
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013

105

Manuscript received September 5, 2013
Manuscript revised September 20, 2013

Optimization of Memory for AES Rijndeal algorithm
Implementation on Embedded system

M. Ravindra Babu and A. R. Reddy

Madanapalle Institute of Technology and Science, Madanapalle, Chittoor, Andhra Pradesh.

Abstract
Advanced Encryption Standard (AES) algorithm has gained
popularity as it is deployed in various embedded systems.
Realization of AES algorithm on 8051 microcontroller with
minimum memory will be useful for deploying it in low cost
applications. This paper addresses the memory requirement
when the AES algorithm is ported into microcontroller using
standard embedded system design tools. Theoretical memory
requirement is calculated and is compared with measured values.
Algorithm is compiled using KEIL and SDCC compilers
targeting into an 8051 microcontroller board. The results are
presented for key lengths of 128 bits and 256 bits. The measured
results shows higher memory requirement than the theoretical
values during the implementation. Also, SDCC yields lowest
possible RAM for AES algorithm. These observations further
confirmed by porting the compiled program into an embedded
board realized with P89V51RD2 controller.
Keywords
Memory Optimization, AES, Embedded System

1. Introduction

AES-Rijndael was developed by Joan Daemen and
Vincent Rijmen, Rijndael [4,5] and was selected from five
finalists namely; 1) Mars Developed by the IBM team
that developed Lucifer, 2) RC6 Developed by the RSA
Laboratories, 3) Rijndael Developed by Joan Daemon and
Vincent Rijmen, 4) Serpent Developed by Ross Anderson,
Eli Biham, and Lars Knudsen, 5) Two fish Developed by
Counterpane Systems. The selection was done based upon
the parameters such as security, performance, efficiency,
flexibility, and implementability by NIST. The selected
algorithm, viz., Advanced Encryption Standard (AES),
has replaced DES and published as FIPS 197 in
November 2001 [5]. It is a symmetric block cipher that
can process 128 bits message blocks and 128, 192, and
256 bits key lengths. Both hardware and software
implementation of AES-Rijndael are more attractive.
Hardware implementation is common in high speed
application since architecture provides easy implantation
structure. Software implementation [4] is relatively slow
and consumes processor time and hence for embedded
system application hardware implementation is popularly
done.
Since the standardization of the algorithm, AES is
implemented in various hardware platforms based upon

controllers / processors with 8-bit words to 64-bit words.
The AES implementation on the 8-bit controllers is easy
with low cost and used for low end applications, whereas
large bit processors are expensive and used for high end
applications such as MPLS routers, IPv6 routers, etc. This
paper explores the reduction of the cost in implementing
AES on 8-bit controllers. Two compiler tools are studied
for memory allocation required for AES in 8-bit
controllers. In order to demonstrate the memory
requirements, two different compilers are used to compile
the AES algorithm for implementation on controller. One
is KEIL, which is popular among the embedded tools and
another is Small Device C Compiler (SDCC). The results
in each case are obtained and compared. Further, an
embedded board with P89V51RD2 microcontroller is
used to demonstrate the AES algorithm implementation
with lowest possible memory. The results suggest that
SDCC is useful for realizing the AES algorithm on low
end controllers and processors.

1.1 Basic structure of AES-Rijndael:

A full description of the AES-Rijndael is detailed in the
Rijndael proposal [4] and FIPS 197 [5]. Three criteria are
taken into account in the design of AES- Rijndael;
1. Resistance against all known attacks.
2. Speed and code compactness on a wide range of

platforms.
3. Design simplicity.
In most ciphers, round transformation has the Feistel
Structure. But Round transformation of Rijndael does not
have the Feistel structure. Instead, the round
transformation is composed of three distinct inversable
uniform transformations, called layers.
The linear mixing layer: Guarantees high diffusion over
multiple rounds. It is achieved using two operations 1)
Plain text multiplication with MDS matrix and 2) cyclic
shift of bytes of a word.
The non-linear layer: Parallel application of S-boxes that
have optimum worst-case nonlinearity properties.
The key addition layer: A simple EXOR operation of the
Round Key to the intermediate State.
Rijndael is a very good performer in both hardware and
software across a wide range of computing environments
regardless of its use in feedback or non-feedback modes

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 106

[6]. Its key setup time is excellent, and its key agility is
good. Rijndael’s very low memory requirements make it
very well suited for restricted-space environments.
Rijndael’s operations are among the easiest to defend
against power and timing attacks.
Rijndael is designed with some flexibility in terms of
block and key sizes, and the algorithm can accommodate
alterations in the number of rounds. Finally, Rijndael’s
internal round structure has instruction-level parallelism
and hence implementing on hardware is very easy.
AES is a block cipher developed to address the threatened
key size of Data Encryption Standard (DES). It allows the
data lengths of 128 bits and three different key lengths,
128, 192, and 256 bits. The number of rounds in each case
is decided by the key length [4]. For a plain text of 128
bits number of rounds are as follows,

Key length Block length
in words Nb

Key length
in words Nk

Number of
rounds Nr

128-bit key 4 4 10
192-bit key 4 6 12
256-bit key 4 8 14

Where Nb is input block length is divided by 32, Nk is the
Key length divided by 32 and Nr is the number of rounds.
The input bit sequence is first transformed into byte
sequence. In next step a two-dimensional array of bytes
(called the State) is built. The State array consists of four
rows of bytes, each containing 4 bytes. All internal
operations (Cipher and Inverse Cipher) of the AES
algorithms are performed on the State array. The AES
algorithm basically consists of four byte oriented
transformation for encryption and inverse transformation
for decryption process namely,

a) Byte substitution using substitution box table. (S-box):
b) Shifting rows of the state array using different offsets.

