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Abstract 
Alert aggregation is an important subtask of intrusion detection. 
The goal is to identify and to cluster different alerts—produced by 
low-level intrusion detection systems, firewalls, etc.—belonging 
to a specific attack instance which has been initiated by an 
attacker at a certain point in time. Thus, meta-alerts can be 
generated for the clusters that contain all the relevant information 
whereas the amount of data (i.e., alerts) can be reduced. 
substantially. Meta-alerts may then be the basis for reporting to 
security experts or for communication within a distributed 
intrusion detection system. We propose a novel technique for 
online alert aggregation which is based on a dynamic, 
probabilistic model of the current attack situation. Basically, it 
can be regarded as a data stream version of a maximum likelihood 
approach for the estimation of the model parameters. With three 
benchmark data sets, we demonstrate that it is possible to achieve 
reduction rates of up to 99.96 percent while the number of 
missing meta-alerts is extremely low. In addition, meta-alerts are 
generated with a delay of typically only a few seconds after 
observing the first alert belonging to a new attack instance. 
Index Terms 
Intrusion detection, alert aggregation, generative modeling, data 
stream algorithm. 

1. INTRODUCTION 

INTRUSION detection systems (IDS) are besides other 
protective measures such as virtual private networks, 
authentication mechanisms, or encryption techniques very 
important to guarantee information security. They help to 
defend against the various threats to which networks and 
hosts are exposed to by detecting the actions of attackers or 
attack tools in a network or host-based manner with misuse 
or anomaly detection techniques. At present, most IDS are 
quite reliable in detecting suspicious actions by evaluating 
TCP/IP connections or log files, for instance. Once an IDS 
finds a suspicious action, it immediately creates an alert 
which contains information about the source, target, and 
estimated type of the attack (e.g., SQL injection, buffer 
overflow, or denial of service). As the intrusive actions 
caused by a single attack instance—which is the occurrence 
of an attack of a particular type that has been launched by a 
specific attacker at a certain point in time—are often spread 
over many network connections or log file entries, a single 
attack instance often results in hundreds or even thousands 

of alerts. IDS usually focus on detecting attack types, but 
not on distinguishing between different attack instances. In 
addition, even low rates of false alerts could easily result in 
a high total number of false alerts if thousands of network 
packets or log file entries are inspected. As a consequence, 
the IDS creates many alerts at a low level of abstraction. It 
is extremely difficult for a human security expert to inspect 
this flood of alerts, and decisions that follow from single 
alerts might be wrong with a relatively high probability. In 
our opinion, a “perfect” IDS should be situation-aware in 
the sense that at any point in time it should “know” what is 
going on in its environment regarding attack instances (of 
various types) and attackers. In this paper, we make an 
important step toward this goal by introducing and 
evaluating a new technique for alert aggregation. Alerts 
may originate from low-level IDS such as those mentioned 
above, from firewalls (FW), etc. Alerts that belong to one 
attack instance must be clustered together and meta-alerts 
must be generated for these clusters. The main goal is to 
reduce the amount of alerts substantially without losing any 
important information which is necessary to identify 
ongoing attack instances. We want to have no missing meta 
alerts, but in turn we accept false or redundant meta-alerts 
to a certain degree. This problem is not new, but current 
solutions are typically based on a quite simple sorting of 
alerts, e.g., according to their source, destination, and 
attack type. Under real conditions such as the presence of 
classification errors of the low-level IDS (e.g., false alerts), 
uncertainty with respect to the source of the attack due to 
spoofed IP addresses, or wrongly adjusted time windows, 
for instance, such an approach fails quite often. Our 
approach has the following distinct properties. It is a 
generative modeling approach using probabilistic methods. 
Assuming that attack instances can be regarded as random 
processes “producing” alerts, we aim at modeling these 
processes using approximative maximum likelihood 
parameter estimation techniques. Thus, the beginning as 
well as the completion of attack instances can be detected. . 
It is a data stream approach, i.e., each observed alert is 
processed only a few times. Thus, it can be applied online 
and under harsh timing constraints. 
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2.RELATED WORK 

