
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013

109

Manuscript received August 5, 2013
Manuscript revised August 20, 2013

Secured Key Escort Services in Cloud Computing

Ramavatar Kumawat†, Sandeep Singh†, Manohar Prajapati††

†Suresh Gyan Vihar University, Jaipur
††Poornima college of Engineering, Jaipur

Abstract:
Cloud computing is an emerging computing paradigm in which
resources of the computing infrastructure are provided as services
over the Internet and this brings forth many new challenges for
data security and access control when users outsource sensitive
data for sharing on cloud servers, which are not within the same
trusted domain as data owners. To keep sensitive user data
confidential against untrusted servers, existing solutions usually
apply cryptographic methods by disclosing data decryption keys
only to authorized users. However, in doing so, these solutions
inevitably introduce a heavy computation overhead on the data
owner for key distribution and data management when finegrained
data access control is desired, and thus do not scale well. The
problem of simultaneously achieving fine-grainedness, scalability,
and data confidentiality of access control actually still remains
unresolved. This project addresses this issue by using access
policies based on data attributes that allow the data owner to
delegate most of the computation tasks involved in finegrained
data access control to untrusted cloud servers without disclosing
the underlying data contents. The proposed scheme also has
salient properties of user access privilege confidentiality and user
secret key accountability. The proposed scheme can enable the
data owner to delegate most of computation overhead to powerful
cloud servers. Confidentiality of user access privilege and user
secret key accountability can be achieved. Formal security proofs
show that our proposed scheme is secure under standard
cryptographic models. This paper aims at fine-grained data access
control in cloud computing and also extensive analysis shows that
our proposed schemes is highly efficient and provably secure
under existing security models.

1. INTRODUCTION

Cloud computing is a promising computing paradigm
which recently has drawn extensive attention from both
academia and industry. By combining a set of existing and
new techniques from research areas such as
Service-Oriented Architectures (SOA) and virtualization,
cloud computing is regarded as such a computing paradigm
in which resources in the computing infrastructure are
provided as services over the Internet. Along with this new
paradigm, various business models are developed, which
can be described by terminology of “X as a service (XaaS)”
where X could be software, hardware, data storage, and etc.
Successful examples are Amazon’s EC2 and S3, Google
App Engine, and Microsoft Azure which provide users with
scalable resources in the pay-as-youuse fashion at relatively
low prices. For example, Amazon’s S3data storage service

just charges $0.12 to $0.15 per gigabyte month. As
compared to building their own infrastructures, users are
able to save their investments significantly by migrating
businesses into the cloud. With the increasing development
of cloud computing technologies, it is not hard to imagine
that in the near future more and more businesses will be
moved into the cloud. As promising as it is, cloud
computing is also facing many hallenges that, if not well
resolved, may impede its ast growth. Data security, as it
exists in many other pplications, is among these challenges
that would raise reat concerns from users when they store
sensitive information on cloud servers. These concerns
originate from the fact that cloud servers are usually
operated by commercial providers which are very likely to
be outside of the trusted domain of the users. Data
confidential against cloud servers is hence frequently
desired when users outsource data for storage in the cloud.
For example, in healthcare application scenarios use and
disclosure of protected health information (PHI) should
meet the requirements of Health Insurance Portability and
Accountability Act (HIPAA), and keeping user data
confidential against the storage servers is not just an option,
but a requirement.
As a significant research area for system protection, data
access control has been evolving in the past thirty years and
various techniques have been developed to effectively
implement fine-grained access control, which allows
flexibility in specifying in the same trusted domain, where
the servers are fully entrusted as an omniscient reference
monitor responsible for defining and enforcing access
control policies. These existing works, as we will discuss in
section V-C, resolve this issue either by introducing a per
file access control list (ACL) for fine-grained access control,
or by categorizing files into several filegroups for efficiency.
As the system scales, however, the complexity of the
ACL-based scheme would be proportional to the number of
users in the system.
In this paper, we address this open issue and propose a
secure and scalable fine-grained data access control scheme
for cloud computing. Our proposed scheme is partially
based on our observation that, in practical application
scenarios each data file can be associated with a set of
attributes which are meaningful in the context of interest.
The access structure of each user can thus be defined as a
unique logical expression over these attributes to reflect the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013 110

scope of data files that the user is allowed to access. We
achieve our design goals by exploiting a novel
cryptographic primitive, namely key policy attribute-based
encryption (KP-ABE), and uniquely combine it with the
technique of proxy reencryption (PRE) and lazy
re-encryption. Main contributions of this paper can be
summarized as follows.
1) To the best of our knowledge, this paper is the first that
simultaneously achieves fine-grainedness, scalability and
data confidentiality for data access control in cloud
computing;
2) Our proposed scheme enables the data owner to delegate
most of computation intensive tasks to cloud servers
without disclosing data contents or user access privilege
information;
3) The proposed scheme is provably secure under the
standard security model. In addition, our proposed scheme
is able to support user accountability with minor extension.

