
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

98

Manuscript received September 5, 2013
Manuscript revised September 20, 2013

Online Intrusion Alert Aggregation with Generative Data Stream
Modeling

M.Hanock1, K.Srinivas2, A.Yaganteeswarudu3

12Kottam College of engineering Kurnool, india
3SJCET Kurnool, india

Abstract
Alert aggregation is an important subtask of intrusion detection.
The goal is to identify and to cluster different alerts—produced by
low-level intrusion detection systems, firewalls, etc.—belonging
to a specific attack instance which has been initiated by an
attacker at a certain point in time. Thus, meta-alerts can be
generated for the clusters that contain all the relevant information
whereas the amount of data (i.e., alerts) can be reduced.
substantially. Meta-alerts may then be the basis for reporting to
security experts or for communication within a distributed
intrusion detection system. We propose a novel technique for
online alert aggregation which is based on a dynamic,
probabilistic model of the current attack situation. Basically, it
can be regarded as a data stream version of a maximum likelihood
approach for the estimation of the model parameters. With three
benchmark data sets, we demonstrate that it is possible to achieve
reduction rates of up to 99.96 percent while the number of
missing meta-alerts is extremely low. In addition, meta-alerts are
generated with a delay of typically only a few seconds after
observing the first alert belonging to a new attack instance.
Index Terms
Intrusion detection, alert aggregation, generative modeling, data
stream algorithm.

1. INTRODUCTION

INTRUSION detection systems (IDS) are besides other
protective measures such as virtual private networks,
authentication mechanisms, or encryption techniques very
important to guarantee information security. They help to
defend against the various threats to which networks and
hosts are exposed to by detecting the actions of attackers or
attack tools in a network or host-based manner with misuse
or anomaly detection techniques. At present, most IDS are
quite reliable in detecting suspicious actions by evaluating
TCP/IP connections or log files, for instance. Once an IDS
finds a suspicious action, it immediately creates an alert
which contains information about the source, target, and
estimated type of the attack (e.g., SQL injection, buffer
overflow, or denial of service). As the intrusive actions
caused by a single attack instance—which is the occurrence
of an attack of a particular type that has been launched by a
specific attacker at a certain point in time—are often spread
over many network connections or log file entries, a single
attack instance often results in hundreds or even thousands

of alerts. IDS usually focus on detecting attack types, but
not on distinguishing between different attack instances. In
addition, even low rates of false alerts could easily result in
a high total number of false alerts if thousands of network
packets or log file entries are inspected. As a consequence,
the IDS creates many alerts at a low level of abstraction. It
is extremely difficult for a human security expert to inspect
this flood of alerts, and decisions that follow from single
alerts might be wrong with a relatively high probability. In
our opinion, a “perfect” IDS should be situation-aware in
the sense that at any point in time it should “know” what is
going on in its environment regarding attack instances (of
various types) and attackers. In this paper, we make an
important step toward this goal by introducing and
evaluating a new technique for alert aggregation. Alerts
may originate from low-level IDS such as those mentioned
above, from firewalls (FW), etc. Alerts that belong to one
attack instance must be clustered together and meta-alerts
must be generated for these clusters. The main goal is to
reduce the amount of alerts substantially without losing any
important information which is necessary to identify
ongoing attack instances. We want to have no missing meta
alerts, but in turn we accept false or redundant meta-alerts
to a certain degree. This problem is not new, but current
solutions are typically based on a quite simple sorting of
alerts, e.g., according to their source, destination, and
attack type. Under real conditions such as the presence of
classification errors of the low-level IDS (e.g., false alerts),
uncertainty with respect to the source of the attack due to
spoofed IP addresses, or wrongly adjusted time windows,
for instance, such an approach fails quite often. Our
approach has the following distinct properties. It is a
generative modeling approach using probabilistic methods.
Assuming that attack instances can be regarded as random
processes “producing” alerts, we aim at modeling these
processes using approximative maximum likelihood
parameter estimation techniques. Thus, the beginning as
well as the completion of attack instances can be detected. .
It is a data stream approach, i.e., each observed alert is
processed only a few times. Thus, it can be applied online
and under harsh timing constraints.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 99

