
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

5

Manuscript received September 5, 2013
Manuscript revised September 20, 2013

Securing Distributed Control of Software Defined Networks

Othman OTHMAN M.M† and Koji OKAMURA††,

†Department of Advanced Information Technology, Graduate school of Information Science and Electrical Engineering,
Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.

††Research Institute for Information Technology, Kyushu University. 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581,
Japan.

Summary
This paper shows the method designed to secure and authenticate
distributed behavior of the proposed hybrid control model of
Software Defined Networks (SDNs) in [1]. Where, the SDN is an
emerging topic that tracts attention due to its paradigm, that splits
the control plane form data forwarding plane. According to [2],
SDN defines OpenFlow [3] as “key enabler for software-defined
networks”. However, there have been some debates regarding the
scalability of the OpenFlow's controller; this is due to the design
of OpenFlow as it depends on a centralized controller to control
flows. Manny efforts have been put to solve this issue, one of
them is the hybrid control model proposed in [1]; where the
original centralized model is preserved, while adding a
distributed control model for some specific cases, in order to
increase the network’s efficiency. And based on the well-
established fact, that all computer systems and networks should
be secure; in this work, we propose a security method for such
distributed control model of SDNs. In which, we aim to secure
the flow installation using the distributed control, in addition to
enabling safe usage of the distributed control without any chance
of malicious use of the distributed control.
Key words:
Software Defined Networks, OpenFlow, Network Security,
Control Model.

1. Introduction

Software Defined Networking (SDN) is an emerging topic
that tracts attention due to its paradigm, that splits the
control plane form data forwarding plane. According to
which, the control plane is realized as the network
operating system, which is responsible for controlling
maintaining the state of the whole network. And the data
plane is realized as the network equipment or devices that
carry out instructions form the control plane and forwards
the data packets. Where, SDN in [2] have defined
OpenFlow as “key enabler for software-defined networks
and currently is the only standardized SDN protocol that
allows direct manipulation of the forwarding plane of
network devices”. Thanks to the flexibility provided by
OpenFlow and SDN, many researchers embarked on
providing new smart applications like; a virtualized
network infrastructure in [4], detection of DDoS attack
detection [5], measurement-aware routing [6], supporting

QoS [7], run-time programming for network to support big
data applications [8], and many others. It is believed that
large number of new applications will be proposed to
enhance the operation of current technologies and to
provide even new applications.

On 2008, OpenFlow [3] was first introduced. OpenFlow is
a part of Stanford University’s clean slate project.
OpenFlow provides a specially designed way to control
flows on the network equipment by the OpenFlow
controller (control plane) through using the OpenFlow
Protocol, and splits that form the data plane (network
equipment). According to OpenFlow; decision making can
be done and modified freely by the OpenFlow controller
according to layer 2, 3, VLAN, and layer 4 headers while
the forwarding or routing is still done by routers or
switches, in addition to, their original functionality.
Moreover, OpenFlow defines actions to be performed on
flows that can be either collection of statistics or usage
data, forwarding packets, dropping packets, or
manipulating packet’s headers. This freedom, flexibility -
due to the split of decision making and forwarding-, and
the wide range of actions performed on packets enables
OpenFlow to play a crucial role in developing the future
Internet along with its main target which is running
researchers’ experiments on production networks.

However, despite this great flexibility of OpenFlow, there
have been many concerns about the scalability of
OpenFlow due to the way that the OpenFlow controller
controls the OpenFlow network equipment, which forces a
tight coupling between the controller and the network
equipment. This would mean that the controller can be one
of the bottlenecks in the system. There have been many
efforts to solve this problem, as in [9], which aims provide
a distributed event-based control plane for OpenFlow.
Among those efforts, in our previous work [1], we have
proposed a hybrid control model; that allows the regular
centralized control model to be used as the main control
model, in addition to allowing the distributed control
model to be used in cases as a fail-safe mechanism. For
example, this hybrid control model can be useful in cases
where the controller is under heavy loads and is required

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

6

to install a large number of flow entries into the OpenFlow
network equipment, while some network equipment are
also heavily loaded (load on network equipment can be
thought of in more than one prospective, e.g. the usage of
flow table entries). In such cases, the hybrid control model
can be used to relieve the controller form doing any further
processing to relocate the flows, and enabling it to install
those flows as they are; and relying on the distributed
control of the network equipment to solve any issues of
network equipment overloading. And thus, the hybrid
control model enables the controller to work with more
ease in cases of overloading.

Moreover, providing security for the hybrid control model
of SDNs is quite important; based on the well-established
fact, and the lessons learned by designing routing without
enough emphasis on security, and the threats it exposed
the network to; leading to designing of methods to secure
those routing protocols. And thus, in this paper we propose
methods to secure the distributed control model of the
SDNs, in order to provide a secure method to transfer
flows without exposing the network to any threat or
exposing any information related to the operation of the
network to any eavesdropper. Where this target; of
securing the distributed control, goes along with the design
of the original centralized control that is secured by means
of Transport Layer Security (TLS [10]).

