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SUMMARY 
A lot of sorting algorithms exist today which are based on 
different problem solving techniques and with different 
performance behaviors. Algorithms are judged by the running 
time and space complexity which they take to solve any specific 
problem. In this papers an efficient sorting algorithm has been 
introduced, this algorithm is based on dynamic programming 
technique which is used to solve the optimization problems and 
here to sort arrays with optimal merges. Algorithm uses a 
bottom-up approach to compute the pre-sorted sub-sequences of 
random lengths in a given array of numbers and then sorts the 
whole array after efficiently combining the identified sub-
sequences by using dynamic programming technique. 
Overlapping sub-problems are identified while sorting the given 
array and dynamic programming keeps the track of all the 
overlapping sub-problems by memorizing the data in a tabular 
form which is the main theme of the mentioned technique. 
Running time of the algorithm is compared with the standard 
merge sort and the results are satisfying. 
Keywords:  
Asymptotic, Complexity, Dynamic programming, Sorted sub-
sequence 

1. INTRODUCTION 

To sort an array of numbers is a very fundamental and 
most discussed problem in computer science under the 
study of design and analysis of algorithms. Almost all the 
books written on algorithms contain a portion of sorting 
arrays and lists. It is not only to understand the design and 
analysis of sorting algorithms, sorting is also used in a 
wide range of applications. It is used to sort numbers and 
records in database management systems, spreadsheets, 
text editors, priority queues and network protocols etc. So 
there are dozens of sorting algorithms that exist today to 
sort arrays. If a sorting algorithm can sort a given array of 
numbers then why we discuss other sorting algorithm? The 
answer is that, all sorting algorithms, with respect to 
performance, based on different techniques are different 
from each other in the context of efficiency and memory. 
All the algorithms do not perform well in all the situations. 
Some algorithms are efficient on smaller data and some are 
efficient on larger data set, some of them perform well on 
random data. Random data or input is very important in 

our case as we normally are encountered with the random 
data in real world.  
Existing algorithms belong to different problem solving 
techniques, their sorting mechanisms are different from 
each other and they have different complexities. Some 
famous algorithms are discussed in this section just to 
make better understanding. For example bubble sort and 
selection sort, both sort the given array of size ‘n’ in O(n2) 
in worst case. They both belong to the brute force 
technique [3]. Merge sort and Quick sort belong to divide 
and conquer technique and they sort the given array in 
Θ(nlgn) time in average case. Best, worst and average case 
of merge sort is the same and it is considered the most 
stable and efficient comparison based sorting algorithm. 
Average case performance of quick sort is O(nlgn) and 
sometimes it performs better on random input so the study 
of average case of any algorithm is important [1][4]. Heap 
sort also sorts the given array of element in Θ(nlgn) and 
belongs to transform and conquer techniques. Some other 
sorting techniques are count sort, average sort, radix sort, 
rack sort, bucket sort etc [1][4]. 
Sorting algorithm presented in this paper is designed for 
the random inputs and sorts the random data on the bases 
of dynamic programming technique. If we have an array of 
numbers which is populated with the random numbers then 
some of the numbers may be sorted already, why should 
we sort the pre-sorted data again and again? This paper 
gives the answer to that question by designing an 
algorithm which is based on dynamic programming to save 
the number of comparisons by solving the overlapping 
sub-problems only once.  

2. BOTTOM-UP METHOD BY SORTED 
PAIRS 

Let us consider an array A below with length 10 and 
indexes start from 0 and end at 7. 
 

0 1 2 3 4 5 6 7 
21 35 90 64 75 30 12 89 
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After computing the sorted pairs, array A would look like: 

0 1 2 3 4 5 6 7 
21 35 64 90 30 75 12 89 

 
By examining the array critically, we would be able to 
know that some of the elements are already sorted, let’s 
call them sorted pairs. For example first two numbers 21 
and 35 are in sorted form. Next two elements 90 and 64 are 
also sorted but in reverse order we can just swap them to 
compute the next sorted pair so that would be (64,90).  
Similarly (30,75) and (12,89). If the length of the array is 
‘n’ then there are at most n/2 total number of pairs. If the 
length of the array is odd then there are n/2+1 total number 
of sorted pairs. We can combine these sorted pairs by 
using an iterative algorithm. We can use the merge 
procedure from merge sort to combine the sorted pairs all 
together.  