2.RELATED WORK

Most existing IDS are optimized to detect attacks with high
accuracy. However, they still have various disadvantages
that have been outlined in a number of publications and a
lot of work has been done to analyze IDS in order to direct
future research Besides others, one drawback is the large
amount of alerts produced. Recent research focuses on the
correlation of alerts from (possibly multiple) IDS. If not
stated otherwise, all approaches outlined in the following
present either online algorithms or—as we see it—can
easily be extended to an online version. Probably, the most
comprehensive approach to alert correlation. One step in
the presented correlation approach is attack thread
reconstruction, which can be seen as a kind of attack
instance recognition. No clustering algorithm is used, but a
strict sorting of alerts within a temporal window of fixed
length according to the source, destination, and attack
classification (attack type).A similar approach is used to
eliminate duplicates, i.e., alerts that share the same
quadruple of source and destination address as well as
source and destination port. In addition, alerts are
aggregated (online) into predefined clusters (so-called
situations) in order to provide a more condensed view of
the current attack situation. The definition of such
situations is also used in] to cluster alerts. Alert clustering
is used to group alerts that belong to the same attack
occurrence. Even though called clustering, there is no
clustering algorithm in a classic sense. The alerts from one
(or possibly several) IDS are stored in a relational database
and a similarity relation—which is based on expert rules—
is used to group similar alerts together. Two alerts are
defined to be similar, for instance, if both occur within a

fixed time window and their source and target match
exactly. As already mentioned, these approaches are likely
to fail under real-life conditions with imperfect classifiers
(i.e., low-level IDS) with false alerts or wrongly adjusted
time windows. A weighted, attribute-wise similarity
operator is used to decide whether to fuse two alerts or not.
This approach suffers from the high number of parameters
that need to be set. Besides a basic least-squares error
approach, multilayer perceptions, radial basis function
networks, and decision trees are used to decide whether to
fuse a new alert with an already existing meta-alert (called
scenario) or not. Due to the supervised nature, labeled
training data need to be generated which could be quite
difficult in case of various attack instances. The same or
quite similar techniques as described so far are also applied
in many other approaches to alert correlation, especially in
the field of intrusion scenario detection. Prominent research
in scenario detection. An offline clustering solution based
on the CURE algorithm is presented. The solution is
restricted to numerical attributes. In addition, the number of
clusters must be set manually. This is problematic, as in
fact it assumes that the security expert has knowledge
about the actual number of ongoing attack instances. The
alert clustering solution is more related to ours. A link-
based clustering approach is used to repeatedly fuse alerts
into more generalized ones. The intention is to discover the
reasons for the existence of the majority of alerts, the so-
called root causes, and to eliminate them subsequently. An
attack instance in our sense can also be seen as a kind of
root cause, but in root causes are regarded as “generally
persistent” which does not hold for attack instances that
occur only within a limited time window..

Fig. 1. Architecture of an intrusion detection agent.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 100

3. ANOVEL ONLINE ALERT
AGGREGATION TECHNIQUE

In this section, we describe our new alert aggregation
approach which is—at each point in time—based on a
probabilistic model of the current situation. To outline the
preconditions and objectives of alert aggregation, we start
with a short sketch of our intrusion framework. Then, we
briefly describe the generation of alerts and the alert format.
We continue with a new clustering algorithm for offline
alert aggregation which is basically a parameter estimation
technique for the probabilistic model. After that, we extend
this offline method to an algorithm for data stream
clustering which can be applied to online alert aggregation.
Finally, we ake some remarks on the generation of meta-
alerts.