The remainder of this paper is organized as follows. We
first introduce a brief overview about the distributed
behavior of SDN, along with the design of the protocol of
distributed control of SDN in Section 2. Next in Section 3,
the main principles governing the security methods are
described; this includes the threat model under which the
methods must work is explained in Subsection 3.1, while
the requirements of the proposed security methods in
Subsection 3.2. We then explain the design of the security
methods of the distributed behavior of SDN in Section 4.
Furthermore, Section 5 shows how the proposed security
methods are effective against major classes of attacks. We
then discuss about the evaluation of the proposed methods
in Section 6, and finally conclude in Section 7.

2. Distributed Control Behavior of SDN
Reviewed

According to the design of current SDN’s leading
technology, OpenFlow [11]; flows can be programmed
(installed) by the controller. This means that the controller
is the only entity that is responsible for installing and
maintaining flows on the network equipment. For
simplification let’s call this type of flow installation the
“controller to equipment flow installation”. The controller
to equipment flow installation has many advantages like

having tight control over all of the equipment by the
controller.

However, the advantages of the controller to equipment
flow installation come with some cost. First is the
probability that the controller would be a source of bottle
neck in the whole system. This can be confirmed by,
Michael Jarschel et al. who concluded in [12] that “When
using OpenFlow in high speed networks with 10 Gbps
links, today’s controller implementations are not able to
handle the huge number of new flows.”. Second, by
limiting the flow manipulation to “the controller to
equipment” installation method OpenFlow can miss some
opportunities that the “network equipment to network
equipment” can provide.

For the previously mentioned reasons, we proposed in a
previous work [1], a new method for installing flows, that
is, the “network equipment to equipment flow installation”
(Ne-NeFI) method. Through using this method, the
controller does not have to program (install) flows to each
one of network equipment one by one; instead it can ask
the equipment to spread this flow to other equipment on
behalf of the controller, this can be useful in cases where
the controller needs to program non critical-start up time
flows. And thus relieving some load off the controller.
Also, the network equipment to equipment flow
installation method can be used to make the OpenFlow
network more self-aware by having the network equipment
cooperate and carry loads for each other upon the need and
traffic situation by having the overloaded equipment
delegating some of its flows to another network equipment.

2.1. Protocol of the Distributed Control of SDNs

In order to enable distributed control of SDNs, represented
by the network equipment to equipment flow installation
to be adopted to the OpenFlow Protocol, three new packets
have to be introduced (see Fig. 1). First one is, equipment
to equipment (e-e) flow installation request, abbreviated as
“e-e request”. While the second is; the e-e flow installation
reply, abbreviated as “e-e reply”. The third is the e-e flow
installation acknowledgement or negative
acknowledgement, abbreviated as “e-e ACK/NACK”.

The first packet is the e-e flow installation request. This
packet holds an OpenFlow header, list of flows to be
programmed, address of the equipment that sent the
request and an identification value, address and
identification of the originator of the request (who
requested for the flows to be programmed in the first place,
i.e. controller or an equipment), Level of Flow Installation,
the Time To Live (TTL) of the IP protocol, and a
temporary identifier for this request. Where, the Level of
Flow Installation (LFI) is somewhat similar to the TTL

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

7

field in the IP protocol. Where, the TTL in IP protocol
indicates how many hops a packet can travel, and it will be
decremented when passing a network equipment and the
packet will be discarded when the value reaches 0. While,
the LFI, it is decremented each time an equipment relays
the e-e request (sends further the broadcast). And thus it is
very similar to the TTL value except that the LFI is part of
the proposed protocol of the distributed control of the
SDNs, while TTL is part of the underlying IP protocol.
LFI and TTL are used together to control the propagation
of the e-e flow installation request.

The second packet is the e-e flow installation reply. It
contains an OpenFlow protocol header, the identification
of the e-e flow installation request, the reply to the request
which can be either an acceptance or a rejection, address
and self-identification of the equipment that sent the reply.

And the third packet is the e-e Acknowledgement or the e-
e Negative Acknowledgement (e-e ACK/NACK). Its
purpose is clear; to confirm to the equipment that sent the
reply that its reply has been received, and accepted or
rejected.

Fig. 1. Distributed SDN control protocol packets.

3. Security Principles of SDN’s Distributed
Control Behavior

This Section describes in Subsection 3.2 the goals and
requirements that the proposed distributed control
behavior security method must provide in order to enable a
safe use of the distributed control behavior for SDNs. And
since the proposed security method aims to provide robust
security, it must be able to secure the distributed control
behavior under the threat model described in
Subsection 3.1.

3.1.Threat Model

The proposed distributed control security methods seeks to
provide robust protection against both insider threats

(authenticated network equipment), and outsider threats
(end hosts or an unauthenticated network equipment). We
also assume that an attacker might be able to use different
points within the same network to charge his attack.

