from the initial state
becomes too large to store.

In order to cope with increasingly complex models we
therefore require advanced techniques for constructing and
storing state spaces and state graphs. Generating symbolic
state space of model using Decision Diagrams is a way to
alleviate the state space explosion problem in tools.
PDETool was using a traditional way, linked lists, to
construct and preserve state space of the models. So, it was
not able to do model checking on complex models. In
order to makes it powerful encountering complex models
for model checking, in this paper, we introduce a new
method for producing symbolic state space of a model
defined by SDES description by adding a symbolic state
space generator module to the tool. This module generates
symbolic state space of the model using ROBDD data
structure and then delivers it to a symbolic model checker
module to do symbolic model checking on it.
The remainder of this paper is organized as follows. In
section 2, ROBDD and SDES description are briefly
described. Section 3 reviews related works in this field and
describes PDETool briefly. Section 4 describes the
motivations of the paper. In section 5, state space
generation algorithm including ROBDD algorithm is
brought besides an example of ROBDD is described in
section 6. After that, in section 7, an evaluation of the
implementation is brought. And finally, some concluding
remarks and a list of future works are mentioned in section
8.

2. Background

2.1 Reduced Ordered Binary Decision Diagram
(ROBDDs)

Binary decision diagrams (BDDs) as a data structure for
representation of Boolean functions were first introduced
by Lee [2] and further popularized by Akers [3] and Moret
[4]. They are rooted, directed, acyclic graphs. A BDD is

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

80

constructed over a finite, ordered set of Boolean variables
that represents a Boolean function. We represent it as fB:
𝔹 K → 𝔹 over k boolean variables xk>….>x1 [5].

Definition: Let B be a ℘-OBDD. B is called reduced if for
every pair (v,w) of nodes in B: v≠ w implies fv ≠ fw. Let
℘-ROBDD denote a reduced ℘-OBDD [6].

In the restricted form of Reduced Ordered BDDs
(ROBDDs) they gained widespread application because
ROBDDs are a canonical representation and allow
efficient manipulations as proved by Bryant [7]. In an
ROBDD, every reduced cofactor of a function is shown by
exactly one node. This is a key precondition to prove that a
ROBDD data structure is universal and canonical. Simply,
universal means that every function can be shown by a
OBDD. And, canonical means that any OBDD for the
same function will be alike if we rename the nodes. On the
other hand, for a function always there is a ROBDD [5],
[8].

2.2 SDES description

A discrete-event system is a system that is in a state during
some time interval, after which an atomic event might
happen that changes the state of the system immediately.
Several stochastic discrete-event models have been
proposed, which all share some common characteristics
and many algorithms and methods that have been
developed for one model are applicable for many of them.
SDES [9], introduced by Zimmermann, is a unified
description for stochastic discrete-event systems. Popular
model classes like automata, queuing networks, and Petri
nets of different kinds with stochastic extensions are
subclasses of stochastic discrete-event systems and can be
translated into the SDES description.
In [9], a stochastic discrete-event system, SDES, is defined
as a tuple SDES = (SV*, A*, S*, RV*), where SV* describes
a finite set of state variables and actions A* together with
the sort function S* and the reward variables RV*
corresponds to the quantitative evaluation of the model.
With allocating values to the state variables, all the
possible states of the model, on the other hand, state space
of the given model defined in ∑= ∏ (sv∈SV*)S*(sv) is
produced.
Each state variable is defined by a couple sv=(Cond*,
Val0

*) where Val0
* is a function representing the initial

value of each estate variable and Cond* indicates whether
or not a state variable is allowed in a specific state of the
model. An action a ∈ A* of SDES describes possible state
changes of the modeled system. It is composed of the
attribute functions defined as
a=(Pri*,Deg*,Vars*,Ena*,Delay*,Weight*,Exec*).
And each item is defined as follows:

• Pri* associates a global priority to every action.
• The enabling degree Deg* of an action specifies

the number of activities that are permitted to run
concurrently in any state.

• The action variables Vars* define a model-
dependent set of variables Vars*(a) of an action a
with individual sorts.

• The value of the Boolean enabling function Ena*
of an action variant for a state returns if it is
enabled or not.