1.1 ALGORITHM STEPS 

Step1: Compute all the sorted pairs in the array. 
Step2: Combine the first two sorted pairs / sub-arrays then 
next two pairs up to end. 
Step3: Move forward in each iteration by the multiple of 2. 
Step4: Jump to Step2 (lgn) times. 
To combine the sorted pairs we combine first two pairs 
then next two pairs and so on up to the last pair. After the 
first iteration the number of sorted sub-arrays would 
become half i.e. n/4. In our example after first iteration two 
sorted sub-arrays would left: (21,35,64,90) and 
(12,30,75,89). In the next iteration of the combination we 
will get a sorted array i.e. (12,21,30,35,64,75,89,90).  
 

 

Figure.1: A bottom-up approach to combine the sorted 
pairs. 

1.2 ANALYSIS 

Computing the sorted pairs in an array of length ‘n’ is done 
in O(n) comparisons. Now combining the array of length 8 
would call the merge procedure three times, similarly for 
the length 16 there would be four merge calls, 5 for 32 and 
so on. So there would be at most Θ(lgn) calls to merge 
procedure and height of the tree in the Fig.1 would also be 
Θ(lgn) . As we already know that the merge procedure of 
merge sort combines the two sub-arrays of length n/2 each 

in Θ(n). So the running time of this iterative bottom up 
sorting would be O(nlgn) + Θ(n) which is asymptotically 
equal to O(nlgn) and is same as merge sort. 

3. RANDOMIZED SORTED SUB-
SEQUENCES 

The algorithm discussed in the section.2.1 performs well 
on random data as well as already sorted array either in 
ascending or descending order if we ignore the time to 
swap the element at the start. As we discussed at the start 
to analyze an algorithm, the real time data is very 
important and in our case the real time input is random. 
Now let’s move beyond the computation of the sorted pairs 
and try to find the ordered sub-arrays also called sorted 
sub-sequences that can be further combined to sort the 
whole array. 

3.1 COMPUTING SORTED SUB-SEQUENCE:  

Let’s consider the following array with random data the 
name of the array is B and the length of the array is 10. 

 
0 1 2 3 4 5 6 7 8 9 
2 4 9 7 6 3 8 1 5 6 

 
Starting from ‘0’ index to last index we compare the 
numbers, if the next element is greater or equal to the 
previous then move forward and if the next element is less 
than previous then stop and start computing the next sorted 
sub-sequence. So first sorted sub-sequence is [2,4,9] and 
for second sub-sequence we compare 7 and 6. 6 is less 
than 7 so we have to move forward but after doing that we 
would have a sequence of one element which makes no 
sense. We set the procedure of computing the sorted sub-
sequences such that it keeps the track whether the 
comparison is first or not. If this happens in the first 
comparison then swap the numbers and further make the 
comparisons with the larger element so 7 is further 
compared with 3 and now 3 is less than 7 we start 
computing the next sequence. 

3.2   COMBINING THE SUB-SEQUENCES: 

After identifying the sorted sub-sequences in an array with 
random data we need to combine the sorted sub-arrays to 
sort the whole array. We can use the merge procedure of 
merge sort algorithm. Merge sort is considered the most 
stable and efficient sorting algorithm so using the merge 
procedure will allow us to compare the results with merge 
sort. We can combine these sub-arrays by two methods 
given below; both methods are bottom-up. 
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3.2.1 A STRAIGHT FORWARD APPROACH 

Using this method we find the sub-sequences and then 
combine them, after merging we have one sequence so 
find the next sub-array and combine with the previous 
sorted sub-array and so on up to the end. After combine all 
the sub-sequences we will have the whole array sorted. 
The process of combining the array B is: 
 

1- [2,4,9] will be combine with [6,7] 
2- [2,4,6,7,9] will be combined with [3,8] 
3- [2,3,4,6,7,8,9] will be combined with [1,5,6] 

 
Now we get [1,2,3,4,5,6,6,7,8,9]. 
As we now already that the merge procedure performs Θ(n) 
comparisons to combine two sub-arrays of size n/2 each. 
So we can just sum the lengths of two sub-sequences to 
find the number of comparisons. Now case I performs 5 
comparisons to merge them, case II performs 7 
comparisons and case III performs 10 comparisons. 
Combining the sorted sub-arrays in the described fashion 
would take 22 comparisons and to find the sorted sub-
sequences in the array of size ‘n’ takes ‘n’ comparisons 
which is same as computing the sorted pairs. 