2. MODELS AND ASSUMPTIONS

2.1 System Models

Similar to, we assume that the system is composed of the
following parties: the Data Owner, many Data Consumers,
many Cloud Servers, and a Third Party Auditor if necessary.
To access data files shared by the data owner, Data
Consumers, or users for brevity, download data files of their
interest from Cloud Servers and then decrypt. Neither the
data owner nor users will be always online. They come
online just on the necessity basis. For simplicity, we assume
that the only access privilege for users is data file reading.
Extending our proposed scheme to support data file writing
is trivial by asking the data writer to sign the new data file
on each update as does. From now on, we will also call data
files by files for brevity. Cloud Servers are always online
and operated by the Cloud Service Provider (CSP). They re
assumed to have abundant storage capacity and
computation power. The Third Party Auditor is also an
online party which is used for auditing every file access
event. In addition, we also assume that the data owner can
not only store data files but also run his own code on
Cloud Servers to manage his data files.

2.2. Security Models

In this work, we just consider Honest but Curious Cloud
Servers as does. That is to say, Cloud Servers will follow
our proposed protocol in general, but try to find out as much
secret information as possible based on their inputs. More
specifically, we assume Cloud Servers are more interested
in file contents and user access privilege information than
other secret information. Cloud Servers might collude with
a small number of malicious users for the purpose of
harvesting file contents when it is highly beneficial.

Communication channel between the data owner/users and
Cloud Servers are assumed to be secured under existing
security protocols such as SSL. Users would try to access
files either within or outside the scope of their access
privileges. To achieve this goal, unauthorized users may
work independently or cooperatively. In addition, each
party is preloaded with a public/private key pair and the
public key can be easily obtained by other parties when
necessary.

2.3. Design Goals

Our main design goal is to help the data owner achieve
fine-grained access control on files stored by Cloud Servers.
Specifically, we want to enable the data owner to enforce a
unique access structure on each user, which precisely
designates the set of files that the user is allowed to access.
We also want to prevent Cloud Servers from being able to
learn both the data file contents and user access privilege
information. In addition, the proposed scheme should be
able to achieve security goals like user accountability and
support basic operations such as user grant/revocation as a
general one-to-many communication system would require.
All these design goals should be achieved efficiently in the
sense that the system is scalable.

3. TECHNIQUE PRELIMINARIES

3.1 Key Policy Attribute-Based Encryption
(KP-ABE)

KP-ABE is a public key cryptography primitive for
one-to-many communications. In KP-ABE, data are
associated with attributes for each of which a public key
component is defined. The encryptor associates the set of
attributes to the message by encrypting it with the
corresponding public key components. Each user is
assigned an access structure which is usually defined as an
access tree over data attributes, i.e., interior nodes of the
access tree are threshold gates and leaf nodes are associated
with attributes. User secret key is defined to reflect the
access structure so that the user is able to decrypt a
ciphertext if and only if the data attributes satisfy his access
structure. A KP-ABE scheme is composed of four
algorithms which can be defined as follows:
Setup This algorithm takes as input a security parameter
κ and the attribute universe U = 1, 2, . . ., N of cardinality N.
It defines a bilinear group G1 of prime order p with a
generator g, a bilinear map e: 1

G1 G2 which has the properties of bilinearity, computability,
and non-degeneracy. It returns the public key PK as well as
a system master key MK as follows
PK = (Y, T1, T2, . . . , TN)
MK = (y, t1, t2, . . . , tN) where Ti G1 and ti Zp