Most existing IDS are optimized to detect attacks with high 
accuracy. However, they still have various disadvantages 
that have been outlined in a number of publications and a 
lot of work has been done to analyze IDS in order to direct 
future research Besides others, one drawback is the large 
amount of alerts produced. Recent research focuses on the 
correlation of alerts from (possibly multiple) IDS. If not 
stated otherwise, all approaches outlined in the following 
present either online algorithms or—as we see it—can 
easily be extended to an online version. Probably, the most 
comprehensive approach to alert correlation. One step in 
the presented correlation approach is attack thread 
reconstruction, which can be seen as a kind of attack 
instance recognition. No clustering algorithm is used, but a 
strict sorting of alerts within a temporal window of fixed 
length according to the source, destination, and attack 
classification (attack type).A similar approach is used to 
eliminate duplicates, i.e., alerts that share the same 
quadruple of source and destination address as well as 
source and destination port. In addition, alerts are 
aggregated (online) into predefined clusters (so-called 
situations) in order to provide a more condensed view of 
the current attack situation. The definition of such 
situations is also used in] to cluster alerts. Alert clustering 
is used to group alerts that belong to the same attack 
occurrence. Even though called clustering, there is no 
clustering algorithm in a classic sense. The alerts from one 
(or possibly several) IDS are stored in a relational database 
and a similarity relation—which is based on expert rules—
is used to group similar alerts together. Two alerts are 
defined to be similar, for instance, if both occur within a 

fixed time window and their source and target match 
exactly. As already mentioned, these approaches are likely 
to fail under real-life conditions with imperfect classifiers 
(i.e., low-level IDS) with false alerts or wrongly adjusted 
time windows. A weighted, attribute-wise similarity 
operator is used to decide whether to fuse two alerts or not. 
This approach suffers from the high number of parameters 
that need to be set. Besides a basic least-squares error 
approach, multilayer perceptions, radial basis function 
networks, and decision trees are used to decide whether to 
fuse a new alert with an already existing meta-alert (called 
scenario) or not. Due to the supervised nature, labeled 
training data need to be generated which could be quite 
difficult in case of various attack instances. The same or 
quite similar techniques as described so far are also applied 
in many other approaches to alert correlation, especially in 
the field of intrusion scenario detection. Prominent research 
in scenario detection. An offline clustering solution based 
on the CURE algorithm is presented. The solution is 
restricted to numerical attributes. In addition, the number of 
clusters must be set manually. This is problematic, as in 
fact it assumes that the security expert has knowledge 
about the actual number of ongoing attack instances. The 
alert clustering solution is more related to ours. A link-
based clustering approach is used to repeatedly fuse alerts 
into more generalized ones. The intention is to discover the 
reasons for the existence of the majority of alerts, the so-
called root causes, and to eliminate them subsequently. An 
attack instance in our sense can also be seen as a kind of 
root cause, but in root causes are regarded as “generally 
persistent” which does not hold for attack instances that 
occur only within a limited time window..  
 

 

Fig. 1. Architecture of an intrusion detection agent. 
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3. ANOVEL ONLINE ALERT 
AGGREGATION TECHNIQUE 

In this section, we describe our new alert aggregation 
approach which is—at each point in time—based on a 
probabilistic model of the current situation. To outline the 
preconditions and objectives of alert aggregation, we start 
with a short sketch of our intrusion framework. Then, we 
briefly describe the generation of alerts and the alert format. 
We continue with a new clustering algorithm for offline 
alert aggregation which is basically a parameter estimation 
technique for the probabilistic model. After that, we extend 
this offline method to an algorithm for data stream 
clustering which can be applied to online alert aggregation. 
Finally, we ake some remarks on the generation of meta-
alerts. 

3.1 Collaborating Intrusion Detection Agents 

In our work, we focus on a system of structurally very 
similar so-called intrusion detection (ID) agents. Through 
self-organized collaboration, these ID agents form a 
distributed intrusion detection system (DIDS). Fg. 1 
outlines the layered architecture of an ID agent: The sensor 
layer provides the interface to the network and the host on 
which the agent resides. Sensors acquire raw data from 
both the network and the host, filter incoming data, and 
extract interesting and potentially valuable (e.g., statistical) 
information which is needed to construct an appropriate 
event. At the detection layer, different detectors, e.g., 
classifiers trained with machine learning techniques such as 
support vector machines (SVM) or conventional rule-based 
systems such as Snort assess these events and search for 
known attack signatures (misuse detection) and suspicious 
behavior (anomaly detection). In case of attack suspicion, 
they create alerts which are then forwarded to the alert 
processing layer. Alerts may also be produced by FW or 
the like. At the alert processing layer, the alert aggregation 
module has to combine alerts that are assumed to belong to 
a specific attack instance. Thus, socalled meta-alerts are 
generated. Meta-alerts are used or enhanced in various 
ways, e.g., scenario detection or decentralized alert 
correlation. An important task of the reaction layer is 
reporting. The overall architecture of the distributed 
intrusion detection system and a framework for large-scale 
simulations are described in more detail. In our layered ID 
agent architecture, each layer assesses, filters, and/or 
aggregates information produced by a lower layer. Thus, 
relevant information gets more and more condensed and 
certain, and, therefore, also more valuable. We aim at 
realizing each layer in a way such that the recall of the 
applied techniques is very high, possibly at the cost of a 
slightly poorer precision In other words, with the alert 