• Delay* describes the time that must elapse while an
action variant is enabled in an activity until it
finishes.

• The Weight* of an action variant is a real number
that defines the probability to select it for
execution in relation to other weights.

• Exec* defines the state changes that happens as a
result of an action variant execution and is called
execution function.

3. Related works

3.1 BuDDy and CUDD pachages

Two well-known packages that are used widely to create
and manipulate decision diagrams are BuDDy developed
in IT University of Copenhagen and Cudd which is
developed in the University of Colorado. BuDDy is a
powerful library for Boolean expression manipulation; it is
implemented in C but has a wrapping C++ interface.
BuDDy combines as easily as a C++ interface and is an
efficient implementation based on the novel BDD data
structure. A BDD represents a formula as decision graph
where the nodes in the graph are vertices and the edges
coming out of a vertex represent the two possible Boolean
assignments to that variable. Thus, a complete assignment
to all variables corresponds to a path in the graph which
ends in a value of true or false, which is the value of the
formula when given that assignment. Each node requires
20 bytes of memory in the implementation of the BuDDy
[10].
The CUDD package provides functions to manipulate
Binary Decision Diagrams (BDDs), Algebraic Decision
Diagrams (ADDs), and Zero-suppressed Binary Decision
Diagrams (ZDDs). BDDs are used to represent
switching functions; ADDs are used to represent function
from {0,1}n to an arbitrary set. ZDDs represent
switching functions like BDDs; however, they are much
more efficient than BDDs when the functions to be
represented are characteristic functions of cube sets, or in
general, when the ON-set of the function to be represented
is very sparse. They are inferior to BDDs in other cases.
The package provides a large set of operations on BDDs,

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

81

ADDs, and ZDDs, functions to convert BDDs into ADDs
or ZDDs and vice versa, and a large assortment of variable
reordering methods.
A C++ interface is included in the distribution of CUDD. It
automatically frees decision diagrams that are no longer
used by the application and overloads operators. Almost all
the functionality provided by the CUDD exported
functions is available through the C++ interface, which is
especially recommended for fast prototyping [11].

3.2 The PDETOOL framework

There exist many modeling and simulation tools, which
most of them support only a single simulation or modeling
language and a few simulation or solution methods. It is
interested to develop a multi-formalism modeling
framework to support a wide range of models and easily be
extensible to support new formalisms. PDETool is a
framework that developed for verification of the discrete-
event systems. It uses SDES description as a middle
language to translate all the input models into it, and then,
do all the wanted operation on the unified SDES model.
This means that any verification we provide on the SDES
model can be done on any model that is translated to this
language. The core engine of the tool is SimGine which
has been developed to work on SDES models. Every input
models like stochastic petri nets, stochastic active nets
(SANs), and etc., given to the tool using its interface is
translated to the SDES model. The translation is done by
Model Translator module as shown in the Figure 1. Then
the input model in the SDES language is given to the
SimGine engine to do the simulation on the model.

Figure 1. Architecture of the PDETool [12]

When the translated model from input is available, it is
given to the state space generator (SSG) to generate
reduced state space of the model. SSG and model checker

modules are shown in PDETool architecture in Figure 2.
State space generation step is a prerequisite step for model
checking. Traditional data structures like linked lists, bit or
hashed map, and etc. to produce and maintain it is not
efficient. The problem is when a model becomes larger, the
state space of the model becomes enormously large, and
then, the state space explosion occurs. This state space
explosion problem was a big obstacle for PDETool in
order to do model checking on complicated models
because it was using linked lists method for storing state
space of the input models. To alleviate this problem, a
state space generator module was added to the tools to
produce reduced ordered decision diagram to preserve
state space of the input model.