3.1 Collaborating Intrusion Detection Agents

In our work, we focus on a system of structurally very
similar so-called intrusion detection (ID) agents. Through
self-organized collaboration, these ID agents form a
distributed intrusion detection system (DIDS). Fg. 1
outlines the layered architecture of an ID agent: The sensor
layer provides the interface to the network and the host on
which the agent resides. Sensors acquire raw data from
both the network and the host, filter incoming data, and
extract interesting and potentially valuable (e.g., statistical)
information which is needed to construct an appropriate
event. At the detection layer, different detectors, e.g.,
classifiers trained with machine learning techniques such as
support vector machines (SVM) or conventional rule-based
systems such as Snort assess these events and search for
known attack signatures (misuse detection) and suspicious
behavior (anomaly detection). In case of attack suspicion,
they create alerts which are then forwarded to the alert
processing layer. Alerts may also be produced by FW or
the like. At the alert processing layer, the alert aggregation
module has to combine alerts that are assumed to belong to
a specific attack instance. Thus, socalled meta-alerts are
generated. Meta-alerts are used or enhanced in various
ways, e.g., scenario detection or decentralized alert
correlation. An important task of the reaction layer is
reporting. The overall architecture of the distributed
intrusion detection system and a framework for large-scale
simulations are described in more detail. In our layered ID
agent architecture, each layer assesses, filters, and/or
aggregates information produced by a lower layer. Thus,
relevant information gets more and more condensed and
certain, and, therefore, also more valuable. We aim at
realizing each layer in a way such that the recall of the
applied techniques is very high, possibly at the cost of a
slightly poorer precision In other words, with the alert

aggregation module—on which we focus in this paper—we
want to have a minimal number of missing meta-alerts
(false negatives) and we accept some false metaalerts (false
positives) and redundant meta-alerts in turn.

3.2 Alert Generation and Format

In this section, we make some comments on the
information contained in alerts, the objects that must be
aggregated, and on their format. As the concrete content
and format depend on a specific task and on certain
realizations of the sensors and detectors, some more details
will be given in Section 4 together with the experimental
conditions. At the sensor layer, sensors determine the
values of attributes that are used as input for the detectors
as well as for the alert clustering module. Attributes in an
event that are independent of a particular attack instance
can be used for classification at the detection layer.
Attributes that are(or might be) dependent on the attack
instance can be used in an alert aggregation process to
distinguish different attack instances. A perfect partition
into dependent and independent attributes, however, cannot
be made.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 101

Fig. 2. Example illustrating the alert aggregation task and possible
problems (artificial attack situation). (a) Idealized world: In the idealized

IDS, the detectors do not make errors (no false and missing alerts) and the
correct assignment of alerts to attack instances is known (indicated by

different symbols). (b) Actual observations: The alerts produced by a real
detection layer. The task of the alert aggregation is to reconstruct the
attack situation by means of these observations only (including false

alerts). (c) Reconstruction: The result of the aggregation (correspondence
of alerts and clusters/meta-alerts) together with four different types of

problems that may arise.

3.3 Offline Alert Aggregation

In this section, we introduce an offline algorithm for alert
aggregation which will be extended to a data stream
algorithm for online aggregation in Section 3.4. Assume
that a host with an ID agent is exposed to acertain intrusion
situation as sketched in Fig. 2: One or several attackers
launch several attack instances belonging to various attack
types. The attack instances each cause a number of alerts
with various attribute values. Only two of the attributes are
shown and the correspondence of alerts and (true or
estimated) attack instances is indicated by different
symbols. Fig. 2a shows a view on the “ideal world” which
an ID agent does not have. The agent only has observations
of the detectors (alerts) in the attribute space without attack
instance labels as outlined in Fig. 2b. The task of the alert
aggregation module is now to estimate the assignment to
instances by using the unlabeled observations only and by
analyzing the cluster structure in the attribute space. That is,
it has to reconstruct the attack situation. Then, meta-alerts
can be generated that are basically an abstract description
of the cluster of alerts assumed to originate from one attack
instance. Thus, the amount of data is reduced substantially
without losing important information. Fig. 2c shows the
result of a reconstruction of the situation. There may be
different potentially problematic situations:

Fig. 3. Example illustrating the principle of online alert aggregation
(artificial attack situation). (a) Existing model: Components have been

created by the alert aggregation module. These components are the basis
for meta-alert generation. (b) Assignment problem: New observations

must either be assigned to an existing component which is then adapted or
a new component must be created. Also, outdated components must be
deleted. (c) Adapted model: The new situation after a few steps. One

component has been created, one component has been deleted, and the
other components have been adapted accordingly.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 102

1. False alerts are not recognized as such and wrongly
assigned to clusters: This situation is acceptable as long as
the number of false alerts is comparably low.
2. True alerts are wrongly assigned to clusters: This
situation is not really problematic as long as the majority of
alerts belonging to that cluster is correctly assigned. Then,
no attack instance is missed.
3. Clusters are wrongly split: This situation is undesired but
clearly unproblematic as it leads to redundant meta-alerts
only. Only the data reduction rate is lower, no attack
instance is missed.
4. Several clusters are wrongly combined into one: This
situation is definitely problematic as attack instances may
be missed. According to our objectives (cf. Section 3.1) we
must try to avoid the latter situation but we may accept the
former three situations to a certain degree

3.4 Data Stream Alert Aggregation

In this section, we describe how the offline approach is
extended to an online approach working for dynamic attack
situations.Assume that in the environment observed by an
ID agent attackers initiate new attack instances that cause
alerts for acertain time interval until this attack instance is
completed.Thus, at any point in time the ID agent—which
is assumed to have a model of the current situation, cf. Fig.
3a—has several tasks, cf. Fig. 3b:
1. Component adaption: Alerts associated with already
recognized attack instances must be identified as such and
assigned to already existing clusters while adapting the
respective component parameters.
2. Component creation (novelty detection): The occurrence
of new attack instances must be stated. New components
must be parameterized accordingly. HOFMANN AND
SICK: ONLINE INTRUSION ALERT AGGREGATION
WITH GENERATIVE DATA STREAM MODELING 287
Fig. 3. Example illustrating the principle of online alert
aggregation (artificial attack situation). (a) Existing model:
Components have been created by the alert aggregation
module. These components are the basis for meta-alert
generation. (b) Assignment problem: New observations
must either be assigned to an existing component which is
then adapted or a new component must be created. Also,
outdated components must be deleted. (c) Adapted model:
The new situation after a few steps. One component has
been created, one component has been deleted, and the
other components have been adapted accordingly.
3. Component deletion (obsoleteness detection): The
completion of attack instances must be detected and the
respective components must be deleted from the model.
That is, the ID agent must be situation-aware and try to
keep his model of the current attack situation permanently
up to date, see Fig. 3c. Clearly, there is a trade-off between
runtime (or reaction time) and accuracy.

4. EXPERIMENTAL RESULTS

This section evaluates the new alert aggregation
approach.We use three different data sets to demonstrate
the HOFMANN AND SICK: ONLINE INTRUSION
ALERT AGGREGATION WITH GENERATIVE DATA
STREAM MODELING 289 feasibility of the proposed
method: The first is the wellknown DARPA intrusion
detection evaluation data set for the second we used real-
life network traffic data collected at our university campus
network, and the third contains firewall log messages from
a commercial Internet service provider. All experiments
were conducted on an PC with 2.20 GHz and 2 GB of
RAM.