aggregation module—on which we focus in this paper—we 
want to have a minimal number of missing meta-alerts 
(false negatives) and we accept some false metaalerts (false 
positives) and redundant meta-alerts in turn. 

3.2 Alert Generation and Format 

In this section, we make some comments on the 
information contained in alerts, the objects that must be 
aggregated, and on their format. As the concrete content 
and format depend on a specific task and on certain 
realizations of the sensors and detectors, some more details 
will be given in Section 4 together with the experimental 
conditions. At the sensor layer, sensors determine the 
values of attributes that are used as input for the detectors 
as well as for the alert clustering module. Attributes in an 
event that are independent of a particular attack instance 
can be used for classification at the detection layer. 
Attributes that are(or might be) dependent on the attack 
instance can be used in an alert aggregation process to 
distinguish different attack instances. A perfect partition 
into dependent and independent attributes, however, cannot 
be made. 
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Fig. 2. Example illustrating the alert aggregation task and possible 
problems (artificial attack situation). (a) Idealized world: In the idealized 

IDS, the detectors do not make errors (no false and missing alerts) and the 
correct assignment of alerts to attack instances is known (indicated by 

different symbols). (b) Actual observations: The alerts produced by a real 
detection layer. The task of the alert aggregation is to reconstruct the 
attack situation by means of these observations only (including false 

alerts). (c) Reconstruction: The result of the aggregation (correspondence 
of alerts and clusters/meta-alerts) together with four different types of 

problems that may arise. 

3.3 Offline Alert Aggregation 

In this section, we introduce an offline algorithm for alert 
aggregation which will be extended to a data stream 
algorithm for online aggregation in Section 3.4. Assume 
that a host with an ID agent is exposed to acertain intrusion 
situation as sketched in Fig. 2: One or several attackers 
launch several attack instances belonging to various attack 
types. The attack instances each cause a number of alerts 
with various attribute values. Only two of the attributes are 
shown and the correspondence of alerts and (true or 
estimated) attack instances is indicated by different 
symbols. Fig. 2a shows a view on the “ideal world” which 
an ID agent does not have. The agent only has observations 
of the detectors (alerts) in the attribute space without attack 
instance labels as outlined in Fig. 2b. The task of the alert 
aggregation module is now to estimate the assignment to 
instances by using the unlabeled observations only and by 
analyzing the cluster structure in the attribute space. That is, 
it has to reconstruct the attack situation. Then, meta-alerts 
can be generated that are basically an abstract description 
of the cluster of alerts assumed to originate from one attack 
instance. Thus, the amount of data is reduced substantially 
without losing important information. Fig. 2c shows the 
result of a reconstruction of the situation. There may be 
different potentially problematic situations: 

 

 

 

Fig. 3. Example illustrating the principle of online alert aggregation 
(artificial attack situation). (a) Existing model: Components have been 

created by the alert aggregation module. These components are the basis 
for meta-alert generation. (b) Assignment problem: New observations 

must either be assigned to an existing component which is then adapted or 
a new component must be created. Also, outdated components must be 
deleted. (c) Adapted model: The new situation after a few steps. One 

component has been created, one component has been deleted, and the 
other components have been adapted accordingly. 
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1. False alerts are not recognized as such and wrongly 
assigned to clusters: This situation is acceptable as long as 
the number of false alerts is comparably low. 
2. True alerts are wrongly assigned to clusters: This 
situation is not really problematic as long as the majority of 
alerts belonging to that cluster is correctly assigned. Then, 
no attack instance is missed. 
3. Clusters are wrongly split: This situation is undesired but 
clearly unproblematic as it leads to redundant meta-alerts 
only. Only the data reduction rate is lower, no attack 
instance is missed. 
4. Several clusters are wrongly combined into one: This 
situation is definitely problematic as attack instances may 
be missed. According to our objectives (cf. Section 3.1) we 
must try to avoid the latter situation but we may accept the 
former three situations to a certain degree 