3.2.2 AN ALTERNATIVE APPROACH 

In this method we first compute all the sorted sub-
sequences then combine those sequences as we done for 
sorted pairs. In our example we have four sub-arrays as 
under. 
 

1- [2,4,9] 
2- [6,7] 
3- [3,8] 
4- [1,5,6] 

After combining sequence 1 with 2 and sequence 3 with 4 
we have only two sub-sequences. These two combinations 
would take 10 comparisons. 
 

1- [2,4,6,7,9] 
2- [1,3,5,6,8] 

Combining these two sub-arrays we get [1,2,3,4,5,6,6,7,8,9] 
with 10 comparisons. Total 20 number of comparisons 
which are 2 less than the first method. It means the second 
approach is faster than first when we talk about the merge 
process only. But it may take more time while computing 
the sorted sub-sequences. 

3.3   OVERLAPPING SUB-PROBLEMS 

After computing first two sorted sub-sequences, our array 
B would look like this: 

 
2 4 9 6 7 3 8 1 5 6 

 
First sub-array is [2,4,9] and second sub-array is [6,7], now 
we combine them by merge call to the merge procedure. 
After combining first pair of sub-arrays we move further 
and compute next pair of sorted sub-arrays which is [3,8] 
and [1,5,6]. First iteration would be finished after 
combining these two sub-arrays because there are no 
further elements left in the array. After these two merges 
our array would be:  
 

 
Figure.2: Overlapping sub-sequences. 

Now in the next iteration we need to compute the sorted 
sub-sequences before combining them. So first sub-array is 
[2,4,6,7,9], which is computed by performing five 
comparisons. The point is that in the last iteration we 
already computed the sorted sub-sequences [2,4,9] and 
[6,7] which further merged together. But now we are 
computing them again. Similarly with the next sub-array 
[1,3,5,6,8] which is the combination of [3,8] and [1,5,6]. 
Solving the overlapping sub-problems again and again 
would result a very bad performance of the algorithm. 

4. DYNAMIC PROGRAMMING (DP) 
SOLUTION 

Dynamic programming is a famous problem solving 
technique that solves the optimization problems by solving 
the overlapping sub-problems once and save the results in 
tabular form so that this result could be used when the 
same sub-problem occurs rather solving the sub-problem 
again. In the section.3.3 we discussed the sub-problems 
which occur again and again in each iteration and we need 
to re-compute them. Dynamic programming finds the 
structure of an optimal solution then computes the 
solutions based on the pre-computed values [1]. Optimal 
solution is computed recursively in most cases but it is not 
necessary to design recursive solution always. In our 
algorithm, we are going to design an iterative bottom-up 
solution to our problem. 

4.1   STRUCTURE OF THE SOLUTION: 

Let’s consider a new array C of length 14. 
After computing the sorted sub-sequences we save the 
starting and ending index of each sub-sequence in a tabular 
form typically an array so that we can pick the indexes of 
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sorted sub-sequence from the table rather re-computing the 
sub-arrays again and again. After combining the sub-arrays 
we update the table as the number of sub-arrays will 
decrease after each iteration. Minimum length of any 
sorted sub-sequence is 2 so there would be at most n/2 sub-
sequences for an array of length ‘n’. We create a new array 
R with the size n/2+2 the last index of the array R will 
have value -1 so that we can find the end of the values and 
first index contains ‘0’ which is the starting index of first 
sub-sequence. 
 

 

4.2   MEMORIZATIONS 

R[0] contains ‘0’ as the start of the first sorted sub-
sequence in C is C[0]. 
R[1] contains the ending index of first sorted sub-sequence. 
R[2] contains the ending index of second sorted sub-
sequence as the starting index of second sub-sequence is 
R[1]+1. 
Similarly R[3] contains the ending index of third sorted 
sub-sequence and so on. After computing all sub-
sequences, place -1 at the current index of R. After 
populating array R with the index the array would look 
like: 
 

 

Array C will look like: 

 

Values of array R after each iteration of the algorithm are 
shown in the Table.1. V0 denotes the values of the array R 
before the algorithm starts merging the sub-sequences. 
Similarly the values of the array C after each iteration are 
shown in the Table.2. 
 
