
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

 1

Manuscript received August 5, 2013
Manuscript revised August 20, 2013

Detection and Prevention of SQL Injection Attacks on Web
Applications

Yasser Fouad† and Khaled Elshazly††,

†Lecturer of Computer Science, Faculty of Science, Suez University, Egypt.
†† Demonstrator of Computer Science, Information System Institute, Suez, Egypt.

Summary
In this era where Internet has captured the world, level of
security that this Internet provides has not grown as fast as the
Internet application. Internet has eased the life of human in
numerous ways, but defects such as intrusions that are attached
with Internet applications keep on the growth of these
applications. One such intrusion is the SQL Injection Attacks
(SQLIA). In web applications with the help of the internet
explorer the user tries to access the information. But most of the
web applications are affected by the SQL-Injection attacks. In
this paper we propose a method to detect the SQL-Injection
attacks. We use a filtering proxy server to prevent a SQL-
Injection attack.
Keywords: SQL-Injection, fault injection, SQL poisoning,
proxy server.

1. Introduction

 Most of the web applications store the data in the
data base and retrieve and update information as needed.
These applications are highly vulnerable to many types of
attacks, one of them being SQL-Injection Attacks (SQLIA).
There are many measures that can be taken to prevent
SQL-Injection including making sure that the users have
the minimum database privileges which possible using
input to validation programming techniques, suppressing
error messages returned to the client, checking error logs
and filtering malicious SQL statements [1]. In research and
commercial products, there is evidence proving that SQL-
Injection can be prevented using means not so closely
related to the database and web application. These
methods of approach have been developed to produce a
more generic solution to a problem that requires a lot of
tweaking and attention to detail at the root of the problem
by using the application code and database deployment [2].

In [3], it is introduced a new approach to automatic
penetration testing by leveraging it with knowledge from
dynamic analysis. There are number of reported web
applications vulnerabilities is increasing dramatically.
Most of them result from improper or none input
validation by the web application. Most existing
approaches are based on the Tainted Mode vulnerability
model which cannot handle inter-module vulnerabilities.

In [4], the detection model of SQL-Injection
vulnerabilities and SQL-Injection mitigation framework
are proposed. These approaches are based on SQL-
Injection grammar to identify the SQL-Injection
vulnerabilities during software development and SQL-
Injection attack on web-based applications.

In [5], a novel specification-based methodology for
the prevention of SQL-Injection attacks is introduced. Two
most important advantages of the new approach against
existing analogous mechanisms are that: first, it prevents
all forms of SQL-Injection attacks; second, Current
technique does not allow the user to access database
directly in database server. Used innovative technique
“Web Service Oriented XPATH Authentication
Technique” detect and prevent SQL Injection Attacks in
database the deployment of this technique is by generating
functions of two filtration models that are Active Guard
and Service Detector of application scripts, additionally
allowing seamless integration with currently-deployed
systems. This proposed technique was able to suitably
classify the attacks that performed on the applications
without blocking legitimate accesses to the database (i.e.,
the technique produced neither false positives nor false
negatives). Results show that the technique represents a
promising approach to countering SQLIA’s and motivate
further work in this direction.

In [6], the system detects and prevents SQL-Injection
queries and cross scripts, and views SQL-Injection
attacking reports are investigated. SQL-Injection attacking
reports used to identify user who passes the unwanted
queries to the web application. Used static analysis to
detect and prevent SQL-Injection attacks in compile time
and dynamic analysis can be used to detect and prevent
injection queries in runtime. These techniques have been
implemented in ASP.Net and SQL Server, and tested by
conducting various experiments and prove that the web
applications and database is protected from scripting and
SQL-Injection queries. In [7], an efficient approach to
prevent this vulnerability is studied. Suggest have been
proposed solution is based on the principle of dynamic
query structure validation which is done through checking
query’s semantics. It detects SQL-Injection by generating a
benign query from the final SQL query generated by the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

2

application and the inputs from the users and then
comparing the semantics of safe query and the SQL query.
The main focus is on stored procedure attacks in which
getting query structure before actual execution is difficult.

In [8], comparing the length of two Queries (Original
Query and SQL-Injection related Query) and detecting the
SQL-Injection attack; if there is SQL-Injection attack then
by not giving the access to the database also prevent web
application from SQL Injection attacks, work has been
presented and implemented using PHP codes.

