
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

41

Manuscript received October 5, 2013
Manuscript revised October 20, 2013

Verifying Trusted Code Execution using ARM Trustzone

R.Sebas Sujeen Sridhar Periasami

College of Engineering, Anna University, Chennai – 600025, India

Summary
In this paper, we present a comprehensive analysis of a software
based attestation system, Pioneer [1] which was designed for the
x86 processor architecture and show how it would fail for RISC
processor architecture like ARM. We then present an overview
of the Security Extensions implemented in Cortex-A9 processors
and higher, referred to as Trustzone[2] and how it can be
leveraged to guarantee trusted code execution even on untrusted
systems. We also discuss TOCTOU (Time of Check, Time of
Use) issues with remote attestation and how it can be resolved
leveraging Trustzone. We conclude with a discussion of how this
can be used to implement a Kernel Integrity monitor that can be
used to detect sophisticated malware like rootkits.
Key words:
remote attestation, Trustzone, TOCTOU attack, NS bit, rootkit,
Kernel Integrity Monitor

1. Introduction

Even with a plethora of security products available, both
commercial and open source, very few behave
appropriately when the malware is running with the same
privileges as the security software. Some notable products
like MS-Patchguard and Mandiant's MIR has features for
performing a self-checksum over the security product
itself to verify that the product hasn't been tampered by the
malware. But in reality, it just adds another layer of
indirection, the malware can target the self-checksum
routine of the security product and the security product
would never know that it has been tampered with.
Patchguard v2 had been subverted by Skywing in [3] who
subjected it to a rigorous analysis by reverse engineering
the product. Pioneer used software based attestation by a
trusted verifier to achieve trusted code execution on x86
processor architecture. Pioneer is based on a challenge
response protocol between an external trusted entity called
the dispatcher and an untrusted computing platform.
As depicted in fig(1), the dispatcher sends a nonce
uniformly chosen at random to the untrusted platform.
Pioneer uses a nonce to prevent pre-computation attacks.
The untrusted platform uses the checksum code and the
nonce it received to compute the checksum of the
verification function. The checksum code also sets up the
execution environment in which the send function and the
hash function can execute untampered regardless of the
presence of malware in the untrusted platform. The send

function sends the computed checksum to the dispatcher.
It is assumed by Pioneer that the dispatcher knows the
exact hardware configuration of the untrusted platform
and therefore can compute the time required for the
checksum to be calculated. If the time exceeds a particular
threshold value, then the untrusted platform is
compromised and further actions that are implementation
defined are taken. Pioneer makes sure that the checksum
code runs with the highest privileges, the interrupts are
turned off to avoid pre-empting the checksum code, all the
NMI interrupt handlers are replaced with an iret
instruction when the checksum code is executed and the
empty slot issues in the super scalar architecture of the
processor are eliminated.

Fig 1. Pioneer protocol

The checksum itself is strongly ordered to prevent
instruction level parallelism. A strongly ordered function
is a function whose output differs with high probability if
the operations are evaluated in a different order. For
example, if a1, a2, a3, a4 are inputs then a1 ⊕ a2 + a3 ⊕
a4 is strongly ordered. For example the correct order of

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013 42

evaluating the function is (((a1 ⊕ a2) + a3)⊕ a4), If the
adversary tries to parallelize the computation by
computing (a1 ⊕ a2), (a3 ⊕ a4) in parallel and adding the
intermediate results to get the final result, the result will
be different with high probability for both the cases.
We give a brief overview of memory copy attacks and
how it can be prevented by Pioneer in the x86 architecture
and then proceed to show how it can be subverted in a
RISC processor architecture like ARM.

2. Attacker model

The adversary is assumed to have complete privileges
over the untrusted platform and can tamper with all the
software including the operating system itself.

3. Pioneer Architecture

3.1 Data Pointer and Program Counter

Pioneer defines a Data Pointer (DP) and an Program
Counter (PC). The Data pointer DP is the pointer to the
memory from where the bytes, whose checksum needs to
be computed, are fetched. And PC points to address of the
next instruction that needs to be executed. In Pioneer,
because we perform self-checksum, both the DP and the
PC point to the same memory location initially. Pioneer
assumes that the external dispatcher knows the correct
value of PC and DP.

3.2. Structure of the checksum code

Fig 2. Structure of the checksum code

The checksum code is constructed as a series of 4 blocks,
each 128 bytes in length as depicted in fig[2]. The blocks
are aligned in memory so that the first instruction in each
block is at an address that is a multiple of 128. This
simplifies the jump target address generation akin to one
depicted below.