For the case of outsider attacks, they are prevented from
initiating any attack to the SDN network, because they are
not registered in the Trust Manager (refer to
Subsection 4.1) and thus any attempt to send distributed
control will be blocked and their packets dropped. While
for the case of the insider attacks, further details are
provided in Section 5 on how the proposed methods
disables them.

3.2. Security Requirements/Goals

The main goals and requirements of the proposed security
methods are as follows:

• Allowing the transfer of flow table entries form
one network equipment to another, in a way that
prevents any malicious user form obtaining any
information related to that flow entry or
disclosing its contents. And thus preventing any
malicious user from obtaining any knowledge
about the network or its operation or control.

• Enabling a smooth operation of the distributed
control of SDN. This requires, the security
methods to be able to protect the distributed
control’s protocol, so that no attack could be
charged to jeopardize the operation of the SDN’s
distributed behavior.

• Protecting the whole SDN network from any
attack that might use the distributed control to
affect the normal operation of the SDN. The
importance of this requirement is obvious, since
the original design of the centralized (central
controller to any equipment) according to
OpenFlow [11] is secured by using Transport
Layer Security (TLS) [10]. And thus, any propose
to extend the centralized control model must be
able to maintain the security of the whole
network.

4. Design of the Security Method

In order to designing a successful security method for the
distributed control of the SDN, special care must be taken
enable the designed algorithm to achieve the security
requirements (described in Subsection 3.2) while being
able to operate under the threat model described in
Subsection 3.1.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

8

To shed more light on the design of our proposed security
method for the distributed control of SDNs; Subsection 4.1
shows the main components of the security method. While
Subsection 4.3 describes in details the algorithms used to
compose the desired security scheme. Finally,
Subsection 4.4 shows the how the proposed security
method can be applied, using a scenario based example.

4.1. Building Blocks

The main building blocks that the security method of the
distributed behavior of SDN, are explained as follows:

1) Trust Manager

Is the entity; that is responsible for assuring a
secure binding of the unique ID of each network
equipment with the public key of that network
equipment. Along with the binding, the second
responsibility of the trust manager is to
periodically distribute a certificate list to all of the
network equipment in its domain. Where this
certificate list; contains the digital certificates of
all of the equipment in the domain of the trust
manager. The third responsibility of the trust
manager is to manage the list of trusted network
equipment within its domain by listening to threat
warning reports sent by the network equipment
within its domain in case of a suspected attack or
a confirmed one (as will be explained in the next
Subsection). And then, responding to the threat
warnings by suspending the certificate of the
attacker network equipment, and sending an
updated certificate list – that does not contain the
certificate of that attacker – to the network
equipment within its domain.

Through our design of the proposed security
method, we assume that the public key signature
algorithms used in the trust manager and the
network equipment are secure and no malicious
user is able to fraud a valid signature nor he is
able to recover the secret key of any component
of the scheme. We also assume that the
communication between the network equipment
and the trust manager is also secure.

2) Network Equipment

Network equipment are same as the regular SDN
equipment that are either routers or switches that
supports OpenFlow or any other SDN technology.
And in addition to their regular tasks those
network equipment have to perform additional
operations in order to use a secure distributed
control of SDNs. Those additional operations are;

digitally signing e-e requests, verifying digital
signature of the distributed control, receive and
store the certificate list distributed by the trust
manager, and reporting any threats (activity or
message exchange the is expected to be of a
malicious attacker) to the trust manager.

4.2. Proposed Security Mechanism

This Subsection shows the conditions forming the main
methods of security. And thus, they are the main essence
of how attacks are prevented:

1) Using Trust Manager: it will send and update a
list of trusted devices. e.g. list of (device ID,
public key).

2) Using start time and end time for each e-e request.

3) Having every device that relays or receives the e-
e request broadcast to check the signature of
device that originated the e-e request, and thus
make sure that the e-e request received is exactly
same as it left the device that originated it.

4) Having every device that relays the e-e request
broadcast, to check the signature of the previous
device that relayed the e-e request, knowing that
it must be a direct neighbor.

5) Having every device that relays the broadcast to
sign the e-e request.

6) The flow table entries will be encrypted when
they are transferred form one network equipment
to the other, so that no eavesdropper can expose
their contents.

7) Each network equipment will hold counters, one
for each network equipment in the certificate list.
Where this counter counts the number of e-e
requests that does not pass the conditions of the
main methods of security shown in this chapter.

4.3.Algorithms

Section 4.1 explained about the main components of the
security method of the distributed control of SDNs. While,
this Section; explains the details of the algorithms of the
security method, and discusses their steps in details.