3.4 Data Stream Alert Aggregation 

In this section, we describe how the offline approach is 
extended to an online approach working for dynamic attack 
situations.Assume that in the environment observed by an 
ID agent attackers initiate new attack instances that cause 
alerts for acertain time interval until this attack instance is 
completed.Thus, at any point in time the ID agent—which 
is assumed to have a model of the current situation, cf. Fig. 
3a—has several tasks, cf. Fig. 3b: 
1. Component adaption: Alerts associated with already 
recognized attack instances must be identified as such and 
assigned to already existing clusters while adapting the 
respective component parameters. 
2. Component creation (novelty detection): The occurrence 
of new attack instances must be stated. New components 
must be parameterized accordingly. HOFMANN AND 
SICK: ONLINE INTRUSION ALERT AGGREGATION 
WITH GENERATIVE DATA STREAM MODELING 287 
Fig. 3. Example illustrating the principle of online alert 
aggregation (artificial attack situation). (a) Existing model: 
Components have been created by the alert aggregation 
module. These components are the basis for meta-alert 
generation. (b) Assignment problem: New observations 
must either be assigned to an existing component which is 
then adapted or a new component must be created. Also, 
outdated components must be deleted. (c) Adapted model: 
The new situation after a few steps. One component has 
been created, one component has been deleted, and the 
other components have been adapted accordingly. 
3. Component deletion (obsoleteness detection): The 
completion of attack instances must be detected and the 
respective components must be deleted from the model. 
That is, the ID agent must be situation-aware and try to 
keep his model of the current attack situation permanently 
up to date, see Fig. 3c. Clearly, there is a trade-off between 
runtime (or reaction time) and accuracy.  

4. EXPERIMENTAL RESULTS 

This section evaluates the new alert aggregation 
approach.We use three different data sets to demonstrate 
the HOFMANN AND SICK: ONLINE INTRUSION 
ALERT AGGREGATION WITH GENERATIVE DATA 
STREAM MODELING 289 feasibility of the proposed 
method: The first is the wellknown DARPA intrusion 
detection evaluation data set for the second we used real-
life network traffic data collected at our university campus 
network, and the third contains firewall log messages from 
a commercial Internet service provider. All experiments 
were conducted on an PC with 2.20 GHz and 2 GB of 
RAM. 