Jump target address = base address of block 0 + (((Block-
size) * PRN)& 0x3)

3.3. External dispatcher

The external dispatcher is assumed to be trusted and has a
copy of the verification function. It also knows the correct
DP and PC value. Since the dispatcher generates the nonce
based on a PRNG (Pseudo Random Number Generator),it
can compute the correct checksum as it already has the
verification function code and also knows the correct DP
and PC value. The checksum sent by the untrusted
platform is verified with this generated checksum and also
the time taken for the checksum to arrive is noted based
on which the conclusion as to, whether the verification
function in the untrusted platform is tampered or not, is
derived.

4. Memory copy attacks

Memory copy attacks occur as a result of the adversary
modifying either the DP or PC or both. As depicted in
fig(3)

Figure 3. Memory copy attacks

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

43

5. How Pioneer protects against memory copy
attack in x86 architecture

Figure 4. Pseudo random memory traversal

Scenario 1: DP points to incorrect memory location where
untampered code for the verification function is stored. PC
points to the correct memory location but the checksum
code is tampered with.
An adversary can take advantage of the segmentation of
the x86 architecture to have the processor add a
displacement automatically to the data pointer DP for each
iteration of the checksum loop[*].
 To illustrate with an example, let us assume that the
correct value of the data pointer DP is 0x2000 and the
modified DP is at 0x1000. So the adversary needs to add
0x1000 to the DP for each iteration of the checksum loop.
But that would normally take an additional add instruction
which would cause an execution overhead unless we take
advantage of the segmentation to automatically add an
offset to the DP as in:

mov DP,gs:0x1000; gs = 0x1000 initially

The introduction of gs register in the instruction doesn’t
increase the execution time, however, it increases the
instruction length by a byte. Therefore with just
the 1overhead of one instruction that would initially set the
value of the segment register gs to 0x1000 , we would get
the correct checksum. This overhead is too low to cause a
significant delay in the timings. Pioneer constructs

[*]The adversary can also use a processor mode which adds an
immediate or register value to the data pointer. All general
purpose registers are used by the checksum code, so the
adversary can only add an immediate value to the DP.

defenses against these type of memory copy attacks by
taking advantage of the increase in instruction length
caused by the introduction of the gs register and by using
pseudo random memory traversal as depicted in fig[4].
Pioneer places an instruction with a memory reference
such add mem, reg as the first instruction in each of the
four checksum blocks. In each of the jump target address
computation, we either jump to the starting address of the
block or to the address that is 3 bytes away from the
starting address of the block. In an unmodified code this
works perfectly fine but in a modified checksum code,
because of the addition of an extra byte, the second
instruction in the next block cannot begin before the 4th
byte of the block. Thus 50% of the jumps would land in
the middle of the first instruction resulting in the processor
to generate an illegal opcode exception.
The adversary can overcome this by aligning the
checksum code blocks on 256 byte boundaries and
separating the first and second instruction of a block by 8
bytes. The adversary has to left shift the jump target
address generated by one to jump to the next block and
then immediately right shift the address by one to preserve
the correct jump target address because the jump target
address is also used in the checksum computation. Thus
this adds a latency of two instructions for each iteration of
the checksum loop. The timing delay is noticeable once
the checksum loop is computed. The timing delay can be
made more significant by repeating the checksum loop for
say, a million times as pointed out by [4].
In the second memory attack, the adversary keeps the
unmodified verification function at the correct memory
location but computes the checksum using a modified
checksum code that runs at a different memory location.
In short, DP and its contents are untampered whereas PC
and its contents are tampered. Since Pioneer includes the
jump target address in its checksum computation, the
adversary needs to generate the correct jump target
address which could be done in a similar way as
mentioned above, but with the added latency of a few
instructions.
In the third memory attack, both PC and DP are tampered
with and therefore would cause even more latency to
generate the right checksum.

6. ARM Overview

ARM processor belongs to a RISC architecture. Using a
RISC-based approach to computer design, ARM
processors require significantly fewer transistors than
processors that would typically be found in a traditional
computer. The benefits of this approach are reduced costs,
heat and power usage compared to more complex chip
designs, traits which are desirable for light, portable,

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013 44

battery-powered devices such as smartphones and tablet
computers [5].

Since ARM is a RISC architecture, all instruction
are of same length. In ARM execution mode, each
instruction is of size 4 bytes.

6.1. ARM Inline Barrel shifter

The ARM ALU has a 32 bit barrel shifter that is capable
of shifts and rotates.

