
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

51

Manuscript received September 5, 2013
Manuscript revised September 20, 2013

An Efficient Sorting Algorithm by Computing Randomized
Sorted Sub-Sequences Based on Dynamic Programming

Toqeer Ehsan1, M. Usman Ali2, Meer Qaisar Javed3

Faculty of Computing and Information Technology, University of Gujrat, Pakistan
1 toqeer.ehsan@uog.edu.pk, 2 m.usmanali@uog.edu.pk, 3 qaisar.javed@uog.edu.pk

SUMMARY
A lot of sorting algorithms exist today which are based on
different problem solving techniques and with different
performance behaviors. Algorithms are judged by the running
time and space complexity which they take to solve any specific
problem. In this papers an efficient sorting algorithm has been
introduced, this algorithm is based on dynamic programming
technique which is used to solve the optimization problems and
here to sort arrays with optimal merges. Algorithm uses a
bottom-up approach to compute the pre-sorted sub-sequences of
random lengths in a given array of numbers and then sorts the
whole array after efficiently combining the identified sub-
sequences by using dynamic programming technique.
Overlapping sub-problems are identified while sorting the given
array and dynamic programming keeps the track of all the
overlapping sub-problems by memorizing the data in a tabular
form which is the main theme of the mentioned technique.
Running time of the algorithm is compared with the standard
merge sort and the results are satisfying.
Keywords:
Asymptotic, Complexity, Dynamic programming, Sorted sub-
sequence

1. INTRODUCTION

To sort an array of numbers is a very fundamental and
most discussed problem in computer science under the
study of design and analysis of algorithms. Almost all the
books written on algorithms contain a portion of sorting
arrays and lists. It is not only to understand the design and
analysis of sorting algorithms, sorting is also used in a
wide range of applications. It is used to sort numbers and
records in database management systems, spreadsheets,
text editors, priority queues and network protocols etc. So
there are dozens of sorting algorithms that exist today to
sort arrays. If a sorting algorithm can sort a given array of
numbers then why we discuss other sorting algorithm? The
answer is that, all sorting algorithms, with respect to
performance, based on different techniques are different
from each other in the context of efficiency and memory.
All the algorithms do not perform well in all the situations.
Some algorithms are efficient on smaller data and some are
efficient on larger data set, some of them perform well on
random data. Random data or input is very important in

our case as we normally are encountered with the random
data in real world.
Existing algorithms belong to different problem solving
techniques, their sorting mechanisms are different from
each other and they have different complexities. Some
famous algorithms are discussed in this section just to
make better understanding. For example bubble sort and
selection sort, both sort the given array of size ‘n’ in O(n2)
in worst case. They both belong to the brute force
technique [3]. Merge sort and Quick sort belong to divide
and conquer technique and they sort the given array in
Θ(nlgn) time in average case. Best, worst and average case
of merge sort is the same and it is considered the most
stable and efficient comparison based sorting algorithm.
Average case performance of quick sort is O(nlgn) and
sometimes it performs better on random input so the study
of average case of any algorithm is important [1][4]. Heap
sort also sorts the given array of element in Θ(nlgn) and
belongs to transform and conquer techniques. Some other
sorting techniques are count sort, average sort, radix sort,
rack sort, bucket sort etc [1][4].
Sorting algorithm presented in this paper is designed for
the random inputs and sorts the random data on the bases
of dynamic programming technique. If we have an array of
numbers which is populated with the random numbers then
some of the numbers may be sorted already, why should
we sort the pre-sorted data again and again? This paper
gives the answer to that question by designing an
algorithm which is based on dynamic programming to save
the number of comparisons by solving the overlapping
sub-problems only once.

2. BOTTOM-UP METHOD BY SORTED
PAIRS

Let us consider an array A below with length 10 and
indexes start from 0 and end at 7.

0 1 2 3 4 5 6 7
21 35 90 64 75 30 12 89

mailto:toqeer.ehsan@uog.edu.pk
mailto:m.usmanali@uog.edu.pk

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

52

After computing the sorted pairs, array A would look like:

0 1 2 3 4 5 6 7
21 35 64 90 30 75 12 89

By examining the array critically, we would be able to
know that some of the elements are already sorted, let’s
call them sorted pairs. For example first two numbers 21
and 35 are in sorted form. Next two elements 90 and 64 are
also sorted but in reverse order we can just swap them to
compute the next sorted pair so that would be (64,90).
Similarly (30,75) and (12,89). If the length of the array is
‘n’ then there are at most n/2 total number of pairs. If the
length of the array is odd then there are n/2+1 total number
of sorted pairs. We can combine these sorted pairs by
using an iterative algorithm. We can use the merge
procedure from merge sort to combine the sorted pairs all
together.