We first start by showing the list of variable and primitive
functions used in the algorithms of the security method
in Table 1. Then, we start by explaining the details of the
algorithm used by the originator of the e-e request to
create and send the request, as shown in

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

9

SEND_REQUEST algorithm. After that, we will explain
the details of the algorithms used for by the network
equipment that receives the e-e request; that are:
RECEIVE_BROADCAST algorithm, which calls the
CHECK_INCOMING_REQUEST algorithm and the
RELAY_BROADCAST algorithm. After that, the later
algorism will be explained respectively. Finally, we will
explain the RECEIVE_REPLY algorithm, which shows
the steps taken by the originator of the e-e request upon
receiving a reply to his request.

Table 1. List of Notations used in the algorithms following in this paper
(variables, and operations).

Notation Description
Di ID of Device i.
Sigi Signature of Device i for the

corresponding packet.
sigList List of pairs of (Device ID and its

signature of that packet), for all the
devices that the packet traversed
along its path.

Req e-e request that includes the LFI,
start time, end time.

create_req () Create a request based on the
current needs of this network
equipment.

create_signature_list () Create an empty signature list
(sigList).

can_Accept_Request (req) Indicates whether the device can
accept the e-e request or not.

Rep e-e reply.
create_Reply (req) Create the proper e-e reply for the in

hand e-e request.
sign(PrK , DATA) Create digital signature for DATA

using the private key PrK.
send (DST, Data0, … , Datan) Send one or more pieces of data, to

the destination address represented
in DST.

get_Src (packet) Get the source address of the packet
in hand.

is_Not_Neighbor(Di) Check if device Di is a neighbor or
not.

is_Not_In_Device_List (Di) Check if Di is found in sigList or
not.

drop (req) Drop or discard the e-e request in
hand.

check_Signature_If_Not_Valid
(Data , (Di ,Sigi))

Check if the digital signature Sigi is
a valid signature of device Di for the
data represented in Data argument.

check_Signature_If_Not_Valid
(Data , Sigi)

Same as the previous bur Di is that
of the sender of Data.

drop_Counter_per_Period(Di) Counter of the Dropped packets that
came from Device i in the current
period.

Tolerate_Limit The number of redirection requests
per period, which can be accepted
per device.

report_To_Trust_Manager(Di) Sending a threat warning to the trust
manager.

Append (Data1, Data2, … ,
Datan)

Append pieces of data to gather to
produce a single piece of data. In
this case append Data1 through
Datan .

Append (sigList , (Di , Sigi)) Append the pair (Di, Sigi) to the
sigList in hand.

Broadcast (req, sigList) Broadcast the e-e request along with
the sigList to all of the ports except
the egress port.

originalReq Cashed copy of the original e-e
request that was sent by this
equipment earlier.

is_req_satisfied (req) Check if the request represented by
req has been served before or not

create_neg_ack (req) Creates a negative
acknowledgement for the request in
hand (req)

create_ack (req) Creates a positive acknowledgement
for the request in hand (req)

Fig. 1. SEND_REQUEST Algorithm.

The SEND_REQUEST algorithm (shown in Fig. 1), is a
simple algorithm, which is followed by the originator of
the e-e request, to create the e-e request, as shown in line 2.
After that, the originator will digitally sign the e-e request
and add that as the first signature to the sign list of the e-e
request, shown in lines 3 through 5. The Final step in this
algorithm is for the originator to broadcast the e-e request,
as shown in line 6.

Fig. 2. RECEIVE_BROADCAST Algorithm.

The main algorithm for handling the security method
within the network equipment receiving e-e request is the
RECEIVE_BROADCAST algorithm (shown in Fig. 2).
This algorithm is called after receiving a e-e request, and it

1: Function SEND_REQUEST ()

2: Req = create_req ()
3: self_sign = sign (privateself , Req)
4: sigList = create_signature_list ()
5: Append (sigList , (Dself , self_sign))
6: Broadcast (Req, sigList)

1: Function RECEIVE_BROADCAST (req, sigList)
// req = the e-e request
// sigList = {(D1 ,Sig1), …., (Dn ,Sign)}

2: CHECK_INCOMING_REQUEST (req, sigList)
3: if (can_Accept_Request (req))
4: rep = create_Reply (req)

// rep = e-e reply
5: repSig = sign(privateself , rep)
6: reqSig = sign (privateself , req)
7: rep = Append (rep, repSig, reqSig)
8: send (get_Src (req) , rep)
9: end if

10: decrement (LFI)
11: if (LFI > 0)
12: RELAY_BROADCAST (req, sigList)
13: end if

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

10

starts by checking if the incoming e-e request matches
point 2) through 5) of the methods show in Subsection 4.2
by calling in line 2 the CHECK_INCOMING_REQUEST
(shown in Fig. 3, and explained next). After that, if the
received e-e request is found to be correct then the
algorithm will check in lines 3 to 9, if equipment in which
it runs is capable of serving this e-e request (that is; the
equipment is capable to receive new flow table entries
form the sender of the e-e request) . And if it can receive
the new flow table entries then the algorithm will generate
an e-e reply (line 4) that will be signed (line 5). Also, if the
equipment is willing to accept the request it has to
generate a signature of the received e-e request (line 6); so
that the originator of the e-e request can verify that the
sender of the reply did receive the original e-e request that
the originator did send. The final step of accepting to serve
an e-e request is to send the e-e reply, its signature, and the
signature of the e-e request; to the originator of the e-e
reply (lines 7, 8). And in case of the network equipment is
not capable of serving the e-e reply by itself then it will
decrement the lifetime (LFI) of the e-e reply by one, sign
it, and broadcast it again as shown through lines 8 to 11.