In this paper, we implement a model for detection and
prevention of SQL-Injection attacks on web applications.
We propose a method to detect the SQL-Injection. We use
a filtering proxy server to prevent a SQL-Injection attack.
The filtering process seems to provide a negligible
overhead.

The rest of the paper is organized as follows. In
Section 2, we give an example of SQL-Injection. the
prevention methods are introduced in Section 3. System
overview and a new method to detect the SQL-Injection
attacks are proposed in Section 4 and 5 respectively.
Current status and future work are given in Sections 6 and
7 respectively.

2. Example of SQL Injection

 A typical SQL statement is shown in code box 1.
Select id, forename, surname from authors where
forename = ‘Joe’ and surname = ‘Bloggs’

Code Box 1: A typical SQL statement
An important point to note is that the string literals are

delimited by single quotes. The user may be able to inject
some SQL if the user provides the input shown as in text
box 2.

Forename: ‘Joe’ Surname: Bloggs

Text Box 1: User input
The query string formed from the input shown in text

box 1 is shown as in code box 2.
Select id, forename, surname from authors where
forename = ‘Joe’ and surname = ‘Bloggs’

Code Box 2: Resultant query
In this case, the database engine will return an error

due to incorrect syntax with the SQL query. In many web
languages, a critical vulnerability is the way in which the
query string is created. An example is shown as in code
box 3.

var SQL = ”select * from users where username = ‘”
+ username + ”’ and password = ‘” + password + ”’”

Code Box 3: Code showing a SQL injection
vulnerability

If the user specifies the input shown in text box 2,
the ’users’ table will be deleted, denying access to the
application for all users [9].

Username: ‘; drop table users–

Text Box 2: User input to delete the users table
An attack against a database using SQL-Injection

could be motivated by two primary objectives:
• To steal data from a database from which the data

should not normally be available, or to obtain system
configuration data that would allow an attack profile to be
built. One example of the latter would be obtaining all of
the database password hashes so that passwords can be
brute-forced.

• To gain access to an organization’s host computers
via the machine hosting the database [10].

3. Prevention Methods

SQL-Injection is a relatively simple technique and on
the surface protecting against it should be fairly simple;
however, auditing all of the source code and protecting
dynamic input is not trivial, neither is reducing the
permissions of all applications users in the database itself.

It is difficult to detect SQL-Injection with an audit of
the SQL commands executed. A better method is to audit
the errors generated when the hacker is trying to gain
access to the database. These error messages can be as
useful to the hacker as they are to the database
administrator building up database queries and stored
procedures [1].

In the last few years, SQL-Injection attacks have been
on the rise [11]. Maor and Shulman outline research that
has proved that suppressing error messages – going back to
the “security by obscurity” approach [1] - cannot provide a
real solution to application level risk but can add a
measurement of protection. Security by obscurity tries to
reduce the unnecessary information from being sent back
to the client. Error messages can be used to determine
information such as the database type and table structure
[12]. Applications have still proven to be vulnerable
despite all efforts to limit information returned to the client.
There are a few applications that have been developed by
companies in an effort to provide a solution to this
problem. Some have been outlined below:

• Secure Sphere [12] uses advanced anomaly
detection, event correlation, and a broad set of signature
dictionaries to protect web applications and databases.

• ModSecurity is an open source intrusion detection
engine for web applications, which may provide helpful
tips on how to detect SQL-Injection. [2] has developed
ModSecurity for Java which is a Servlet 2.3 filter that
stands between a browser and the application, monitors

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

3

requests and responses as they are passing by, and
intervenes when appropriate in order to prevent attacks.

There is data that shows that injection flaws has been
sixth in the top ten vulnerabilities for the past two years
and that 62% of web applications are vulnerable to SQL-
Injection attacks. In [13] provide evidence that there has
been a lot of development and research in the area of how
to detect and test sites for SQL-Injection. The presentation
by [14] at a Black Hat USA 2004 convention outlines
automated blind SQL-Injection techniques. He mentions
that string comparison is suitable for error based SQL-
Injection but not blind SQL-Injection. He also mentions
that there are three kinds of SQL-Injection:-

• Redirecting and reshaping a query involves inserting
SQL commands into the query being sent to the database.
The commands allow a direct attack on the database.

• Error message based SQL-Injection makes use of
the database error messages returned to the client. The
messages provide clues as to the database type and
structure as well as the query structure.