1.1 ALGORITHM STEPS

Step1: Compute all the sorted pairs in the array.
Step2: Combine the first two sorted pairs / sub-arrays then
next two pairs up to end.
Step3: Move forward in each iteration by the multiple of 2.
Step4: Jump to Step2 (lgn) times.
To combine the sorted pairs we combine first two pairs
then next two pairs and so on up to the last pair. After the
first iteration the number of sorted sub-arrays would
become half i.e. n/4. In our example after first iteration two
sorted sub-arrays would left: (21,35,64,90) and
(12,30,75,89). In the next iteration of the combination we
will get a sorted array i.e. (12,21,30,35,64,75,89,90).

Figure.1: A bottom-up approach to combine the sorted
pairs.

1.2 ANALYSIS

Computing the sorted pairs in an array of length ‘n’ is done
in O(n) comparisons. Now combining the array of length 8
would call the merge procedure three times, similarly for
the length 16 there would be four merge calls, 5 for 32 and
so on. So there would be at most Θ(lgn) calls to merge
procedure and height of the tree in the Fig.1 would also be
Θ(lgn) . As we already know that the merge procedure of
merge sort combines the two sub-arrays of length n/2 each

in Θ(n). So the running time of this iterative bottom up
sorting would be O(nlgn) + Θ(n) which is asymptotically
equal to O(nlgn) and is same as merge sort.

3. RANDOMIZED SORTED SUB-
SEQUENCES

The algorithm discussed in the section.2.1 performs well
on random data as well as already sorted array either in
ascending or descending order if we ignore the time to
swap the element at the start. As we discussed at the start
to analyze an algorithm, the real time data is very
important and in our case the real time input is random.
Now let’s move beyond the computation of the sorted pairs
and try to find the ordered sub-arrays also called sorted
sub-sequences that can be further combined to sort the
whole array.

3.1 COMPUTING SORTED SUB-SEQUENCE:

Let’s consider the following array with random data the
name of the array is B and the length of the array is 10.

0 1 2 3 4 5 6 7 8 9
2 4 9 7 6 3 8 1 5 6

Starting from ‘0’ index to last index we compare the
numbers, if the next element is greater or equal to the
previous then move forward and if the next element is less
than previous then stop and start computing the next sorted
sub-sequence. So first sorted sub-sequence is [2,4,9] and
for second sub-sequence we compare 7 and 6. 6 is less
than 7 so we have to move forward but after doing that we
would have a sequence of one element which makes no
sense. We set the procedure of computing the sorted sub-
sequences such that it keeps the track whether the
comparison is first or not. If this happens in the first
comparison then swap the numbers and further make the
comparisons with the larger element so 7 is further
compared with 3 and now 3 is less than 7 we start
computing the next sequence.

3.2 COMBINING THE SUB-SEQUENCES:

After identifying the sorted sub-sequences in an array with
random data we need to combine the sorted sub-arrays to
sort the whole array. We can use the merge procedure of
merge sort algorithm. Merge sort is considered the most
stable and efficient sorting algorithm so using the merge
procedure will allow us to compare the results with merge
sort. We can combine these sub-arrays by two methods
given below; both methods are bottom-up.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

53

3.2.1 A STRAIGHT FORWARD APPROACH

Using this method we find the sub-sequences and then
combine them, after merging we have one sequence so
find the next sub-array and combine with the previous
sorted sub-array and so on up to the end. After combine all
the sub-sequences we will have the whole array sorted.
The process of combining the array B is:

1- [2,4,9] will be combine with [6,7]
2- [2,4,6,7,9] will be combined with [3,8]
3- [2,3,4,6,7,8,9] will be combined with [1,5,6]

Now we get [1,2,3,4,5,6,6,7,8,9].
As we now already that the merge procedure performs Θ(n)
comparisons to combine two sub-arrays of size n/2 each.
So we can just sum the lengths of two sub-sequences to
find the number of comparisons. Now case I performs 5
comparisons to merge them, case II performs 7
comparisons and case III performs 10 comparisons.
Combining the sorted sub-arrays in the described fashion
would take 22 comparisons and to find the sorted sub-
sequences in the array of size ‘n’ takes ‘n’ comparisons
which is same as computing the sorted pairs.

3.2.2 AN ALTERNATIVE APPROACH

In this method we first compute all the sorted sub-
sequences then combine those sequences as we done for
sorted pairs. In our example we have four sub-arrays as
under.