SPN model

Model Translator

SDES Model

CSAN
model

PEPA
model

State Space Generator

Generalized State Space

Non-deterministic
Model Checker

Probabilistic
Model Checker

Stochastic
Model Checker

CTL
Property

PCTL
Property

CSL
Property

PDETool

Model Checker

Figure 2 Architecture of state space generator and model checker in
PDETool

4. Motivations

PDETool is a multi-formalism modeling and simulation
tool for stochastic discrete-event systems which uses
SimGine, a simulation engine based on a unified abstract
description named SDES. After getting SDES description
of the input model in the tools, we have to do some model
checking on them. But, with growing the input model, and
hence, growing state space of the model, the PDETool was
encountering state space explosion problems; because it
was using traditional method of linked list for saving state
space of the model. In order to alleviate the problem of the
tools in this field, we tried to preserve state space of the
model in the symbolic form using reduce ordered binary
decision diagrams.
Since PDETool has been developed using .net framework
with C# programming language, either we had to use tools
like Cygwin to use BUDDY or CUDDD libraries which

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

82

caused speed inefficiency or develop ROBDD in the tool.
By implementing ROBDD in PDETool with C#
programming language, we could implement other forms
of symbolic state space generating methods and then do
model checking on them all integrated in the tool. So, we
chose to implement a naval development of ROBDD in our
tool which is described in the following sections.

5. State Space Generation Algorithm

For producing state space of an SDES model, we should
fire all events of a state and then add new generated states
to the state space. Two data structures as shown in Figure 3
are used for state space generation. One is used Utable that
used to store main BDD and the other one is Htable which
is used to store implemented functions. When we are
looking for a function in Utable, if the function is not in it,
we look for its remaining part of the function in the Htable.
If the function have been implemented before, we can find
its index in Utable find in Htable and use it to complete the
new function implementation, or else, we implement the
needed function in Utable and index it in Htable in reverse
mode so that we can find it next time if necessary and use
it again. This Htable helps us to find implemented
functions in Utable and avoid redundant function
implementation.
Figure 4 shows the general algorithm. Firing all enabled
events in a state, makes the state space generation (SSG)
algorithm a BFS search algorithm. After firing an event,
we add the new generated state to the state space of model
and also to the newGens Diagram to preserve new
generated states from current states in out. At the end of
inner loop, we move existing states in newGens to the out
and continue main loop. If there was no new generated
states in out and it was empty, the algorithm will end.

HNODE{
 int var;
 long low;
 long high;
 long donotcare;
 long ulow;
 long uhigh;
 long refs;
}
 (B) Htable node structure

NODE{
 int var;
 long low;
 long high;
 long parent;
 long refs;
}

(A) Utable node staructure

Figure 3 Utable and Htable data structure

Algorithm #1: state space generation
SSG(SDES model) returns ROBDD including state space of
model

begin
ROBDD ss,out,newGens;
Initialize ss,out,newGens; //initialize the OROBDD Structure
Ss=initial states;
Out=initial states;
newGens=null;
While out isn’t empty do
Begin
 For each state s in out do
 Begin
 For each action a in model do
 Begin
 If a is enabled in s then
 Begin
 NewState=s.execute(a);
 newGens.findOrAdd(newState);
 ss.findOrAdd(newState);
 End if
 End for
 End for
 Out=newGens; newGens=null;
End while
Return ss;
End algorithm #1;

Figure 4 general state space generation algorithm

Function findOrAdd showed in Figure 5, represent the
algorithm of add a given state to a ROBDD. It starts from
row 2 of the table. This point is the entry point of function
containing of state space of the model. Going forward for
searching in Utable, if state variable is zero, it goes column
low of the table and if it is one, it goes forward high
column index of the Utable.
It goes forward until reaches to row 1 representing that
state belong to the state space of the model. In this case it
returns true resembling that state belonged to the state
space. If it reaches to a row containing zero in its related
column in low or high depending on the value of state
variable, it starts to add the this state as a new state to the
ROBDD by calling addhuTable function shown in Figure 6.
After adding new state to the state space of the model, it
returns false, representing that this was a new state and
added to the space of the model.
Algorithm #2: findOrAdd a State to ROBDD
findOrAdd(state s) returns Boolean;
Begin
Int varnumber=s.length;

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

83

Booleab find=true;
Index=2;
While varnumer<model.varnumbers+1 AND index>1 do
Begin
 If s[varnumber-1]==0 then direction=low else
direction=high end if
 If uTable[index].direction>0 then
 Begin
 Index=uTable[index].direction;
 Varnumber=uTable[index].var;
 End
 Else
 Begin
 find=false;
 addhuTable(s,varnumber,index);
 break;
 End if
End while
Return find;
End function