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013 111

are for attribute i, 1 i N, and Y G2 is another public key
component. We have Ti = gti and Y = e(g,g)y, y Zp. While
PK is publicly known to all the parties in the system, MK is
kept as a secret by the authority party.
Encryption This algorithm takes a message M, the public
key PK, and a set of attributes I as input. It outputs the
ciphertext E with the following format: E = (I, ˜ E, Ei i I)
where ˜E = MYs, Ei = Ts i , and s is randomly chosen from
Zp.
Key Generation This algorithm takes as input an access tree
T, the master key MK, and the public key PK. It outputs a
user secret key SK as follows. First, it defines a random
polynomial pi(x) for each node I of T in the top-down
manner starting from the root node r. For each non-root
node j, pj(0) = pparent(j)(idx(j)) where parent(j) represents
j’s parent and idx(j) is j’s unique index given by its parent.
For the root node r, pr(0) = y. Then it outputs SK as follows.
SK = ski i L where L denotes the set of attributes attached to
the leaf nodes of T and ski = g pi(0) ti.
Decryption This algorithm takes as input the ciphertext E
encrypted under the attribute set I, the user’s secret key SK
for access tree T, and the public key PK. It first computes
e(Ei, ski) = e(g, g)pi(0)s for leaf nodes. Then, it aggregates
these pairing results in the bottom-up manner using the
polynomial interpolation technique. Finally, it may recover
the blind factor Y s = e(g, g) ys and output the message M if
and only if I satisfies T. Please refer to for more details on
KP-ABE algorithms are an enhanced KP-ABE scheme
which supports user secret key accountability.

3.2 Proxy Re-Encryption (PRE)

Proxy Re-Encryption (PRE) is a cryptographic primitive in
which a semi-trusted proxy is able to convert a ciphertext
encrypted under Alice’s public key into another ciphertext
that can be opened by Bob’s private key without seeing the
underlying plaintext. More formally, a PRE scheme allows
the proxy, given the proxy re-encryption key rka b, to
translate ciphertexts under public key pka into ciphertexts
under public key pkb and vise versa. Please refer to for
more details on proxy re-encryption schemes.

4. OUR PROPOSED SCHEME

4.1 Main Idea

In order to achieve secure, scalable and fine-grained access
control on outsourced data in the cloud, we utilize and
uniquely combine the following three advanced
cryptographic techniques: KP-ABE, PRE and lazy
re-encryption. More specifically, we associate each data file
with a set of attributes, and assign each user an expressive
access structure which is defined over these attributes. To
enforce this kind of access control, we utilize KP-ABE to

escort data encryption keys of data files. Data
confidentiality is also achieved since Cloud Servers are not
able to learn the plaintext of any data file in our construction.
For further reducing the computation overhead on Cloud
Servers and thus saving the data owner’s investment, we
take advantage of the lazy re-encryption technique and
allow Cloud Servers to “aggregate” computation tasks of
multiple system operations. Scalability is thus achieved. In
addition, our construction also protects user access
privilege information against Cloud Servers. Accoutability
of user secret key can also be achieved by using an
enhanced scheme of KP-ABE.

4.2 Definition and Notation

For each data file the owner assigns a set of meaningful
attributes which are necessary for access control. Different
data files can have a subset of attributes in common. Each
attribute is associated with a version number for the purpose
of attribute update as we will discuss later. Cloud Servers
keep an attribute history list AHL which records the version
evolution history of each attribute and PRE keys used. In
addition to these meaningful attributes, we also define one
dummy attribute, denoted by symbol AttD for the purpose
of key management. AttD is required to be included in
every data file’s attribute set and will never be updated.
Leaf nodes of the access tree are associated with data file
attributes. For the purpose of key management, we require
the root node to be an AND gate (i.e., n-of-n threshold gate)
with one child being the leaf node which is associated with
the dummy attribute, and the other child node being any
threshold gate. The dummy attribute will not be attached to
any other node in the access tree. Fig.1 illustrates our
definitions by an example. In addition, Cloud Servers also
keep a user list UL which records IDs of all the valid users
in the system.