• Blind SQL-Injection which involves a lot of
guesswork and thus requires a larger investment in time.
The attacker tries many combinations of attack and makes
the next attack attempt based on their interpretation of the
resulting html page output.

In [15] provides a good background into the problem
of SQL-Injection. It puts the whole problem into context.
The site provides explanations of the components of SQL-
Injection strings and the syntax choices. The examples
include SQL-Injection attacks, creating a secure data
access component using Java’s regular expressions.

In [16] provides concise examples of SQL-Injection
and database error messages as well as methods on how to
prevent SQL-Injection. The white paper by [9] covers
research into SQL-Injection as it applies to Microsoft
Internet Information Server/Active Server Pages/ MS SQL
Server platform. It addresses some of the data validation
and database lockdown issues that are related to SQL-
Injection into applications. The paper provides examples
of SQL-Injection attacks and gives some insight into .asp
login code and query error messages used to exploit
databases.

In [1] worked examples of SQL-Injection attacks in
his white paper on Detecting SQL-Injection in Oracle. It
focuses on detecting SQL-Injection by auditing the error
message log files. It attempts to highlight the fact that
during a hacking attempt, the error messages leave a trail
that can help expose the vulnerabilities of the database
being attacked.

In [17] SPI Dynamics presents a paper with
describing SQL-Injection in general. It goes through some
common SQL-Injection techniques and proposes a solution
to the problem. The paper provides a list of database tables
that are useful to SQL-Injection in MS SQL Server, MS

Access and Oracle. It also provides examples of SQL-
Injection using select, insert, union, stored procedures. The
examples work with a web service that returns information
to the user. This paper deals primarily with the structure of
the SQL-Injection commands and guides to overcoming
possible errors returned by the database. It should be noted
that SQL-Injection can still occur if there is no feedback to
the client. So, one could create a new valid user in a
database without receiving errors and then log on.

[18] CEO of White Hat Security, Inc., in his
presentation at the Black Hat Windows Security 2004
convention, outlines the challenges of scanning web
application code for vulnerabilities. He points out that the
scanner is restricted to looking for classes of vulnerabilities
such as SQL-Injection or cross site scripting. The reason
for this being that the benefit of known security issues is
lost because the remote scanner does not have access to the
source code.

 There is no way to provide everyone with the
minimum privileges necessary. Thus the paper explores
some simple techniques in extracting the logging and trace
data that could be used for monitoring. [1] is an extension
of a two-part paper on investigating the possibilities for an
Oracle database administrator to detect SQL-Injection.
This paper provides many scripts on SQL-Injection and
extracting logs [1].

4. System Overview

The steps in which the SQL-Injection follows can be
summarized as follows:

• Analyze the structure of SQL query commands.
• Build a parser that will check allowable patterns of

SQL statements.
• Construct a list of common SQL-Injection

commands.
• Create a proxy server that will alert the database

administrator of possible SQL-Injection commands.

Figure 1: Information Flow Diagram

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

4

• Prevent a SQL-Injection attack to a database using
this proxy server.

• Prove that SQL-Injection can be prevented using the
filter developed to work on the proxy server.

• Provide sufficient logging to allow the user to isolate
security holes.

• Produce a list of best practices for Database
Administrators and Software Developers with respect to
preventing SQL-Injection.

5. Design

Current paper aims to eliminate the possibility of
SQL-Injection by the use of a proxy server, which will be
placed in between the two communicating devices. This
will allow for the filtering of possible SQL-Injection
attempts.
The information flow diagram in figure 1 shows the flow
of information between a TDSProxy server within the
domain of this project and the other entities and
abstractions with which it communicates. The diagram
helps to discover the scope of the system and identify the
system boundaries. The system under investigation
(TDSProxy) is represented as a single process interacting
with various data and resource flow entities via an
interface. As can be seen from the diagram, the web
application provides the query to TDSProxy which in turn
provides safe queries to the database and attack reports to
the Database Administrator. The response from the
database is routed back to the web application through
TDSProxy. Should the need arise, log files in the database
application provide information for auditing purposes at a
later stage.

Figure 2: High Level Design View

The design and implementation steps made use of the

Rational Unified Process (RUP) with the aid of Unified
Mark-up Language (UML). This iterative process started
off with a simple application and developed into a more

complex system in subsequent iterations. The reason for
using this methodology was to overcome problem areas in
segments. Once the basic concept was conceived and
implemented, more advanced featured were added to flesh
out the software used for this proof of concept project.