This supports:-
(i) Scaled addressing
(ii) Multiplication by an immediate value
(iii) Constructing immediate values

 MOV r0, r0, LSL #1 ; multiply r0 by 2
 ADD r1, r1, r1, LSL #4 ; multiply r4 by 17 (r4 = r4 + 16
* r4)
 RSB r2, r2, r2, LSL #5 ; multiply r5 by 31 (r5 = 32 * r5
- r5)

7. Subverting Pioneer in ARM

Consider memory copy attack scenario one where the DP
points to incorrect memory location containing the
untampered verification function whereas the PC points to
the correct memory location containing the modified
checksum code.

To illustrate this, let the correct value of DP be
0x2000 and the modified version of DP is 0x1000. So for
each iteration of the checksum loop, the modified DP
value should be added by 0x1000 to get the correct DP
value and hence derive the correct checksum to be sent to
the external dispatcher. This can be done without any
extra memory requirements or execution overhead in the
checksum loop by using the ARM Inline barrel shifter as
follows

MOV r0, r1, LSL #1 ; r0 is the DP and r1 is the
incorrect memory location 0x1000 which is left shifted by
1 using the inline barrel register to get the correct value of
DP with no compromise in space and time.

The same technique can also be used for
adjusting the jump target address to get the correct
checksum in the memory copy attack scenario two and
scenario three.

This increases the code length by the size of the
immediate.

8. ARM Trustzone overview

(i) The security of the system in Trustzone is achieved
by partitioning all of SoC's hardware and software
resources so that they exist in either of the two worlds
- the Secure world for the security subsystem and the
Normal/Non Secure world for everything else.

(ii) Trustzone splits a physical processor into two virtual
processors one running in Secure world and the other
running in Non Secure world.

(iii) AMBA3 AXI system bus introduced a new control
signal (NS bit) for each of the read and write channel
of the main system bus as depicted in Table 1.

 ARPROT AWPROT

0 Secure Secure
1 Non Secure Non Secure

Table 1. AMBA3 AXI control signals for Trustzone

Non Secure world bus masters set NS bit to high
thereby prohibiting access to secure slaves.

(iv) Each physical processor core has 2 virtual cores one

running in the Secure world and the other in the Non
Secure world and a mechanism called Monitor mode
to switch between these two worlds. The value of the
NS bit is derived from whether the secure world or
the Non Secure world is making a memory access.
Context switch between worlds occur through SMC
(secure monitor call) or through exceptions like aborts,
FIQ, IRQ

 In a ARM processor implementing Security Extensions
(Trustzone), there are 3 Exception Vector Tables.
(i) Non Secure World Exception Vector Table (Non

Secure World VBAR holds the exception table base
address)[**]

(ii) Secure World Exception Vector Table (Secure World
VBAR holds the exception table base address) [**]

(iii) Monitor mode Exception Vector Table (MVBAR
holds the exception table base address)2

8.1 Avoiding denial of service attacks by the Non
secure world

The Non Secure world can mask the IRQ, FIQ,
Aborts by masking the CPSR.{A,I,F} bits. The secure

[**] - If SCTLR.V == 1, then the exception vector table is
always at 0xffff0000 and cannot be remapped. Only when the
SCTLR.V == 0, the exception vector table can be remapped.
For monitor mode, SCTLR.V is ignored and MVBAR always
holds the exception table base address.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

45

world can prevent the modification of the CPSR {A,F}
bits by setting the Secure Configuration Register
SCR.{FW, EA} bits to 1.
 A->Abort
 I->IRQ
 F->FIQ

The Non Secure world can still mask the IRQ bit of the
CPSR. A common mechanism recommended is to make
FIQ as the Secure world interrupt and IRQ as the
Non Secure world interrupt.

8.2 Determine which world the processor is
executing

SCR.NS bit determines in which mode the processor is
executing but in monitor mode the processor is always
executing in Secure World regardless of the value of the
NS bit.

8.3 Securing the MMU

Two virtual MMUs are provided for each of the two
virtual processors, so the Non Secure world and the
Secure world have their own set of virtual address to
physical address translations. In the secure world MMU,
the secure world translations has NS bit set to 0. It is
possible for the Secure World to access Non Secure
World's memory by creating a mapping for the Non
Secure world's physical address in the Secure World
MMU but with the NS bit set to 1 instead of 0 to denote
that it is a Non Secure Memory.