4.1 Description of the Benchmark D 

4.1.1 DARPA Data 
For the DARPA evaluation several weeks of training and 
test data have been generated on a test bed that emulates a 
small government site. The network architecture as well as 
the generated network traffic has been designed to be 
similar to that of an Air Force base. We used the TCP/IP 
network dump as input data and analyzed all 104 TCP-
based attack instances (corresponding to more than 20 
attack types) that have been launched against the various 
target hosts. As sketched in Section 3.2, sensors extract 
statistical information from the network traffic data. At the 
detection layer, we apply SVM to classify the sensor events. 
By applying a varying threshold to the output of the 
classifier, a so-called receiver operating characteristics 
(ROC) curve can be created The ROC curve in Fig. 4 plots 
the true positive rate (TPR, number of true positives 
divided by the sum of true positives and false negatives) 
against the false positive rate (FPR, number of false 
positives divided by the sum of false positives and true 
negatives) for the trained SVM. Each point of the curve 
corresponds to a specific threshold. Four operating points 
(OP) are marked. OP 1 is the one with the smallest overall 
error, but as we want to realize a high recall, we also 
investigate three more operating points which exhibit 
higher TPR at the cost of an increased FPR. We will also 
investigate the aggregation under idealized conditions 
where we assume to have a perfect detector layer with no 
missing and no false alerts at all. As attributes for the alerts, 
we use the source and destination IP address, the source 
and destination port, the attack type, and the creation time 
differences (based on the creation time stamps). Table 1 
shows the number of alerts produced for the different OP 
and also for the idealized condition, i.e., a perfect detection 
layer. In addition, the number of attack instances for which 
at least one alert is generated by the detector layer is also 
given. Note that we have 104 attack instances in the data 
set altogether. For OP 1, there are three attack instances for 
which not even a single alert is created i.e., these instances 
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are already missed at the detection layer. We are aware of 
the various critique on the DARPA benchmark data and the 
limitations that emerge thereof.  
4.1.2 Campus Network Data 
To assess the performance of our approach in more detail, 
we also conducted own attack experiments. We launched 
several brute force password guessing attacks against the 
mail server (POP3) of our campus network and recorded 
the network traffic. The attack instances differed in origin, 
start time, duration, and password guessing rate. The attack 
schedule was designed to reflect situations which we regard 
as being difficult to recognize. In particular, we have 
1. Several concurrent attack instances (up to seven), 
2. Partially and completely overlapping attack instances, 
3. Several instances within a short time interval, 
4. Different attack instances from similar sources, 
5. Different attack durations, and 
6. An attacker that changes his IP address during the attack. 
In order to demonstrate that the proposed technique can 
also be used with a conventional signature-based detector, 
the captured traffic was analyzed by the open source IDS 
Snort which detected all 17 attack instances that have been 
launched and produced 128,816 alerts (cf. Table 1). The 
alert format equals the one used for the SVM detector, i.e., 
the alerts exhibit the source and destination IP address, 
TABLE 1 Input of the Alert Aggregation Algorithm the 
source and destination port, the attack type, and creation 
time differences. Snort was configured to match our 
network topology and we turned off rudimental alert 
aggregation features. In order to achieve a high recall, we 
activated all available rule sets—the official rule sets as 
well as available community rules, which both are 
available at the Snort web page Activating all rules leads to 
a false alert rate of 0.33 percent. The FPR is based on the 
assumption that all alerts that are not classified with the 
attack type that we launched are false alerts. There is no 
missing alert rate given in Table 1 for this data set for two 
reasons: First, it cannot be guaranteed that there are 
unknown attacks in the data set that were started by real 
attackers and second, we do not know exactly how many 
alerts should be created by the attacks we launched. 4.1.3 
Internet Service Provider Firewall Logs The third data set 
used here differs from the previous ones as we actually do 
not have a detector layer that performs a classification and 
searches for known attacks. Here, the alerts consist of the 
source and destination IP address, the source and 
destination port, the creation time differences, and the PIX 
message type.  

4.2 Performance Measures 

In order to assess the performance of the alert aggregation, 
we evaluate the following measures: Percentage of detected 
instances (p). We regard an attack instance as being 
detected if there is at least one meta alert that 

predominantly contains alerts of that particular instance. 
The percentage of detected attack instances p can thus be 
determined by dividing the number of instances that are 
detected by the total number of instances in the data set. 
The measure is computed with respect to the instances 
covered by the output of the detection layer, i.e., instances 
missed by the detectors are not considered. Number of 
meta-alerts (MA) and reduction rate (r). The number of 
meta-alerts (MA) is further divided into the number of 
attack meta-alerts MAattack which predominantly contain 
true alerts and the number of nonattack meta-alerts 
MAnonattack which predominantly contain false alerts. 
The reduction rate r is 1 minus the number of created 
metaalerts MA divided by the total number of alerts 
N.Average runtime (tavg) and worst case runtime (tworst).  

4.3 Results 

In the following, the results for the alert aggregation are 
presented. For all experiments, the same parameter settings 
are used. We set the threshold _ that decides whether to add 
a new alert to an existing component or not to five percent, 
and the value for the threshold _ that specifies the allowed 
temporal spread of the alert buffer to 180 seconds. _ was 
set that low value in order to ensure that even a quite small 
degrade of the cluster quality, which could indicate a new 
attack instance, results in a new component. A small value 
of _, of course, results in more components and, thus, in a 
lower reduction rate, but it also reduces the risk of missing 
attack instances. The parameter _, which is used in the 
novelty assessment function, controls the maximum time 
that new alerts are allowed to reside in the buffer B. In 
order to keep the response time short, we set it to 180 s 
which we think is a reasonable value. For both parameters, 
there were large intervals in which parameter values could 
be chosen without deteriorating the results.  

5.SUMMARY AND OUTLOOK 

We presented a novel technique for online alert aggregation 
and generation of meta-alerts. We have shown that the 
sheer amount of data that must be reported to a human 
security expert or communicated within a distributed 
intrusion detection system, for instance, can be reduced 
significantly. The reduction rate with respect to the number 
of alerts was up to 99.96 percent in our experiments. At the 
same time, the number of missing attack instances is 
extremely low or even zero in some of our experiments and 
the delay for the detection of attack instances is within the 
range of some seconds only. In the future, we will develop 
techniques for interestingness- based communication 
strategies for a distributed IDS.  
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