The web application is where the queries are formed
from the input parameters. These queries are sent to the
database through TDSProxy. The bulk of the system
operations take place at the TDSProxy. When the
TDSProxy has filtered the query, the clean query is sent to
the database server. Figure 2 illustrates how the incoming
requests are filtered and only clean queries are passed on
to the database for processing. For security reasons, the
proxy server will sit on the same machine as the database.
The diagram in figure 2 shows all the components in the
high level view of the system. The web interface is the tool
used by the client to send requests to the database. The
web application is pointing to TDS proxy server so that all
requests and responses must go through TDSProxy. The
client’s web application request triggers the formation of
the SQL statement which uses the input parameters of the
web form to create the correct SQL statement. This SQL
statement is then sent to TDSProxy. When the SQL
statement is received, it is first filtered. Only clean SQL
statements are then sent to the database. The database
processes the request and sends its response through
TDSProxy. TDSProxy in turn sends the response to the
web application for processing to produce the correct view
for the client.

Figure 3: Flowchart of the TDS Proxy server

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

5

The flowchart in figure 3 focuses on the internally driven
processes as opposed to external events. The action states
in the diagram represent the decisions and behavior of the
processing. Figure 3 captures the actions performed at
system start-up and run time.
TDSProxy loads a configuration file at start-up. This file
contains, filter settings and options as well as the settings
required for the passing of data to the correct destination.
Once the system has started, it is able to start receiving
data from the client. When data is received from the client,
the payload is analyzed. If the payload contains a SQL
query, the query is logged and then filtered. If the filter
process finds that there is a potential attack, the attack is
logged. After logging the attack, the attack information is
sent via UDP to the DBA. A false query is sent to the
database and the response returned to the client. If the filter
process did not pick up an attack, the query is sent to the
database and the database response is returned to the client.
If the payload does not contain a query, the data is simply
passed on to the database.
The operations and methods of the system transform the
query from one state to another depending on what route
the information is flowing. These changes are shown in
figure 4.

Figure 4: State Change Diagram for Client Query

The raw string becomes part of the query string through
processing at the client interface. This happens when the

input parameters are selected from the client interface and
inserted into the hard coded query. The query may be
formed at the client side or the parameters may be passed
to the web application server.
Once the SQL query has been formed, it is sent to
TDSProxy where it is analyzed for SQL-Injection. The
query is logged and then filtered for SQL-Injection. If the
query contains SQL-Injection, the attack is logged, the
dangerous SQL is discarded, the DBA is notified via a
UDP alert and a false query is sent to the database. The
database response is then relayed to the client.
If the filtered query does not contain SQL-Injection, the
query becomes a database query and is sent to the database.
The database response is then relayed the client interface
through TDSProxy.

6. Current Status

The implementation was done iteratively, starting off with
an application that piped text (the TCP payload) through a
proxy server. This was tested using a powerful networking
tool called NetCat [19].
The proxy server was then improved to connect to the
database using a connection string. The proxy server has a
variety of potential purposes, including:
• To keep machines behind it anonymous, mainly for
security.
• To speed up access to resources (using caching). Web
proxies are commonly used to cache web pages from a web
server.
• To prevent downloading the same content multiple times
(and save bandwidth).
• To allow the browser to make web requests to externally
hosted content on behalf of a website when cross-domain
restrictions (in place to protect websites from the likes of
data theft) prohibit the browser from directly accessing the
outside domains.
There was a problem at this stage of the development. The
default setup configuration of MS SQL Server 2008 allows
Windows authentication only. This needed to be changed
to windows and SQL server authentication in order to
overcome the login error. It was thought that there was
something wrong with the code when in actual fact, it was
a database setting. With the correct username, password
and rights, the database was manipulated by entering the
SQL text on a NetCat client instance.
The next step involved sending hard coded SQL queries to
the database at startup of the application. This confirmed
that the username, password and privileges were correct.
An attempt at using a Microsoft Access XP data access
page as the client was unsuccessful and produced many
login errors. When setting up the data access page, Access