Figure 5 algorithm of find or add a state to a ROBDD

When we are searching a state in ROBDD at Utable, if we
reach a row containing zero in its low or high column
depending on the state variable value, we find this state is
not in ROBDD and should create a new path in Utable
showing its existence. So we call addhuTable function to
build reverse route of semi state in Htable that is a BDD
and at constructing reverse route in Htable, we make the
rout at Utable too. At the end we connect the created route
in Utable to the zero branch of row where we had to call
this function.
Htable is a table that is used to save reverse of the state to
use in order to prevent finding same functions that exist in
ROBDD and prevent building redundant routes. It is called
semi because we only add the part of state to Htable that
there is not in Utable. And it has link to the related row of
the Utable to be used when we need to create new route in
Utable that in its route to the leaf, it countered to zero and
the remaining part of state shows function that Htable has
implemented it before and gives us its index in the Utable.
Implementing Htable as a semi BDD makes it faster in
finding functions that is needed to adding new states.
fnCopy function is called when it is needed to add new
route to a node and its reference is greater than one. It
means that more than one function is using this route and
making any change to this row will affect other functions.
For preventing this, we have to copy existing route for this
function form a point where it has the last reference of one

in its route form root to the point it is needed to add new
route.
Shrink function is called when a node has the same low
and high index branch. It means this state variable is a
Don’t care for this route and can be shrunk and moved
from this route. It is done by linking the indexing row to
this row to the branch of this row and then frees this row.
After shrinking a route, its affect be applied to the Htable
to show the created don’t care.
Algorithm #3: add new state to Htable and Utable to make
reverse table.
addhuTable(state s,int varnumber,long index)
begin
 hindex=2;
 var=1;
 while var<varnumber do
 begin
 if state[var-1]==0 then
 direction=low;
 else
 direction=high;

 if htable[hindex].direction==0 then
 createNewuhNodes(hindex,state,var);

 hindex=htable[hindex].direction;
 var=htable[hindex].var;
 end while
 if utable[index].refs>1 then
 index= fnCopy(state,index);

 if state[varnumber-1]==0 then
 utable[index].direction=htable[hindex].ulow;
 else
 utable[index].direction=htable[hindex].uhigh;

 if utable[uloc].low==utable[uloc].high!=0 AND uloc>2 then
 shrink(uloc,hindex,state);
 end if
End function

Figure 6 algorithm addhuTable

The algorithm in Figure 4 is a breadth first search (BFS)
one that fires all enabled actions in every state and then
will add any generated states in the state space of the
model to the ROBDD only one time. The complexity of
adding one state to the SS is O(∑ (svϵSV^*)[log2(count(S*

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

84

(sv)))]) which the height of the decision diagram is.
Because every states is added to the state space one time,
then the algorithm’s order is liner regard to the state space
of the model, and hence, is added to the Nss; and because
every event is considered for every state added to the SS,
then the total multiplied to the number of events defined in
the SDES model of the input model (Nevents). In the end,
the order of generating state space of a SDES model is the
below formula.

O(Nss × (Nevents×∑(svϵSV^*)[log2(count(S* (sv)))]))

6. Example

In order to clarify the algorithm, an example is bringing in
this section. This example contains five states that is shown
in the form of “X4X3X2X1” which contains four variable.
For variable orders, the highest number variable is the first
and stays at the highest level of the diagram and so all. The
states are “0000”, “1111”, ”1101”, “1100” and “1110”.
Table 1 shows the resulting Utable that impalement
ROBDD that is used to keep states in the form of symbolic.

Table 1 resulting Utable of the example
refs parent high low var index
0 0 0 0 5 0
0 0 1 1 5 1
0 0 8 5 4 2
1 4 0 1 1 3
1 5 0 3 2 4
1 2 0 4 3 5
0 9 0 0 0 6
0 6 0 0 0 7
1 2 1 0 3 8
0 0 0 0 0 9
0 7 0 0 0 10

Table 2 shows Htable that is a reverse table for preserving
reverse of the states in the form of BDD. Entry point to
both of them is index 2. Column index in both are brought
for better understanding and is unnecessary. Column var
contains the variable number of the state variable. Row
zero and one’s var number is variable numbers plus one to
distinguish them from ordinary rows and shows that they
are reserved rows for false and true. The low column is
used for False variable value and high for the True variable
value. Parent column in Utable is used to point the father
of this node. Column refs is used to maintain number of
references to this node and there for to this function. It is
used to prevent changing this function if more than one
function is using this and instead copy it before changing it.
In Htable column, Don’tcare column is used to maintain
dont care courses. Column ulow is used to preserve entry
point of this function in Utable for low route from route

until this row and column uhigh is used for the same
purpose for high route.