4.1 Description of the Benchmark D

4.1.1 DARPA Data
For the DARPA evaluation several weeks of training and
test data have been generated on a test bed that emulates a
small government site. The network architecture as well as
the generated network traffic has been designed to be
similar to that of an Air Force base. We used the TCP/IP
network dump as input data and analyzed all 104 TCP-
based attack instances (corresponding to more than 20
attack types) that have been launched against the various
target hosts. As sketched in Section 3.2, sensors extract
statistical information from the network traffic data. At the
detection layer, we apply SVM to classify the sensor events.
By applying a varying threshold to the output of the
classifier, a so-called receiver operating characteristics
(ROC) curve can be created The ROC curve in Fig. 4 plots
the true positive rate (TPR, number of true positives
divided by the sum of true positives and false negatives)
against the false positive rate (FPR, number of false
positives divided by the sum of false positives and true
negatives) for the trained SVM. Each point of the curve
corresponds to a specific threshold. Four operating points
(OP) are marked. OP 1 is the one with the smallest overall
error, but as we want to realize a high recall, we also
investigate three more operating points which exhibit
higher TPR at the cost of an increased FPR. We will also
investigate the aggregation under idealized conditions
where we assume to have a perfect detector layer with no
missing and no false alerts at all. As attributes for the alerts,
we use the source and destination IP address, the source
and destination port, the attack type, and the creation time
differences (based on the creation time stamps). Table 1
shows the number of alerts produced for the different OP
and also for the idealized condition, i.e., a perfect detection
layer. In addition, the number of attack instances for which
at least one alert is generated by the detector layer is also
given. Note that we have 104 attack instances in the data
set altogether. For OP 1, there are three attack instances for
which not even a single alert is created i.e., these instances

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 103

are already missed at the detection layer. We are aware of
the various critique on the DARPA benchmark data and the
limitations that emerge thereof.
4.1.2 Campus Network Data
To assess the performance of our approach in more detail,
we also conducted own attack experiments. We launched
several brute force password guessing attacks against the
mail server (POP3) of our campus network and recorded
the network traffic. The attack instances differed in origin,
start time, duration, and password guessing rate. The attack
schedule was designed to reflect situations which we regard
as being difficult to recognize. In particular, we have
1. Several concurrent attack instances (up to seven),
2. Partially and completely overlapping attack instances,
3. Several instances within a short time interval,
4. Different attack instances from similar sources,
5. Different attack durations, and
6. An attacker that changes his IP address during the attack.
In order to demonstrate that the proposed technique can
also be used with a conventional signature-based detector,
the captured traffic was analyzed by the open source IDS
Snort which detected all 17 attack instances that have been
launched and produced 128,816 alerts (cf. Table 1). The
alert format equals the one used for the SVM detector, i.e.,
the alerts exhibit the source and destination IP address,
TABLE 1 Input of the Alert Aggregation Algorithm the
source and destination port, the attack type, and creation
time differences. Snort was configured to match our
network topology and we turned off rudimental alert
aggregation features. In order to achieve a high recall, we
activated all available rule sets—the official rule sets as
well as available community rules, which both are
available at the Snort web page Activating all rules leads to
a false alert rate of 0.33 percent. The FPR is based on the
assumption that all alerts that are not classified with the
attack type that we launched are false alerts. There is no
missing alert rate given in Table 1 for this data set for two
reasons: First, it cannot be guaranteed that there are
unknown attacks in the data set that were started by real
attackers and second, we do not know exactly how many
alerts should be created by the attacks we launched. 4.1.3
Internet Service Provider Firewall Logs The third data set
used here differs from the previous ones as we actually do
not have a detector layer that performs a classification and
searches for known attacks. Here, the alerts consist of the
source and destination IP address, the source and
destination port, the creation time differences, and the PIX
message type.

4.2 Performance Measures

In order to assess the performance of the alert aggregation,
we evaluate the following measures: Percentage of detected
instances (p). We regard an attack instance as being
detected if there is at least one meta alert that

predominantly contains alerts of that particular instance.
The percentage of detected attack instances p can thus be
determined by dividing the number of instances that are
detected by the total number of instances in the data set.
The measure is computed with respect to the instances
covered by the output of the detection layer, i.e., instances
missed by the detectors are not considered. Number of
meta-alerts (MA) and reduction rate (r). The number of
meta-alerts (MA) is further divided into the number of
attack meta-alerts MAattack which predominantly contain
true alerts and the number of nonattack meta-alerts
MAnonattack which predominantly contain false alerts.
The reduction rate r is 1 minus the number of created
metaalerts MA divided by the total number of alerts
N.Average runtime (tavg) and worst case runtime (tworst).