(Row transformation)
c) Mixing the data within each column of the state array.

(Mixing columns)
d) Adding a round key to the state. (Add round key)

The figure 1 shows AES Rijndael Encryption and
Decryption structure, where the input to the encryption
and decryption algorithm is 128 bit block. The key
provided is expanded into an array of forty - four 32 bit
words, w[i]. Four distinct words forming 128 bits serve as
a key for each round in both encryption and decryption. In
encryption process first four words w(0 – 3) are used as
key in the first round but for decryption last four words
w(40 – 43) are used in the first round.

Fig 1 Structure of AES Encryption and Decryption algorithm

2. Related Work

Rijndael can also be implemented very efficiently on a
wide range of processors and in hardware. Rafael R.
Sevilla implemented on 80186 with assembly and
Geoffrey Keating’s Motorola 6805 implementation is also
available on Rijndael site [14].

3. Implementation

3.1 Memory calculation:

The algorithm is implemented in C language. All
variables with fixed value are assigned to program
memory, whereas, all variables with variable values are
assigned to RAM [8]. The memory required is calculated
theoretically by noting the number of fixed and variable
value variables in the algorithm.
ANSI C code is written for AES algorithm. This program
is analyzed for RAM requirements. In the algorithm, the
RAM is required for input key, input plain text, output

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 107

cipher value, state value, round keys, and temporary
variables. Table 1 and 2 shows the RAM requirement of C
code of AES algorithm. These tables show theoretical
memory requirement for 10 rounds and 14 rounds
respectively. As shown in tables, a uniform RAM is
allocated for round keys.

Table 1: Theoretical Memory for AES with 10 rounds (key length = 128
bit)

Encryption Decryption

Variables
Memory
values in

Bytes
Variables

Memory
values in

Bytes
Key 16 Key 16

Temp
variables 12 Temp

variables 16

In 16 In 16
Out 16 Out 16

State 16 State 16
Round Key 240 Round Key 240

Total 316 Total 320

Table 2: Theoretical Memory for AES with 14 rounds (key length = 256
bit)

Encryption Decryption

Variables
Memory
values in

Bytes
Variables

Memory
values in

Bytes
Key 16 Key 16

Temp
variables 16 Temp

variables 20

In 16 In 16
Out 16 Out 16

State 16 State 16
Round Key 240 Round Key 240

Total 320 Total 324

3.2 Compilers:

The AES algorithm was implemented using ANSI C
language. Two popular compilers KEIL and SDCC are
used for compiling the algorithm coded in C language.
The memory required by the algorithm in both cases is
noted down from the complier result. The hex file is
ported to target device 8051 microcontroller.
The KEIL compiler generally adds overheads for each
feature. By default, KEIL keeps lot of features enabled
and hence requires more RAM. The KEIL compiler
allows using medium or large memory model for
compiling AES algorithm, whereas SDCC allows using
small memory model. Therefore, it expected that memory
requirement of AES complied with SDCC will be less
than that of the code compiled with KEIL. Hence, SDCC
is recommended for achieving lowest possible memory
for AES implementation on embedded systems.
To optimize the memory requirement some of the
standard optimizations techniques incorporated in

embedded C compilers are available on both the
compliers [8]. For example, the SDCC uses the following
techniques:

1. Global sub expression elimination.
2. Loop optimizations (like loop invariant, strength

reduction of induction variables and loop reversing).
3. Constant folding and propagation, copy propagation.
4. Dead code elimination and jump tables for 'switch'

statements.
5. Microcontroller architecture based specific

optimizations, including a global register allocator.
6. Independent rule based peep hole optimization.

3.3 Results:
The AES algorithm is compiled by both compilers, viz.,
KEIL and SDCC. In each case, memory is measured in
debug mode of the compiler. It gives out the total RAM
memory of the compiled program.

Table 3 and Table 4 show required memory after
compilation on different compilers taken for test condition.
It is observed that memory requirement is entirely
different for both KEIL and SDCC compiler. Also, the
required memory value differs from theoretical value. The
additional memory used by compilers is the overhead for
generating the compiled code. It is also observed SDCC
compiler occupy less memory space for this application
compared to KEIL. However, KEIL tool is superior to
SDCC in terms of debugging and code development
speedup.