1- [2,4,9]
2- [6,7]
3- [3,8]
4- [1,5,6]

After combining sequence 1 with 2 and sequence 3 with 4
we have only two sub-sequences. These two combinations
would take 10 comparisons.

1- [2,4,6,7,9]
2- [1,3,5,6,8]

Combining these two sub-arrays we get [1,2,3,4,5,6,6,7,8,9]
with 10 comparisons. Total 20 number of comparisons
which are 2 less than the first method. It means the second
approach is faster than first when we talk about the merge
process only. But it may take more time while computing
the sorted sub-sequences.

3.3 OVERLAPPING SUB-PROBLEMS

After computing first two sorted sub-sequences, our array
B would look like this:

2 4 9 6 7 3 8 1 5 6

First sub-array is [2,4,9] and second sub-array is [6,7], now
we combine them by merge call to the merge procedure.
After combining first pair of sub-arrays we move further
and compute next pair of sorted sub-arrays which is [3,8]
and [1,5,6]. First iteration would be finished after
combining these two sub-arrays because there are no
further elements left in the array. After these two merges
our array would be:

Figure.2: Overlapping sub-sequences.

Now in the next iteration we need to compute the sorted
sub-sequences before combining them. So first sub-array is
[2,4,6,7,9], which is computed by performing five
comparisons. The point is that in the last iteration we
already computed the sorted sub-sequences [2,4,9] and
[6,7] which further merged together. But now we are
computing them again. Similarly with the next sub-array
[1,3,5,6,8] which is the combination of [3,8] and [1,5,6].
Solving the overlapping sub-problems again and again
would result a very bad performance of the algorithm.

4. DYNAMIC PROGRAMMING (DP)
SOLUTION

Dynamic programming is a famous problem solving
technique that solves the optimization problems by solving
the overlapping sub-problems once and save the results in
tabular form so that this result could be used when the
same sub-problem occurs rather solving the sub-problem
again. In the section.3.3 we discussed the sub-problems
which occur again and again in each iteration and we need
to re-compute them. Dynamic programming finds the
structure of an optimal solution then computes the
solutions based on the pre-computed values [1]. Optimal
solution is computed recursively in most cases but it is not
necessary to design recursive solution always. In our
algorithm, we are going to design an iterative bottom-up
solution to our problem.

4.1 STRUCTURE OF THE SOLUTION:

Let’s consider a new array C of length 14.
After computing the sorted sub-sequences we save the
starting and ending index of each sub-sequence in a tabular
form typically an array so that we can pick the indexes of

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

54

sorted sub-sequence from the table rather re-computing the
sub-arrays again and again. After combining the sub-arrays
we update the table as the number of sub-arrays will
decrease after each iteration. Minimum length of any
sorted sub-sequence is 2 so there would be at most n/2 sub-
sequences for an array of length ‘n’. We create a new array
R with the size n/2+2 the last index of the array R will
have value -1 so that we can find the end of the values and
first index contains ‘0’ which is the starting index of first
sub-sequence.

4.2 MEMORIZATIONS

R[0] contains ‘0’ as the start of the first sorted sub-
sequence in C is C[0].
R[1] contains the ending index of first sorted sub-sequence.
R[2] contains the ending index of second sorted sub-
sequence as the starting index of second sub-sequence is
R[1]+1.
Similarly R[3] contains the ending index of third sorted
sub-sequence and so on. After computing all sub-
sequences, place -1 at the current index of R. After
populating array R with the index the array would look
like:

Array C will look like:

Values of array R after each iteration of the algorithm are
shown in the Table.1. V0 denotes the values of the array R
before the algorithm starts merging the sub-sequences.
Similarly the values of the array C after each iteration are
shown in the Table.2.

Table.1: Array R Memorization of sorted sub-sequences.

Table.2: Array C elements after each iteration.

4.3 COMPUTING THE VALUES OF THE SUB-
PROBLEMS

We use the merge procedure here which combines two
sub-arrays. It takes array, starting index of first sorted sub-
sequence, ending index of first sorted sub-sequence and
ending index of next sub-sequence which is adjacent to the
first one. Let’s call this procedure as Combine.

k = 0, j =1 as the first element of R is always ‘0’.
Combine (B, R[k], R[k+1], R[k+2])
j = R[k+2]
k = k+2

After combining these two sorted sub-sequences we update
array R such that the ending index of the second sub-
sequence is assigned to the ending index of first sub-
sequence i.e. R[k+1] = R[k+2]. Index ‘j’ is used to
compute the indexes of array R so this assignment can be
done by the statement R[j] = R[k+2]. After updating array
R we move forward to the next pair of sorted sub-sequence
by increasing the value of k by 2 units i.e. k = k + 2. Again
call to combine procedure as: Combine (B, R[k], R[k+1],
R[k+2]). Algorithm performs these steps until any of R[k],
R[k+1] and R[k+2] gets -1. When -1 is encountered, it
means that current iteration has been completed.
Algorithm updates array R and places -1 at the end of the
array and moves to the next iteration from start.