Fig. 3. CHECK_INCOMING_REQUEST Algorithm.

After explaining about the main algorithm related to
receiving the e-e request that is the
RECEIVE_BROADCAST. We will continue to explain
one of the algorithms that the main algorithm calls; that is
the CHECK_INCOMING_REQUEST algorithm as shown
in Fig. 3. Where, in this algorithm, it first starts in line 2 to
check if it received the e-e request from a direct neighbor,
and if it received the e-e request form a network
equipment that was included in the certificate list – that
was received from the trust manager – and in case that any
of those conditions is not satisfied then the packet will be
dropped as shown in line 3. After the e-e request passes
the test in line 2, the validity will be tested of both the

signature it of its originator (line 5), and its last signature
in its signature list (line 8). If both are correct, then the
CHECK_INCOMING_REQUEST algorithm finishes.
Elsewise, if the signature of the originator of the e-e
request is found to be invalid (line 6), then the request will
be dropped. Same thing will happen in case that the last
signature in the signature list (Sign of sigList) is found to
be invalid (line 9). Furthermore, in that case, the counter of
the dropped e-e requests related to the network equipment
that broadcasted the false e-e request will be incremented
(line 10) (as explained in point 7) of Subsection 4.2). And
in case that this counter increases over a predefined
threshold that is the Tolerate_Limit (line 11), the algorithm
will generate a threat warning report and send that to the
trust manager (line 12). Where in its turn the trust manager
will count for a number of threat warning reports before
removing the network equipment form the certificate list
and thus preventing the suspected malicious equipment
form doing further malicious activities. It should be
clarified here that choosing the value of the Tolerate_Limit,
or the threshold upon which the trust manager removes an
equipment form the certificate list; is out of the scope of
this paper and it is left up to the operator to decide.

Fig. 4. RELAY_BROADCAST Algorithm.

The second algorithm called by RECEIVE_BROADCAST
is the RELAY_BROADCAST shown in Fig. 4. The
RELAY_BROADCAST algorithm is relatively simple. It
starts by signing the e-e request using the current network
equipment’s public key. After that the signature is
appended to the signature list (sigList) in the e-e request,
and finally the e-e request is broadcasted again.

Finally, the RECEIVE_REPLY algorithm, shown in Fig.
1; explains the steps followed by the originator of the e-e
request upon receiving an e-e reply to his request. It starts
by checking the validity of both the signature of the e-e
reply and the signature of its corresponding e-e request, if
they were signed by the sender of the e-e reply or not (line
2). If any of those two signatures fails, then the received
reply will be dropped (line 3). In case the two signatures
are valid, the next step will be to check if the e-e request
has been already satisfied or not. If it was satisfied (lines 6
to 11); then a negative acknowledgement (NACK) will be
sent, after signing it to the sender of the reply. On the other
hand, if the request has not been satisfied (lines 12 to 18);

1: Function CHECK_INCOMING_REQUEST (req, sigList)
// req = the e-e request
// sigList = {(D1 ,Sig1), …., (Dn ,Sign)}

2: if (is_Not_Neighbor(Dn) OR

is_Not_In_Device_List (Dn))
3: drop (req)
4: end if

5: if (check_Signature_If_Not_Valid (req, (D1 ,Sig1)))
6: drop (req)
7: end if

8: if (check_Signature_If_Not_Valid (req, (Dn ,Sign)))
9: drop (req)
10: increment (drop_Counter_per_Period (Dn))
11: if (drop_Counter_per_Period (Dn) > Tolerate_Limit)
12: report_To_Trust_Manager (Dn)
13: end if
14: end if

1: Function RELAY_BROADCAST (req, sigList)
// req = the e-e request
// sigList = {(D1 ,Sig1), …., (Dn ,Sign)}

2: self_sign = sign (privateself , req)
3: Append (sigList , (Dself , self_sign))
4: Broadcast (req, sigList)

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

11

then a positive acknowledgement (ACK) will be sent to
the e-e reply sender, after singing it.

Fig. 1. RECEIVE_REPLY Algorithm.

4.4.Usage Scenario

To further explain how the proposed security method
works, the following scenario follows the steps of the
distributed control along with the proposed security
method. This scenario is show as a series of steps shown
by figures Fig. 2 through Fig. 5. In those figures, each
router is identified by its color. The medal shape
represents the digital signature, where the color of the
medal’s ribbon represents the router that signed it by
having that router’s color. And the red tick symbol
represents either a verified digital signature, or verifying
that the e-e request was sent by a direct neighboring
network equipment. Also, in this scenario we assume that
the certificate list has been already distributed to the whole
network, where this is represented by showing the symbol
of the certificate list over the whole network. While the
numbers in circles represents the step number in the
explanation of each figure.