TLB (Translation Lookaside Buffer) is tagged
with NSTID bit to avoid redundant invalidates. Cache is
also tagged with NS bit to avoid redundant data in the
cache.

9. Leveraging Trustzone to achieve trusted
code execution on untrusted systems

Since we know the physical address of the Verification
function (DP and PC) in the untrusted platform, we can
create a mapping for the Non Secure world physical
address in the Secure world page table by creating either a
section entry or a page entry in it and also setting the NS
bit to 0x1.
There is no need for a nonce here since the checksum is
computed by the Trustzone which acts as an external
verifier in this case. For efficiency, the Integrity Monitor
running in the Trustzone can have a copy of the
Verification function, pre-compute the checksum and
validate the pre-computed checksum with the checksum

computed from the Non Secure world's memory. If the
checksum matches with the pre-computed checksum, then
the Verification function is not tampered with resulting in
trusted code execution in an untrusted platform , if not ,
the verification function has been tampered with and
implementation defined actions are taken.

10. Detecting Kernel Rootkits

Most of the rootkits like adore [5] and earthworm [6]
target the system call table or the Exception Vector Table.
These rootkits can be detected by having a hash of the
system call table and the Exception Vector table of the
Non Secure world and then mapping the physical address
of the system call table and the exception vector table of
the Non Secure world to the Secure World MMU. We can
then compare the hashes of these data structures with the
pre-computed hash stored in the Secure World to check
for any inconsistencies.

11. TOCTOU attacks

TOCTOU (Time of Check, Time of Use) can subvert
remote attestation as pointed out by [7], [8], [9]. If the
adversary knows in advance when the check is going to
happen, then the adversary can roll back any malicious
changes he made to the Verification Function so that the
hash computed in the Secure world would match with the
pre-computed hash and once the check is over,
overwrite the Verification function so that it behaves
maliciously once again. This is a classic example of a
TOCTOU attack. This can be prevented by checking the
validity of the Verification function in a pseudo random
manner so that it cannot be predicted by the adversary.
Also, the Secure world has a separate Secure timer which
cannot be tampered by the adversary which makes the
defense against the above mentioned TOCTOU attack
feasible.

12. Conclusion

In this paper we have provided a comprehensive analysis
of Pioneer and how it can be subverted in a RISC
processor architecture like ARM. We have also provided
an overview of Trustzone and how it can be leveraged to
provide attestation of software running in the Non Secure
world. We have also provided key insights on how the
above mentioned can be combined to develop a Kernel
Integrity Monitor to detect advanced malware like rootkits.
TOCTOU attacks were mentioned briefly and we also
discuss defenses against them leveraging the secure timer
feature of ARM Trustzone.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013 46

References
[1] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig,

Leendert van Doorn and Pradeep khosla. “Pioneer:
Verifying Code Integrity and Enforcing Untampered Code
Execution on Legacy Systems." 20thACM Symposium on
Operating Systems Principles (SOSP 2005).

[2] ARM Security Technology “Building a Secure System
using TrustZone® Technology”

[3] Skywing, “Subverting patchguard version2”. Uninformed
Magazine

[4] Xeno Kovah, Corey Kallenberg, Chris Weathers, Amy
Heroz, Mathew Albin, John Butterworth. “New Results for
Timing-based Attestation”. The MITRE Corporation

[5] Packet storm security, “adore-ng
rootkit”.http://packetstormsecurity.com/files/32843/adore-
ng-0.41.tgz.html

[6] Dong-hoon you, “Android platform based linux kernel
rootkit.” Phrack Magazine.

[7] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente.
On the difficulty of software-based attestation of embedded
devices. In Proceedings of the ACM conference on
Computer and Communications Security, CCS, pages 400–
409, 2009

[8] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In Proceedings of the
conference on USENIX Security Symposium, SSYM, pages
7–7, 2004.

[9] G. Wurster, P. C. van Oorschot, and A.Somayaji. A generic
attack on checksumming based software tamper resistance.
In Proceedings of the IEEE Symposium on Security and
Privacy, pages 127–138, 2005.

R.Sebas Sujeen received his B.E degree
from the College of Engineering, Anna
University Chennai. Currently employed
in a startup specializing in ARM
Trustzone and Hypervisor development.
His research interest includes operating
systems, system and information
security.

Sridhar Periasami received his B.E
degree from the College of Engineering,
Anna university, Chennai.Currently
employed in a startup specializing in
ARM Trustzone and Hypervisor
development. His research interest
includes operating systems, web
application and system security.

http://www.uninformed.org/?v=6&a=1&t=sumry