5. NON-RECURSIVE ALGORITHM

MEMORIZED-SORT(array, start, end)
Rsize = (end + 1)/2 + 1
Create a new array R of size Rsize
i=start
R[0]=start
flag = 0
j = 1
Seq_count=0
While(I < end)
 while(array[i]<=array[i+1])
 flag = 1
 i=i+1
 if(!flag)
 swap array[i] and array[i+1]
 i=i+1
 flag = 1
 else
 R[j] = i
 i=i+1, j=j+1
 Seq_count=seq_count+1
 flag = 0
endwhile

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

55

if (i ==end)
 R[j]=i
 j=j+1
 Seq_count=seq_count+1

R[j]=-1
k=0
left=0
mid=0
right=0

While(seq_count >1)

j=1
k=0
left=0
mid=R[1]
right=R[2]
while(left!= -1AND mid!= -1ANDright!= -1)

COMBINE(array,left,mid,right)
//Merge procedure

R[j] = right

 j=j+1
 Seq_count=Seq_count -1
 If (right == end)
 break; // If at the end then break

k = k + 2 // To next sub-sequences
 left=R[k]+1
 mid=R[k+1]
 right=R[k+2]
endwhile

if(right==-1 OR mid == -1)
 R[j]=end
 R[j+1]=-1
else

R[j]=-1 // Place -1 at the end of R

endwhile

5.1 TIME COMPLEXITY

If there are ‘m’ sub-sequences then the algorithm will call
the merge procedure m-1 times. If our array is of length ‘n’
then the maximum n/2 sub-sequences are computed. In
first iteration algorithm combines n/2 sub-sequences by
calling the merge procedure n/4 times. Second iteration
combines remaining n/4 sub-sequences in n/8 merge calls.
This process continues until there is only one sorted sub-
sequence left which is equal to the original array and now
in the sorted form. The elements of array R and C after
each iteration are shown in the Table.1 and Table.2
respectively.

5.1.1 WORST CASE

When the input array of length ‘n’ is sorted in reverse
order, we will have maximum number of sub-sequences
and all the sub-sequences will be of length 2. First portion
of the algorithm will compute the sorted sub-sequences in
O(n) time. Total number of sub-sequences would be equal
to n/2 and by combining those in one iteration will
decrease the number of sorted sub-sequence to half i.e. n/4.
Similarly n/8, n/16 up to 1 sorted sub-sequence whose
length is equal to the original array. So there would be at
most lg(n) number of iterations of the outer loop. If we
draw a tree of these merges then the maximum height of
the tree would be lg(n). Performing the merging of all the
sub-sequences in one iteration would perform maximum
Θ(n) number of comparisons as our algorithm merges the
sub-arrays in an alternative way. So the running time of the
algorithm in worst case would be O(n) + Θ(nlgn) which is
equal to O(nlgn) asymptotically [1]. In short we can say
that the worst case running time of Dynamic Programming
sort is equivalent to bottom-up pair sort which is again
practically efficient as compared to merge sort. We are
using the upper bound to denote the complexity of the
function because our algorithm starts combining the pairs
not from single elements so it would save some merge
calls.

5.1.2 BEST CASE

Best case running time of the algorithm is linear as it
identifies the sorted array. In this case there would be only
one sorted sub-sequence so the second portion of the
algorithm will not be executed that’s why the best case
running time of the algorithm is O(n).

5.1.3 AVERAGE CASE

Average case analysis is performed by computing the
running time of the algorithms on random inputs [4]. In
any case the first portion of the algorithm will run by O(n)
times for sure. Our algorithm based on dynamic
programming is very efficient as compared with the merge
sort on real time random inputs but we do not have any
notations to compute the complexity function other than
O(nlgn). The running time of algorithm depends on the
number of sorted sub-sequences, more the number of sub-
sequences more running time less the sub-sequences less
running time. Running time of the algorithm would be
somewhere between best and worst cases. Asymptotically
we can denote the running time of our algorithm as O(nlgn)
because we cannot change the class of efficiency for our
algorithm. But we can run this algorithm on random inputs
with different lengths of the array and show the difference
by comparing the results with the recursive merge sort
algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

56

5.2 SPACE COMPLEXITY

Memorized-Sort is also memory efficient even it creates a
new array R for memorization. If we consider the input
size as ‘n’ means the length of the array then a new array
is also created of size n/2+2 so by analyzing the size of
both arrays we get n+n/2+2 memory spaces which is
asymptotically equal to Θ(n). It is concluded that space
complexity of memorized-sort is linear.