Table 2 Htable of the example
uhig

ulow dontc

high low var index

0 0 0 0 0 5 0
0 0 0 1 1 5 1
0 3 6 0 3 1 2
0 4 0 0 4 2 3
0 5 0 0 5 3 4
0 0 0 0 0 4 5
0 0 7 0 0 2 6
8 0 0 8 0 3 7
0 0 0 0 0 4 8
0 0 0 0 0 0 9
0 0 0 0 0 0 10

7. Evaluation and experimental results

Type St For observing algorithm’s behavior, the state-time
diagram is shown in Figure 7. All states were produced
randomly. The horizontal axis shows the number of states
added to the ROBDD and the vertical axis shows the time
it takes to do. To find out the time needed to add a specific
random state, the algorithm is executed 500 times and the
times in the diagram is average time of the 500 execution.
The variance between different execution times for a point
were always lower than 0.01. For example, in order to
obtain the time for adding 1000 random states to the
implemented ROBDD, 1000 states produced randomly and
then added to the structure, then this process iterated 500
times. And finally, the result time was calculated the
average time of all this 500 execution times. The data is
generated by executing the process on a regular notebook
computer with a core i5-480M 2.66 processor and 4G ram
under the Windows 7 operating system.
The symbolic approach is attractive because it allows
decision diagram nodes to share not only state encodings
but also intermediate results, during symbolic state-space
generation. The more state encoding and intermediate
results are shared, the greater efficiency symbolic
approaches exhibit with respect to explicit ones and this is
shown in Figure 7. It is shown in the diagram that when the
states are going to be added are few, the needed time to
build the state space is higher per state. This is because the
time to initialize the data structure considerable when the
states are few. But the high number of states shows that the
needed time per states becomes little. It can be seen from
the diagram that when the number of states go higher, the
times increases with lower steep; and hence, the algorithm
is more effective when it is used for complicated models
which have huge state spaces.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

85

Figure 7 Stat-Time diagram for adding random states to 24 variable
ROBDD

In order to evaluate our implementation and compare its
efficiency with existing and implemented packages, we
chose BuDDy one of the popular packages for this purpose.
So, we compare our implementation and BuDDy 2.2
performance on solving N-Queen problem. The same
hardware as mentioned above used to execute both of them.
The result of the execution is shown in the Figure 8. The
horizontal axis shows the queen number of the problem
and the vertical axis shows the time need to solve the
problem which is base 10 logarithmic scale. Although the
half-logarithmic diagram shows that BuDDy solves the
problem faster, our solution ‘speed has same slope and
tend to reach the BuDDy’s speed in complicated problems
with very large state spaces. This was our first attempt to
implement ROBDD for state space generator of the
PDETool framework and we hope we enhance it at our
next attempts.

Figure 8 Solving -Queen Problem Diagram in PDEToll and BuDDy 2.2

8. Summery and future works

This paper presents a naval implementation of symbolic
state space generation using ROBDD data structure.
Implementing ROBDD data structure makes the PDETool,
a multi-formalism framework, able to produce symbolic
state space of the input models. Since PDETool uses SEDS
as a uniform language and translates all input models to
this language, it can produce symbolic state space to the all
input models like GSPN, SAN, and etc. and then do
symbolic model checking on them. In brief, now PDETool
is a tool that can model and analyze more complex systems
with very large state spaces.
 Future work will include implementation of other forms of
decision diagrams like MDDs and ZDDs and other forms
of the decision diagrams besides implementing the
functions for transforming between them. Also, working on
producing distributed state space of the model using
ROBDD and doing distributed model checking on it is a
good field to continue to work on it. In addition we are
going to work on variable reordering algorithms and try to
make the ROBDD’s size smaller by selecting better
variable orders.