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

6

XP only accepted the use of an actual machine name and
not its IP address.
For testing purposes, a direct connection to the database
was set up and querying the database through the data
access page was possible. The next step was to be able to
route the login through TDSProxy so that the database
would ‘think’ it was talking to an Access data access page.
However, when trying to connect to the database from the
data access page through the proxy server, there was a
problem with the connection string. The database kept
returning an error message saying that the connection was
refused because it was not associated with a trusted
database.
This problem was overcome by hard coding “trusted server
= true” into the data access page’s connection string. The
login errors continued. The database kept sending back
reset packets. There was no apparent reason for it not
being able to log on after the data was being routed. The
packet data was altered so that the source and destination
ports and IP addresses made TDSProxy seem totally
transparent. The first three login packets were forged from
a successful login without TDSProxy. However, this made
no difference and an alternative client tool was sought. The
possibility of port or IP number mismatching was
eliminated by continuing the development on the same
machine.
The querying client made use of OSQL, a tool that comes
with MS SQL Server 2008. This tool, along with packet
sniffers Ethereal [20] and Packetyser [21] allowed
Acknowledgments Insert acknowledgment, if any for the
development of the SQL extracting method. This was done
by analysis of the TDS protocol and lead to the extraction
of the query in the query packet sent to the database after
the login challenge.
With TDSProxy now able to capture the query sent in the
TDS query packet, a vulnerable ASP application was
developed. The ASP page was hosted on a remote machine
and connection to the database came through the proxy
server. This application allows the user to enter SQL-
Injection text into the input parameters and manipulate
the database.
The next step involved creating the filter which made use
of powerful regular expressions. The filter uses SQL-
Injection signatures which are made up of a black list,
white list, gray list and pattern matching list. The filter is
able to report whether the SQL query text matches any of
the given signatures. At all stages of development, there is
extensive logging of the queries captured. This helps with
the debugging. SQL Injection attacks are logged along
with the signature that caught the attack. With the aid of
the log files generated by TDS Proxy and the database log
files, the DBA can ascertain which database is being
attacked. The DBA can also discover which web server or
web page the attacker is using. The value of this is that the

security holes can be patched and the database protected
from further attacks.
Alerts are sent via UDP to the database administrator with
the SQL-Injection query, the name of the machine hosting
the web application and a timestamp. This will allow the
DBA to block further injection attacks from a particular
user by checking the database log file which should
contain the IP address of the person who sent the query at
that time. The filter method made use of black, white, gray
and pattern matching signatures. When filtering was turned
off, the average processing time of TDSProxy was reduced
from 0.256845 milliseconds to 0.002469 milliseconds.
This was for a set of 5000 queries of varied length and
structure. The total signature set is 190.
Timing the latency of TDSProxy was done by subtracting
the time that the database spends processing the query
from the roundtrip time for a client query and response.
The roundtrip time was calculated as the query enters and
leaves the proxy sever on the client side only. The database
processing time was calculated by timing the query and
response time on the database side.
The time taken to process queries seems to be negligible
given the default MS SQL Server 2008 login timeout time
is 4 seconds and the default query timeout time is 0
seconds.

7. Future Work

The order of filtering may have a performance impact too.
This will be investigated by changing the order that filter
uses the signatures. Timing individual query execution
time from a webpage will provide useful information on
the impact of the TDSProxy on web interface usage. The
project could be extended to handle other databases such
as MySQL, Oracle and Postgres as well as other operating
systems. A further extension of the project could involve
an investigation into the performance impact of the proxy
server on data transfer.

8. Conclusion

SQL-Injection is a relatively simple technique and on the
surface protecting against it should be fairly simple.
Auditing all of the source code and protecting dynamic
input is not trivial, neither is reducing the permissions of
all application users in the database itself. Given the
research done in the area of using other methods of
prevention [13] and the fact that there is a finite set of
words in the SQL, it is possible to develop a filter to
prevent SQL-Injection.
Checking through log files, making sure that code is
perfectly secure and relying on the least privileges

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

7

principle does not seem sufficient. Detecting SQL is not as
useful as preventing it. It is difficult to detect attacks and
again, an audit of log is required. The use of packet
sniffers does not allow for the prevention of damage as the
packets collected do not allow for the removal of malicious
SQL query statements. Is it viable to develop auditing
software that will require a large amount of resources for
computation and storage?
TDSProxy is a feasible solution to preventing SQL-
Injection. The filtering process seems to provide a
negligible overhead. This part of the project does however
require further investigation.
Acknowledgment: This work has been done under the
auspices of the Department of Mathematics, Faculty of
Science, Suez University, Egypt.