4.3 Scheme Description

For clarity we will present our proposed scheme in two
levels: System Level and Algorithm Level. At system level,
we describe the implementation of high level operations,
i.e., System Setup, New File Creation, New User Grant, and
User Revocation, File Access, File Deletion, and the
interaction between involved parties. At algorithm level, we
focus on the implementation of low level algorithms that
are invoked by system level operations.
1) System Level Operations: System level operations in our
proposed scheme are designed as follows. System Setup In
this operation, the data owner chooses a security parameter
κ and calls the algorithm level interface ASetup(κ), which
outputs the system public parameter PK and the system
master key MK. The data owner then signs each component
of PK and sends PK along with these signatures to Cloud
Servers.New File Creation Before uploading a file to Cloud
Servers, the data owner processes the data file as follows.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013 112

select a unique ID for this data file; randomly select a
symmetric data encryption key DEK R , where is the key
space, and encrypt the data file using DEK; define a set
of attribute I for the data file and encrypt DEK with I
using KP-ABE,i.e., (˜ , Ei i I)AEncrypt(I,DEK,PK).
Finally, each data file is stored on the cloud in the
format.New User Grant When a new user wants to join the
system, the data owner assigns an access structure and the
corresponding secret key to this user as follows.
assign the new user a unique identity w and an access
structure P; generate a secret key SK for w, i.e., SK
 AKeyGen(P,MK);
encrypt the tuple (P,SK,PK, δO,(P,SK,PK)) with user w’s
public key, denoting the ciphertext by C; send the tuple
(T,C, δO,(T,C)) to Cloud Servers, where T denotes the tuple
(w, j,skj j LP AttD). On receiving the tuple (T,C, δO,(T,C)),
Cloud Servers processes as follows.
verify δO,(T,C) and proceed if correct; store T in the system
user list UL; forward C to the user. On receiving C, the user
first decrypts it with his private key. Then he verifies the
signature δO,(P,SK,PK). If correct, he accepts (P, SK,PK)
as his access structure, secret key, and the system public
key.As described above, Cloud Servers store all the secret
key components of SK except for the one corresponding to
the dummy attribute AttD. Such a design allows Cloud
Servers to update these secret key components during user
revocation as we will describe soon. As there still exists one
undisclosed secret key component (the one for AttD),
Cloud Servers can not use these known ones to correctly
decrypt ciphertexts. Actually, these disclosed secret key
components, if given to any unauthorized user, do not give
him any extra advantage in decryption as we will show in
our security analysis.
User Revocation We start with the intuition of the user
revocation operation as follows. Whenever there is a user to
be revoked, the data owner first determines a minimal set of
attributes without which the leaving user’s access structure
will never be satisfied. Next, he updates these attributes by
redefining their corresponding system master key
components in MK. Public key components of all these
updated attributes in PK are redefined accordingly.
In the first stage, the data owner determines the minimal set
of attributes, redefines MK and PK for involved attributes,
and generates the corresponding PRE keys. He then sends
the user’s ID, the minimal attribute set, the PRE keys, the
updated public key components, along with his signatures
on these components to Cloud Servers, and can go off-line
again. This property allows Cloud Servers to update user
secret keys and data files in the “lazy” way as follows. Once
a user revocation event occurs, loud Servers just record
information submitted by the Data owner as is previously
discussed.
File Access This is also the second stage of user revocation.
In this operation, Cloud Servers respond user request on
data file access, and update user secret keys and re-encrypt

requested data files if necessary. If correct, the user further
verifies if each secret key component returned by Cloud
Servers is correctly computed. He verifies this by
computing a bilinear pairing between sk j and T j and
comparing the result with that between the old skj and Tj
that he possesses. If verification succeeds, he replaces each
skj of his secret key with sk j and Update Tj with T j .
Finally, he decrypts data files by first calling ADecrypt(P,
SK,E) to decrypt DEK’s and then decrypting data files
using DEK’s.
File Deletion This operation can only be performed at the
request of the data owner. To delete a file, the data owner
sends the file’s unique ID along with his signature on this
ID to Cloud Servers. If verification of the owner’s signature
returns true, Cloud Servers delete the data file.

4.4 Summary

In our proposed scheme, we exploit the technique of
hybrid encryption to protect data files, i.e., we encrypt
data files using symmetric DEKs and encrypt DEKs
with KPABE. Using KP-ABE, we are able to
immediately enjoy fine-grained data access control
and efficient operations such as file creation/deletion
and new user grant. To resolve the challenging issue
of user revocation, we combine the technique of proxy
re-encryption with KP-ABE and delegate most of the
burdensome computational task to Cloud Servers. We
achieve this by letting Cloud Servers keep a partial
copy of each user’s secret key, i.e., secret key
components of all but one (dummy) attributes. This
enhancement releases the data owner from the
possible huge computation overhead on user
revocation. The data owner also does not need to
always stay online since Cloud Servers will take over
the burdensome task after having obtained the PRE
keys. To further save computation overhead of Cloud
Servers on user revocation, we use the technique of
lazy re-encryption and enable Cloud Servers to
“aggregate” multiple successive secret key update/file
re-encryption operations into one, and thus
statistically save the computation overhead.