4.3 Results

In the following, the results for the alert aggregation are
presented. For all experiments, the same parameter settings
are used. We set the threshold _ that decides whether to add
a new alert to an existing component or not to five percent,
and the value for the threshold _ that specifies the allowed
temporal spread of the alert buffer to 180 seconds. _ was
set that low value in order to ensure that even a quite small
degrade of the cluster quality, which could indicate a new
attack instance, results in a new component. A small value
of _, of course, results in more components and, thus, in a
lower reduction rate, but it also reduces the risk of missing
attack instances. The parameter _, which is used in the
novelty assessment function, controls the maximum time
that new alerts are allowed to reside in the buffer B. In
order to keep the response time short, we set it to 180 s
which we think is a reasonable value. For both parameters,
there were large intervals in which parameter values could
be chosen without deteriorating the results.

5.SUMMARY AND OUTLOOK

We presented a novel technique for online alert aggregation
and generation of meta-alerts. We have shown that the
sheer amount of data that must be reported to a human
security expert or communicated within a distributed
intrusion detection system, for instance, can be reduced
significantly. The reduction rate with respect to the number
of alerts was up to 99.96 percent in our experiments. At the
same time, the number of missing attack instances is
extremely low or even zero in some of our experiments and
the delay for the detection of attack instances is within the
range of some seconds only. In the future, we will develop
techniques for interestingness- based communication
strategies for a distributed IDS.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 104

ACKNOWLEDGMENTS

We express our sincere thanks to Kottam College of
engineering providing us good lab facilities. A heart full
and sincere gratitude to our beloved parents and friend for
their tremendous motivation and moral support.

REFERENCES
[1] S. Axelsson, “Intrusion Detection Systems: A Survey and

Taxonomy,” Technical Report 99-15, Dept. of Computer
Eng., Chalmers Univ. of Technology, 2000.

[2] M.R. Endsley, “Theoretical Underpinnings of Situation
Awareness: A Critical Review,” Situation Awareness
Analysis and Measurement, M.R. Endsley and D.J. Garland,
eds., chapter 1, pp. 3-32, Lawrence Erlbaum Assoc., 2000.

[3] C.M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[4] M.R. Henzinger, P. Raghavan, and S. Rajagopalan,
Computing on Data Streams. Am. Math. Soc., 1999.

[5] A. Allen, “Intrusion Detection Systems: Perspective,”
Technical Report DPRO-95367, Gartner, Inc., 2003.

[6] F. Valeur, G. Vigna, C. Kru¨ gel, and R.A. Kemmerer, “A
Comprehensive Approach to Intrusion Detection Alert
Correlation,” IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 3, pp. 146-169, July-Sept. 2004.

[7] H. Debar and A. Wespi, “Aggregation and Correlation of
Intrusion-Detection Alerts,” Recent Advances in Intrusion
Detection, W. Lee, L. Me, and A. Wespi, eds., pp. 85-103,
Springer, 2001.

[8] D. Li, Z. Li, and J. Ma, “Processing Intrusion Detection
Alerts in Large-Scale Network,” Proc. Int’l Symp. Electronic
Commerce and Security, pp. 545-548, 2008.

[9] F. Cuppens, “Managing Alerts in a Multi-Intrusion Detection
Environment,” Proc. 17th Ann. Computer Security
Applications Conf. (ACSAC ’01), pp. 22-31, 2001.

A.YAGANTEESWARUDU received the
B.TECH from St.Johns college of engg&tech
2009.After Worked as assistant professor in
SJCET, Now studying M.Tech in St.Johns
college of engg&tech

M.Hanock completed B.Tech in St.Johns
college of engineering&tech.Now studying
M.Tech in Kottam college of engineering

K.Sreenivas, completed M.Tech, persuiving
Ph.D,Working as HOD,in Kottam college of
engineering