References

[1] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
"Progress on the state explosion problem in model
checking," in Springer, 2001, pp. 176--194.

[2] C. Y. Lee, "Representation of switching circuits by binary
decision dia grams," Bell Syst.Tech. J., vol. 38, p. 985–999,
1959.

[3] S. Akers., "Binary Decision Diagrams," in IEEE Trans
Comp, vol. 27, 1978, pp. 509-516.

[4] B. M. E. Moret, "Decision trees and diagrams," ACM
Computing Surveys (CSUR), vol. 14, no. 4, pp. 593--623,
1982.

[5] D. Parker and A. Miner, "Symbolic representations and
analysis of large state spaces," Citeseer, pp. 296-338, 2004.

[6] C. Baier and J. P. Katoen, Principles of Model
Checking(Representation and Mind Series). TheMIT Press,
2008.

[7] R. E. Bryant, "Graph-Based algorithms for Boolean
function," IEEE Trans. Computers, vol. 35, no. 8, 1986.

[8] G. Ciardo, G. Lttgen, and A. S. Miner, "Exploiting
interleaving semantics in symbolic state-space generation,"
Formal Methods in System Design, vol. 31, no. 1, pp. 63-
100, 2007.

[9] A. Zimmermann, Stochastic discrete event systems:
Modeling, evaluation, applications. Springer-Verlag New
York Inc, 2008.

[10] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram
Package. [Online]. http://sourceforge.net/projects/BuDDy

[11] [Online]. ttp://vlsi.colorado.edu/~fabio/CUDD/node1.html

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.7, July 2013

86

[12] A. Khalili, A. Jalaly Bidgoly, and M. Abdollahi Azgomi,
"PDETool: A Multi-formalism Modeling Tool for Discrete-
Event Systems Based on SDES Description," Lecture Notes
in Computer Science, vol. 5606, pp. 343-352, Jun. 2009.

[13] A. Jalaly Bidgoly, A. Khalili, and M. Abdollahi Azgomi,
"Implementation of Coloured Stochastic Activity Networks
within the PDETool Framework," in Proc. of 3rd Asia Int'l
Conf. on Modelling & Simulation (AMS09), 2009, pp. 710-
715.

[14] PDETool-Homepage. [Online]. http://pdel.iust.ac.ir/pdetool/
[15] HomePage. [Online].

http://pdel.iust.ac.ir/Projects/SimGine.html
[16] S. Akers, "Binary decision diagrams," IEEE

TRANSACTIONS ON COMPUTERS, 1978.
[17] R. Bryant, "Graph-based algorithms for boolean function

manipulation," IEEE Transactions on Computers, vol. 35,
no. 8, pp. 677-691, 1986.

[18] C. Lee, "Representation of switching circuits by binary-
decision programs," vol. 38, 1959.

[19] D. a. M. A. Parker, "Symbolic representations and analysis
of large state spaces," in Validation of Stochastic Systems,
2004, pp. 296-338.

[20] L. Ghomri and H. Alla, "Modeling and analysis using
hybrid Petri nets," Nonlinear Analysis: Hybrid Systems, vol.
1, no. 2, pp. 141-153, 2007.

[21] D. Lime and O. H. Roux, "Model checking of time Petri
nets using the state class timed automaton," Discrete Event
Dynamic Systems, vol. 19, no. 2, pp. 179--205, 2006.

Reza Fathi received the B.S. degree
from Birjand University in 2007 and M.S.
degree from Iran University of Science
and Tachnolgy in 2011 both in Computer
Engineering . He has been a researcher
member of Performance and
Dependability Engineering (PDE)
Research Lab since 2008. In addition, he

works as developer and manager in Raydana softwar
company which develpes Enterprise Resource Planing
(ERP) systems based on J2EE Technology.

Mohammad Abdollahi Azgomi
 received the B.S. , M.S. ,and
Phd. degree in Computer Engineering
from Sharif University of Technology in
years respectively 1991, 1996, and 2005.
He has been an Assitant professor in Iran
University of Science and Technology at
Computer Engineerig Departmant since
2005. In addition he has been the

Director of Information Technology Group, E-Learning
Center in IUST since 2006.