5. ANALYSIS OF OUR PROPOSED
SCHEME

5.1 Security Analysis

We first analyze security properties of our proposed scheme,
starting with the following immediately available
properties.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.8, August 2013 113

1) Fine-grainedness of Access Control: In our proposed
scheme, the data owner is able to define and enforce
expressive and flexible access structure for each user.
Specifically, the access structure of each user is defined as a
logic formula over data file attributes, and is able to
represent any desired data file set.
2) User Access Privilege Confidentiality: Our proposed
scheme just discloses the leaf node information of a user
access tree to Cloud Servers. As interior nodes of an access
tree can be any threshold gates and are unknown to Cloud
Servers, it is hard for Cloud Servers to recover the access
structure and thus derive user access privilege information.
3) User Secret Key Accountability: This property can be
immediately achieved by using the enhanced construction
of KP-ABE which can be used to disclose the identities of
key abusers. Now we analyze data confidentiality of our
proposed scheme by giving a cryptographic security proof.
4) Data Confidentiality: We analyze data confidentiality of
our proposed scheme by comparing it with an intuitive
scheme in which data files are encrypted using symmetric
DEKs, and DEKs are direclty encrypted using standard
KP-ABE. In this intuitive scheme just ciphertexts of data
files are given to Cloud Servers. Assuming the symmetric
key algorithm is secure, e.g., using standard symmtric key
algorithm such as AES, security of this intuitive scheme is
merely relied on the security of KP-ABE. Actually, the
standard KP-ABE is provably secure under the
attribute-based Selective-Set model given the Decisional
Bilinear Diffie-Hellman (DBDH) problem is hard.

6. CONCLUSION

This paper aims at fine-grained data access control in cloud
computing. One challenge in this context is to achieve
finegrainedness, data confidentiality, and scalability
simultaneously, which is not provided by current work. In
this paper we propose a scheme to achieve this goal by
exploiting KPABE and uniquely combining it with
techniques of proxy re-encryption and lazy re-encryption.
Moreover, our proposed scheme can enable the data owner
to delegate most of computation overhead to powerful
cloud servers. Confidentiality of user access privilege and
user secret key accountability can be achieved. Formal
security proofs show that our proposed scheme is secure
under standard cryptographic models.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.

Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” University of California, Berkeley, Tech. Rep.
USB-EECS-2009-
28, Feb 2009.

[2] Amazon Web Services (AWS), Online at http://aws.
amazon.com.

[3] Microsoft Azure, http://www.microsoft.com/azure/.
[4] 104th United States Congress, “Health Insurance Portability

and Accountability Act of 1996 (HIPPA),” Online at
http://aspe.hhs.gov/admnsimp/pl104191.htm, 1996.

[5] H. Harney, A. Colgrove, and P. D. McDaniel, “Principles of
policy in secure groups,” in Proc. of NDSS’01, 2001.

[6] P. D. McDaniel and A. Prakash, “Methods and limitations of
security policy reconciliation,” in Proc. of SP’02, 2002.

[7] T. Yu and M. Winslett, “A unified scheme for resource
protection in automated trust negotiation,” in Proc. of SP’03,
2003.

[8] J. Li, N. Li, and W. H. Winsborough, “Automated trust
negotiation using cryptographic credentials,” in Proc. of
CCS’05, 2005.

[9] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K.
Fu, “Scalable secure file sharing on untrusted storage,” in
Proc. Of FAST’03, 2003.

[10] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius:
Securing remote untrusted storage,” in Proc. of NDSS’03,
2003.[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger,
“Improved proxy re-encryption schemes with applications to
secure distributed storage,” in Proc. of NDSS’05, 2005.

[11] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi,
and P. Samarati, “Over-encryption: Management of access
control evolution on outsourced data,” in Proc. of VLDB’07,
2007.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access control
of encrypted data,” in Proc. Of CCS’06, 2006.

[13] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and
efficient key management for access hierarchies,” in Proc. of
CCS’05, 2005.

http://aws./
http://www.microsoft.com/azure/
http://aspe.hhs.gov/admnsimp/pl104191.htm