The scenario first starts by having network equipment
named R1 – shown in red color – initiating a distributed
control behaviour that is the Ne-NeFI. This initiation

shown in step 1 of Fig. 2, where R1 broadcasts a e-e
request after signing it.

Fig. 2. Request sending.

After that, in Fig. 3, network equipment R2 receives the e-
e request, checks that it was received from its neighbour,
and that the signature is an authentic one of R1; as shown
in step 1. However, for the sake of illustration, both of R2
and R3 are not capable of serving the e-e request. And
Thus R2 will broadcast the e-e request after signing it.
Next, in step 2, network eqiupment R3 will does the same
steps followed by R2 in step 1, and will end broadcasting
the e-e request.

Fig. 3. Relaying Request.

Next, in Fig. 4 step 1, R4 receives the e-e request, and
verifies that it was sent by a neigbour equipment, and that
it was properly signed. Then, R4 desides to serve this e-e
request. And thus, it will send an e-e reply after signing it
to the initiator of the Ne-NeFI’s e-e request, that is R1. As
shown in step 2.

Fig. 4. Replying to request.

1: Function RECEIVE_REPLY (rep, repSig, reqSig)
// rep = the e-e reply
// repSig = the signature of the reply, by its sender.
// reqSig = the signature of the received request, by the sender

of the reply.

2: if (check_Signature_If_Not_Valid (rep, repSig) OR

check_Signature_If_Not_Valid (originalReq, reqSig))
3: drop (rep)
4: end if
5: else

// if both signatures are verified correctly
6: if (is_req_satisfied (originalReq))
7: NACK = create_neg_ack(rep)
8: nackSig = sign (privateself , NACK)
9: NACK = Append (NACK, nackSig)
10: send (get_Src (rep) , NACK)
11: end if
12: else

// the request has not been accepted before
13: ACK = create_ack(rep)
14: ackSig = sign (privateself , ACK)
15: ACK = Append (ACK, ackSig)
16: send (get_Src (rep) , ACK)
17:
18: end else
19: end else

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

12

Fig. 5. Accepting reply.

Finally, Fig. 5 shows in step 1, that R1 – the initiator of the
Ne-NeFI – receives the e-e reply sent by R4, and checks
that it was properly signed by R4. After that, in step 2, R1
will send an e-e ACK to R4 after signing it, so that R4 can
verify that the acknowledgement was sent by R1.

5. Attack Resistance

Based on the threat model presented in Subsection 3.1, and
the requirements illustrated in Subsection 3.2; the
proposed security methods are designed to provide robust
security, resisting many security threats. In the rest of this
Section we considered various classes of security threats
and showed how the proposed security methods provide
protection against them.

• Man in the Middle Attacks

This class of attacks can occur in different variations.
Firs, is the case where an eavesdropper whether
internal or external, captures legitimate packet from a
distributed control exchange. In this case, the effect of
such attack is very limited, since the attacker will not
be able to alter any contents of the distributed control,
since it is digitally signed. And based on the
assumption that the public key signature algorithms
are secure, then it will be inapplicable for the attacker
to resign the distributed control packets since the
attacker does not possess the private key of the
previous equipment that have relayed the packet, nor
that of the initiator.

Furthermore, even if the attacker was an internal one
and did legitimately sign the packet – because he was
listed in the certificate list – after tampering with its
original contents. This can be carried out only in the
case of the e-e request being relayed, because in the
case of e-e reply and e-e ACK this will not be possible
since only the sender will sign; and thus, it will not be
possible for the attacker to resign the packet. Similarly,
in case of the e-e request, each network equipment
that relays, or accepts the e-e request; will check the
signature of the originator of the e-e request in
addition to the last signature in the signature list

(sigList). And so, if any malicious user tampers with
the original e-e requst, this will cause the e-e request
to be dropped. Thus, any tampering with the contents
of the distributed control protocol will be detected,
and renders any sbusequent attacks to be impossible.

• Resource Exhaustion Attacks

This attack also can occur in different variations. The
first one can be the case that an attacker being either
an internal or an external eavesdropper will copy
legitimate e-e request and resend them to a distant part
of the network for the purpose of consuming the flow
table entries of many equipment all over the network.
However, according to the proposed security methods,
such attacks are rendered impossible since that the
algorithm for any relaying network equipment will
make sure that the e-e request was received form a
direct neighbor, if not then the e-e request will be
discarded. And thus this type of resource exhaustion
will not be possible.

Another variation of the resource exhaustion attack is
the simple case of having an internal equipment
sending a large number of e-e requests for the purpose
of exhausting the available space of the flow tables of
other equipment within the network. In this case,
according to the proposed security methods, neighbor
network equipment will send threat warnings to the
trust manager, who in turn will remove the malicious
sender form the certificate list, and thus will stop the
attack and prevent any further attacks to be done by
that malicious equipment.