Table 3: Comparison of Memory for AES with 10 rounds (key length =
128 bit)

Method/Cross
Compiler used

Encryption Decryption
Memory values in

Bytes
Memory values in

Bytes
Theoretical

Values 316 320

KIEL Compiler 1378 1382

SDC Compiler 358 476

Table 4: Comparison of Memory for AES with 14 rounds (key length =
256 bit)

Method/Cross
Compiler used

Encryption Decryption
Memory values in

Bytes
Memory values in

Bytes
Theoretical

Values 320 324

KIEL Compiler 1382 1386

SDC Compiler 395 498

In order to demonstrate, an embedded board with
P89V51RD2 microcontroller and 1024 RAM is selected.
Since available RAM is 1024 bytes, the AES algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.9, September 2013 108

compiled by KEIL is not possible to port into this board.
This is because the program size is 5748 bytes when
compiled with KEIL. Whereas, the AES algorithm
compiled with SDCC is ported successfully into the board
since it requires a maximum RAM of 498 bytes. Table 5,
shows the results of embedded board. As shown in the
Table 5, the required code size is much smaller compared
to that of KEIL.

Table 5: Execution time and code size of Rijndael AES on ATMEL
89V51RD2 compiled with SDCC.

Key/Block
length Number of Cycle Code length

128/128 3168 728

256/128 5221 956

4. Conclusions

The objective of this paper is to study memory
optimization for implementing the advanced encryption
algorithm Rijndeal on embedded system. The theoretical
and actual memory requirements are analyzed using two
very popular compilers KEIL and SDCC and found that
the actual memory required is more than the theoretical
values in 10 rounds and 14 rounds for both 128 bit and
256 bit key length. This is mainly due to the availability
of less number of registers on the microcontroller which
forces compiler to use on chip RAM area. In this regard,
SDCC is superior for realizing AES algorithm with
minimum possible RAM. From Table 5, it is observed
that execution time increases with number of rounds in
AES.

References
[1] P.C. Van Oorschot A.J. Menezes and S. A. Vanstone,

“Hand book of applied cryptography”, CRC Press,
Waterloo, Ontario, Canada, 2001.

[2] Baker.W.“Introduction to analysis of Data Encryption
Standard”, Laguna Hills CA; Aegean park press, 1991

[3] J. Daemen and V. Rijmen, AES Proposal: Rijndael
(Version 2). NIST AES

[4] NIST, Advanced Encryption Standard (AES), (FIP PUB
197), November 26, 2001,

[5] Journal of research of the NIST, volume 106, November 3,
May-June 2001

[6] M. McLoone, J. McCanny, “High Performance Single-Chip
FPGA Rijndael Algorithm Implementations,” Proceedings
Cryptographic Hardware and Embedded Systems
Workshop, CHES, Paris, May 2001.

[7] T. Ichikawa, T. Kasuya, M. Matsui, “Hardware Evaluation
of the AES Finalists,” in AES3:the third AES Candidate
conference, New-York, April 13-14, 2000.

[8] B. Gladman, “The AES Algorithm (Rijndael) in C and C++,
performance of the optimized implementation”.
http://fp.gladman.plus.com/cryptographytech/rijndael/index
.htm.

[9] Helion Technologies. High Performance (Rijndael) cores,
2001. Amphion Semiconductor. CS5210-40: High
Performance AES Encryption Cores, 2001.
http://www.amphion.com/cs5210.html

[10] A.J. Elbert, E. Yip, B. Chetwynd, C. Paar: “An FPGA
Implementation and Performance Evaluation of the AES
Block Cipher Candidate Algorithm Finalists”, IEEE
Transactions on VLSI, August 2001, vol. 9, no. 4, pp. 545-
557.

[11] Dai, Wei. “ Speed Comparison of Popular Crypto
Algorithms. Performance of Crypto algorithms in
software”,
http://www.eskimo.com/~weidai/benchmarks.html (2001).

[12] “cryptography and Network security principles and
practices” by William Stallings, Eastern economy edition
publication 4th edition 2006

[13] Lomont, Chris. AES – Advanced Encryption Standard.
Software performance of the Rijndael,
http://www.math.purdue.edu/~clomont/software/AES/AES.
htm (2001).

[14] Rijndael home site
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

A.R.Reddy is professor and Head, the
Department of Electronics and Communication
Engineering, Madanapalle, Andhra Pradesh,
India. He received M.Tech. and Ph.D. from IIT,
Kharagpur, India in 1981 and 1985,
respectively. He has conducted research work
for 22 years at ITI Ltd, Bangalore, and

developed communication products for Indian Army. He has
published more than 50 research papers. His current research
interests are cryptography and Embedded System and guided 2
Ph.D. students in the same area.

M. Ravindra Babu A received B.Tech. in
Electronics and Communication Engineering
from JNTUA Andhra Pradesh. He is pursuing
M.Tech (digital Electronics and
Communication System) at department of
Electronics and Communication Engineering,
Madanapalle Institute of Technology and

Science, Madanapalle, Andhra Pradesh.

http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm
http://fp.gladman.plus.com/cryptography_technology/rijndael/index.htm
http://www.amphion.com/cs5210.html
http://www.eskimo.com/~weidai/benchmarks.html%20(2001
http://www.math.purdue.edu/~clomont/software/AES/AES.htm%20(2001
http://www.math.purdue.edu/~clomont/software/AES/AES.htm%20(2001