References
[1] P. Finnigan, ”Detecting SQL Injection in Oracle.”

http://securityfocus.com/infocus/1714.
[2] I. Ristic, ”ModSecurity for Java.”

http://www.modsecurity.org/projec ts/modsecurity/java/.
[3] A. Petukhov and D. Kozlov, ”Detecting Security

Vulnerabilities in Web Applications Using Dynamic
Analysis with Penetration Testing, ” Proceedings of
Application Security Conference, Ghent, Belgium, 19-22
May, 2008.

[4] K. Ahmad, J. Shekhar, and K.P. Yadav, ”A Potential
Solution to Mitigate SQL Injection Attack,” VSRD
Technical & Non-Technical Journal, 145-152, Vol. I (2),
2010.

[5] B. Indrani and E. Ramaraj, ” An Approach to Detect and
Prevent SQL Injection Attacks in Database Using Web
Service,” IJCSNS International Journal of Computer
Science and Network Security, VOL.11 No.1, January 2011.

[6] P. Ramasamy and S. Abburu,”SQL Injection Attack
Detected and Prevention,” International Journal of
Engineering Science and Technology (IJEST), Vol. 4 No.04
April 2012.

[7] S. Manmadhan and Manesh T, ”A Method of Detecting
SQL Injection Attack to Secure web Applications,”
International Journal of Distributed and Parallel Systems
(IJDPS) Vol.3, No.6, November 2012.

[8] L. Kishori and K. Sunil,” Detection And Prevention of
SQL-Injection Attacks of Web Application Using
Comparing Length of SQL Query,” ISSN (Print): 2278-
5140, Volume-1, Issue — February, 2012.

[9] C. Anley, ”Advanced SQL injection.”
http://www.nextgenss.com/papers/advanced-sql-
injection.pdf.

[10] P. Finnigan, ”SQL Injection and Oracle, Part.”
http://www.securityfocus.com/infocus/1644.

[11] O. Maor, and A. Shulman, ”Blind SQL Injection.”
http://www.imperva.com/application defense center/white
papers/blind SQL server injection.html.

[12] C. Cerrudo, ”Manipulating Microsoft SQL Server Using
SQL
Injection.”http://www.appsecinc.com/presentations/Manipul
ating SQL Server Using SQLInjection.pdf.

[13] A. Keromytis, and V. Prevelakis, ”Countering code-
injection attacks with instruction-set randomization in
Proceedings of the 10th ACM,” Conference on Computer
and Communication Security Washington D.C., pp. 272-
280.

[14] C. Hotchkies ”Blind SQL Injection Automation
Techniques.” http://www.blackhat.com/html/bh-media-
archives/bh-archives-2004.html#USA-2004.

[15] Microsoft,”Secure Multi-tier Deployment.”
http://www.microsoft.com/technet/prodtechnol/SQL/2000/m
aintain/sp3sec03.mspx.

[16] Beyond Security Ltd,”SQL Injection Walkthrough.”
http://www.securiteam.com/securityreviews/5DP0N1P76E.h
tml.

[17] K. Spett,”SQL Injection Are Your Web Applications
Vulnerable?.”http://www.spidynamics.com/whitepapers/Wh
itepaperSQLInjection.pdf.

[18] J. Grossman,”The Challenges of Automated Web
Application Scanning.” http://www.blackhat.com/html/bh-
media-archives/bh-archives-2004.html#Windows-2004.

[19] Vulnwatch, ”netcat 1.11 for Windows is released.”
http://www.vulnwatch.org/netcat/.

[20] Ethereal,”Ethereal.”http://www.ethereal.com/download.html.
[21] Network Chemistry,”Packetyzer - Packet Analyzer for

Windows. ”http://www.networkchemistry.com/products/pac
ketyzer/.

Yasser Fouad born in Egypt in 1972. He
received his B.Sc. and M.Sc degree in
Computer Science from the Faculty of
Science, Suez Canal University, Ismailia,
Egypt in 1994 and 2003, respectively. He
received a Doctoral degree in Wireless
Networks in 2009. He is a full lecturer at
the Faculty of Science, Suez University,
Suez, Egypt.

Khaled Elshazly born in Egypt in 1969
received the B.S. and M.S. degrees in
computer science from Suez Canal
University in 1991 and 2007, respectively.
During 1999-2013, worked in Suez
institute for management information
systems. His research focuses on security
network.