While another more sophisticated variation, where an
attacker might have control over one or more internal
network equipment. In such case, an attacker can copy
a legitimate e-e request, encapsulate it, and send it to
another network equipment – under control of the
attacker – in a more distant part of the network, in
order to exhaust the resources of network equipment
in that distant part of the network. In such attacks, the
attacker can maintain the e-e request in its original
form without tampering it or its signature; after that
the attacker can legitimately add the signature of the
distant attacker equipment to the signature list. Thus,
if a network equipment receives the request form the
distant attacker equipment; and the receiver, will find
an authentic e-e request with its original signature,
and will find that it received this e-e request by a
direct neighbor. However, such attacks are made
unfeasible, since, the e-e request will be more likely to
be served/accepted by another network equipment that
is nearer to the originator of the e-e request, and in
this case the originator will send a negative
acknowledgement to cancel the installation to the

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

13

distant sender of the e-e reply. And thus such attacks
are infeasible since they require big efforts of the
attacker to charge such attacks, while their effect will
be minor.

6. Discussion and Evaluation

In this section we discuss the efficiency of the proposed
security methods, in terms of their ability to achieve their
goals within a reasonable time frame.

 Furthermore, it is important to mention that in the design
we did not mention about the type of encryption and
digital signature used in our methods. Because we believe
our methods should be written in a generic way so that
they can be implemented with any public key signature
and encryption, that the implementer find suitable.
However, there are many attractive public key signature
algorithms that are very suitable to use in such security
methods. For example the elliptic-curve signature in [13]
provides a compact size of the public key, private key, the
signature; that are respectively 64 bytes, 32 byes, and 64
bytes. Such compact signature size is very attractive, since
it will add little extra size to e-e request. Moreover, this
signature algorithm [13] can sign and verify data in short
times. According to [14], on a widely known CPU – like
Intel Core i5-4570S; 4 x 2900MHz – the algorithm of [13]
can perform signature in 0.023644556 milliseconds, and
verification in 0.071357913 milliseconds. While, for the
public key encryption; there are many attractive algorithms.
For example, the well-known RSA1024 (implemented in
[15]) can achieve encryption in 0.015677039 milliseconds,
and decryption in 0.444308778 milliseconds.

Quantifying the required number of digital signature,
verification, encryption, and decryption required for the
proposed security methods, will lead us to have better
understanding and assessment of their efficiency. And thus,
we denote to digital signature with “s”, signature
verification with “v”, encryption with “e”, decryption with
“d”, and the number of relaying network equipment with
“R”. It can be calculated that the total time needed to
complete a secure distributed control will be
“ Total_time= (4s + 5v) + ((2v + s)*R) ” where the first
part of the equation represents the static part of the
distributed control; that is, 1 signature by the originator of
the e-e request. And, 2 verifications of the request and 2
signatures of the e-e reply; for the equipment willing to
server the request. Corresponding to the later, the
originator will do 2 verifications for the e-e reply, and 1
signature of the acknowledgement. Finally the equipment
accepting the request will verify the acknowledgement.
And for the purpose of assessing the suitability of using
the proposed security method, we consider the case of a
data center, as explained in [16], where it is stated that

flow installations should be handled within a period of 10
milliseconds. Within this time constraint, the proposed
security method can be completed with about 57 relaying
equipment on the path of the e-e request. And thus, a large
number of equipment can be covered with 57 relays of the
broadcast, which we think that it is very likely to that an
equipment within this number will be willing to serve the
request and thus achieving the target of the distributed
behavior.

7. Conclusion

Providing future Internet with technologies that enable it
to play its role is extremely important. Because of that,
many researchers are studying technologies to be the
future Internet enabling technologies. SDN is one of the
candidate future Internet technologies, as it provides
compelling functionalities that enable smarter applications
to be built. However, there have been many concerns
regarding its scalability; as well as of its key enabler
OpenFlow, especially, due to its dependence on a central
controller. And thus, many efforts were done to overcome
this problem. One of them was proposed in [1], which
proposed to do that by providing a hybrid control model
that combines both the centralized control with some
distributed control behavior. Following the well-
established fact; that all sensitive computer networking
operations must be secure, in this work we propose
methods for securing the distributed control behavior of
the SDNs, that was proposed in [1]. In order to get a fully
secure hybrid control, since the centralized control is
already secure by means of TLS.