6. RESULTS

The algorithm is implemented using C++ and has been
tested on Intel(R) Core (TM) i3 CPU with 4.00 GB
memory space. Results are drawn by executing the
program from small to large inputs. When the input array
is already sorted, Mem-Sort is very fast as compared to
merge sort. Performance on reverse and random inputs is
astonishing and is much faster than merge sort in both
cases. Fig.3, Fig.4 and Fig.5 below show the running time
of Mem-Sort on sorted, reverse and random inputs
respectively. Red line shows the behavior of merge sort
and blue line shows the behavior of Mem-Sort which is
very efficient as the graphs are self illustrative.

Figure.3: Running time on sorted inputs.

Figure.4: Running time on reverse inputs.

Figure.5: Running time on random inputs.

7. CONCLUSION

Dynamic programming is considered as a classical
technique to solve the optimization problems but it could
also be used to solve other computer science problems
with some modifications. In this paper we have used the
dynamic programming approach to develop an efficient
sorting algorithm by computing random sorted sub-
sequence with memorizations. Our algorithm further sorts
the sorted sub-sequences by using the merge procedure
from merge sort algorithm. Results of the designed
algorithm are encouraging on all type of inputs. It can also
identify if the array is already sorted so no need to sort the
elements again. Mem-Sort’s main target was to sort an
array of random numbers efficiently and it achieved its
target. As the basic operation of any comparison based
sorting algorithm is the comparison operation of two
elements, our algorithm performs optimal number of
comparisons to sort a random array. Dynamic
programming can also be used to find the most optimal
number of comparisons before sorting any array so that we
can perform sorting efficiently.

REFERENCES
[1] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Intoduction to

Algorithms, 3rd ed, MIT Press, 2011.
[2] Deepak Abhyankar, Maya Ingle, Elements of Dynamic

Programming in Sorting, International Journal of
Engineering Research and Applications (IJERA), 1(3), 446-
448.

[3] S. Baase and A. Gelder, Computer Algorithms:Introduction
to Design and Analysis, Addison-Wesley, 2000.

[4] Anany Levitin, Introduction to the Design and Analysis of
Algorithms, 2nd ed, Pearson Education, 2007.

[5] D. E. Knuth, The Art of Computer Programming, Vol. 3,
Pearson Education, 1998.

[6] D. Abhyankar, M. Ingle, A Performance Study of Some
Sophisticated Partitioning Algorithms, International Journal
of Advanced Computer Science and Applications (IJACSA),
2(5), 2011, 135-137.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

57

[7] Frederic H. Murphy, Edward A. Stohr, A Dynamic
Programming Algorithm for Check Sorting, Management
Science, 24(1), September 1977, 59-70.

[8] Dr. Anupam Shukla and Rahul Kala, Predictive Sort,
International Journal of Computer Science and Network
Security (IJCSNS), 8(6), June 2008, 314-320.

Toqeer Ehsan is a Lecturer in the
Department of Computer Science at
University of Gujrat, Pakistan. He
completed his Master of Science in
Computer Science from University of
Management and Technology in 2010 and
Bachelor of Science (Hons) in Computer
Science from Punjab University College of
Information Technology in 2007. He is
serving University of Gujrat since 2010. He
also has a three years work experience of

Web Development and Database Management. His research
interest includes Algorithm Design and Analysis, Formal
Language Theory, Language Engineering, Information Theory
and Communication Networks.

Muhammad Usman Ali is an Assistant
Professor in the Dept. of Information
Technology at University of Gujrat,
Pakistan. He completed his Master of
Science in Computer Engineering from
University of Engineering and Technology
Texila in 2010. He is serving University of
Gujrat since 2011. He also has a seven years
work experience as a Principal Software
Engineer. His research interest includes
Computer Vision, Machine Learning,

Language Engineering and Algorithm Design & Analysis.

Meer Qaisar Javed is an Associate
Lecturer in the department of Information
Technology at University of Gujrat,
Pakistan. He completed his Master of
Science in Information Systems from
Linnæus University, Sweden, in 2013 and
BS (Hons) in Computer Science from
Hajvery University in 2006. He is teaching
in the department of IT since 2011. He also
has a two years work experience as a
Business Analyst. His research interest

includes Information Systems, Human Computer Interaction, and
Algorithm analysis & design.