Table.1: Array R Memorization of sorted sub-sequences. 

 

Table.2: Array C elements after each iteration. 

 

4.3   COMPUTING THE VALUES OF THE SUB-
PROBLEMS 

We use the merge procedure here which combines two 
sub-arrays. It takes array, starting index of first sorted sub-
sequence, ending index of first sorted sub-sequence and 
ending index of next sub-sequence which is adjacent to the 
first one. Let’s call this procedure as Combine. 
 
k = 0, j =1 as the first element of R is always ‘0’. 
Combine (B, R[k], R[k+1], R[k+2]) 
j = R[k+2] 
k = k+2 
 
After combining these two sorted sub-sequences we update 
array R such that the ending index of the second sub-
sequence is assigned to the ending index of first sub-
sequence i.e. R[k+1] = R[k+2]. Index ‘j’ is used to 
compute the indexes of array R so this assignment can be 
done by the statement R[j] = R[k+2]. After updating array 
R we move forward to the next pair of sorted sub-sequence 
by increasing the value of k by 2 units i.e. k = k + 2. Again 
call to combine procedure as: Combine (B, R[k], R[k+1], 
R[k+2]). Algorithm performs these steps until any of R[k], 
R[k+1] and R[k+2] gets -1. When -1 is encountered, it 
means that current iteration has been completed. 
Algorithm updates array R and places -1 at the end of the 
array and moves to the next iteration from start. 

5. NON-RECURSIVE ALGORITHM 

MEMORIZED-SORT(array, start, end) 
Rsize = (end + 1)/2  + 1  
Create a new array R of size Rsize 
i=start 
R[0]=start 
flag = 0  
j = 1  
Seq_count=0 
While(I < end) 
 while( array[i]<=array[i+1] ) 
  flag = 1 
  i=i+1  
 if(!flag)  
  swap array[i] and array[i+1] 
  i=i+1 
  flag = 1 
 else 
  R[j] = i 
  i=i+1, j=j+1 
  Seq_count=seq_count+1 
  flag = 0  
endwhile  
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if (i ==end) 
 R[j]=i 
 j=j+1 
 Seq_count=seq_count+1 
 
R[j]=-1 
k=0 
left=0 
mid=0 
right=0 

 
While(seq_count >1)      

j=1  
k=0 
left=0 
mid=R[1]  
right=R[2] 
while(left!= -1AND mid!= -1ANDright!= -1) 

COMBINE(array,left,mid,right)  
//Merge procedure 

  
R[j] = right 

 j=j+1 
 Seq_count=Seq_count -1 
 If (right == end) 
         break;  // If at the end then break 
  

k = k + 2 // To next sub-sequences 
 left=R[k]+1  
 mid=R[k+1] 
 right=R[k+2] 
endwhile 
 
if( right==-1 OR mid == -1) 
 R[j]=end 
 R[j+1]=-1    
else 

R[j]=-1 // Place -1 at the end of R 
 
endwhile 

5.1   TIME COMPLEXITY  

If there are ‘m’ sub-sequences then the algorithm will call 
the merge procedure m-1 times. If our array is of length ‘n’ 
then the maximum n/2 sub-sequences are computed. In 
first iteration algorithm combines n/2 sub-sequences by 
calling the merge procedure n/4 times. Second iteration 
combines remaining n/4 sub-sequences in n/8 merge calls. 
This process continues until there is only one sorted sub-
sequence left which is equal to the original array and now 
in the sorted form. The elements of array R and C after 
each iteration are shown in the Table.1 and Table.2 
respectively. 