In order to achieve the desired security for the distributed
control, we designed security methods and algorithms.
Where the proposed methods require; according to our
design, a centralized trust manager to distribute a list of
trusted equipment along with their public keys. In addition
to the centralized trust manager, the network equipment
must be able to perform digital signature, signature
verification, and reporting any threat warnings to the trust
manager. In more details, the equipment to originate and
send the e-e request has to sign it. While each network
equipment relying the e-e request must make sure that it
received a verified e-e request from direct neighboring
equipment, and the e-e request have not been tampered.
And thus, we can make user that the genuine e-e request
did traverse a trusted path. After that, if the e-e request
have reached a network equipment that is willing to accept
this request, it will send a signed reply along with a
signature the e-e request that it received to the equipment
that originated the e-e request. Thanks to which, the
originator of the e-e request, upon receiving the e-e reply
can make user that it came from an authentic equipment,
and that equipment did receive the original genuine e-e

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

14

request. Finally, the equipment that originated e-e request
will reply to the e-e reply, by either an acknowledgement
or a negative acknowledgement. And thus by following the
previous steps it is possible to secure the distributed
control of the hybrid control model of SDNs, thus
enjoying the benefits of the hybrid control without
jeopardizing the whole network.

References
[1] O. M. Othman and K. Okamura, "Hybrid Control Model for

Flow-Based Networks," in the international conference
COMPSAC 2013 - The First IEEE International Workshop
on Future Internet Technologies, Kyoto, Japan, 2013.

[2] Open Networking Foundation, "Software-Defined
Networking: The New Norm for Networks," Open
Networking Foundation, 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker and J. Turner, "OpenFlow:
enabling innovation in campus networks," in ACM
SIGCOMM Computer Communication Review, 2008.

[4] H. Shimonishi and S. Ishii, "Virtualized network
infrastructure using OpenFlow," in Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP, 2010.

[5] R. Braga, E. Mota and A. Passito, "Lightweight DDoS
flooding attack detection using NOX/OpenFlow," in Local
Computer Networks (LCN), 2010 IEEE 35th Conference on,
2010.

[6] G. Huang, C. Chuah, S. Raza and S. Seetharaman,
"Dynamic measurement-aware routing in practice,"
Network, IEEE, Vols. 25,3, 29-34.

[7] B. Sonkoly, A. Gulyas, F. Nemeth, J. Czentye, K. Kurucz, B.
Novak and G. Vaszkun, "On QoS Support to Ofelia and
OpenFlow," in Software Defined Networking (EWSDN),
2012 European Workshop on, 2012.

[8] G. Wang, T. Ng and A. Shaikh, "Programming your
network at run-time for big data applications," in
Proceedings of the first workshop on Hot topics in software
defined networks, 2012.

[9] A. Tootoonchian and Y. Ganjali, "HyperFlow: A distributed
control plane for OpenFlow," in Proceedings of the 2010
internet network management conference on Research on
enterprise networking, 2010.

[10] T. Dierks and E. Rescorla, "rfc5246: The Transport Layer
Security (TLS) Protocol Version 1.2," The Internet
Engineering Task Force, 2008.

[11] "OpenFlow Switch Specification, Version 1.1.0," 2011.
[12] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll and

P. Tran-Gia, "Modeling and performance evaluation of an
OpenFlow architecture," in Proceedings of the 23rd
International Teletraffic Congress, 2011.

[13] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe and B.-Y.
Yang, "High-speed high-security signatures," Journal of
Cryptographic Engineering, vol. 2, no. 2, pp. 77-89, 2012.

[14] D. J. Bernstein and T. Lange, "eBACS: ECRYPT
Benchmarking of Cryptographic Systems.," [Online].
Available: http://bench.cr.yp.to. [Accessed 10 June 2013].

[15] "OpenSSL," [Online]. Available: http://www.openssl.org/.
[16] A. Tavakoli, M. Casado, T. Koponen and S. Shenker,

"Applying NOX to the Datacenter," in HotNets, Citeseer,
2009.

Othman OTHMAN M.M. received
M.S. Degree in Graduate School of
Information Science and Electrical
Engineering from Kyushu University,
Japan. And, he received B.S. in
Faculty of Engineering form An-Najah
National University, Palestine. He is a
Ph.D. student and belongs to the
department of Advanced Information

Technology, Graduate school of Information Science and
Electrical Engineering, Kyushu University, Japan.

Koji OKAMURA. who is a Professor at
Department of Advanced Information
Technology and also at Computer Center,
Kyushu University, Japan. He received B.S.
and M.S. Degree in Computer Science and
Communication Engineering and Ph.D. in
Graduate School of Information Science
and Electrical Engineering from Kyushu
University, Japan in 1988, 1990, and 1998,
respectively. He has been a researcher of

MITSUBISHI Electronic Corporation, Japan for several years
and has been a Research Associate at the Graduate School of
Information Science, Nara Institute of Science and Technology,
Japan and Computer Center, Kobe University, Japan. He is
interested in Internet and Next Generation Internet, Multimedia
Communication and Processing, Multicast/IPv6/QoS, Human
Communications over Internet and Active Networks. He is a
member of WIDE, ITRC, GENKAI, HIJK projects and Key
person of Core University Program on Next Generation Internet
between Japan and Korea sponsored by JSPS/KOSEF.