5.1.1  WORST CASE 

When the input array of length ‘n’ is sorted in reverse 
order, we will have maximum number of sub-sequences 
and all the sub-sequences will be of length 2. First portion 
of the algorithm will compute the sorted sub-sequences in 
O(n) time. Total number of sub-sequences would be equal 
to n/2 and by combining those in one iteration will 
decrease the number of sorted sub-sequence to half i.e. n/4. 
Similarly n/8, n/16 up to 1 sorted sub-sequence whose 
length is equal to the original array. So there would be at 
most lg(n) number of iterations of the outer loop. If we 
draw a tree of these merges then the maximum height of 
the tree would be lg(n). Performing the merging of all the 
sub-sequences in one iteration would perform maximum 
Θ(n) number of comparisons as our algorithm merges the 
sub-arrays in an alternative way. So the running time of the 
algorithm in worst case would be O(n) + Θ(nlgn) which is 
equal to O(nlgn) asymptotically [1]. In short we can say 
that the worst case running time of Dynamic Programming 
sort is equivalent to bottom-up pair sort which is again 
practically efficient as compared to merge sort. We are 
using the upper bound to denote the complexity of the 
function because our algorithm starts combining the pairs 
not from single elements so it would save some merge 
calls. 

5.1.2 BEST CASE  

Best case running time of the algorithm is linear as it 
identifies the sorted array. In this case there would be only 
one sorted sub-sequence so the second portion of the 
algorithm will not be executed that’s why the best case 
running time of the algorithm is O(n). 

5.1.3 AVERAGE CASE 

Average case analysis is performed by computing the 
running time of the algorithms on random inputs [4]. In 
any case the first portion of the algorithm will run by O(n) 
times for sure. Our algorithm based on dynamic 
programming is very efficient as compared with the merge 
sort on real time random inputs but we do not have any 
notations to compute the complexity function other than 
O(nlgn). The running time of algorithm depends on the 
number of sorted sub-sequences, more the number of sub-
sequences more running time less the sub-sequences less 
running time. Running time of the algorithm would be 
somewhere between best and worst cases. Asymptotically 
we can denote the running time of our algorithm as O(nlgn) 
because we cannot change the class of efficiency for our 
algorithm. But we can run this algorithm on random inputs 
with different lengths of the array and show the difference 
by comparing the results with the recursive merge sort 
algorithm. 
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5.2   SPACE COMPLEXITY 

Memorized-Sort is also memory efficient even it creates a 
new array R for memorization. If we consider the input 
size as ‘n’ means the length of the array then  a new array 
is also created of size n/2+2 so by analyzing the size of 
both arrays we get n+n/2+2 memory spaces which is 
asymptotically equal to Θ(n). It is concluded that space 
complexity of memorized-sort is linear. 

6. RESULTS 

The algorithm is implemented using C++ and has been 
tested on Intel(R) Core (TM) i3 CPU with 4.00 GB 
memory space. Results are drawn by executing the 
program from small to large inputs. When the input array 
is already sorted, Mem-Sort is very fast as compared to 
merge sort. Performance on reverse and random inputs is 
astonishing and is much faster than merge sort in both 
cases. Fig.3, Fig.4 and Fig.5 below show the running time 
of Mem-Sort on sorted, reverse and random inputs 
respectively. Red line shows the behavior of merge sort 
and blue line shows the behavior of Mem-Sort which is 
very efficient as the graphs are self illustrative. 
 

 
Figure.3: Running time on sorted inputs. 

 

 
Figure.4: Running time on reverse inputs. 

 
Figure.5: Running time on random inputs. 

7. CONCLUSION 

Dynamic programming is considered as a classical 
technique to solve the optimization problems but it could 
also be used to solve other computer science problems 
with some modifications. In this paper we have used the 
dynamic programming approach to develop an efficient 
sorting algorithm by computing random sorted sub-
sequence with memorizations. Our algorithm further sorts 
the sorted sub-sequences by using the merge procedure 
from merge sort algorithm. Results of the designed 
algorithm are encouraging on all type of inputs. It can also 
identify if the array is already sorted so no need to sort the 
elements again. Mem-Sort’s main target was to sort an 
array of random numbers efficiently and it achieved its 
target. As the basic operation of any comparison based 
sorting algorithm is the comparison operation of two 
elements, our algorithm performs optimal number of 
comparisons to sort a random array. Dynamic 
programming can also be used to find the most optimal 
number of comparisons before sorting any array so that we 
can perform sorting efficiently.  
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