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Summary 
In this paper, we present a comprehensive analysis of a software 
based attestation system, Pioneer [1] which was designed for the 
x86 processor architecture and show how it would fail for RISC 
processor architecture like ARM. We then present an overview 
of the Security Extensions implemented in Cortex-A9 processors 
and higher, referred to as Trustzone[2] and how it can be 
leveraged to guarantee trusted code execution even on untrusted 
systems. We also discuss TOCTOU (Time of Check, Time of 
Use) issues with remote attestation and how it can be resolved 
leveraging Trustzone. We conclude with a discussion of how this 
can be used to implement a Kernel Integrity monitor that can be 
used to detect sophisticated malware like rootkits. 
Key words: 
remote attestation, Trustzone, TOCTOU attack, NS bit, rootkit, 
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1. Introduction 

Even with a plethora of security products available, both 
commercial and open source, very few behave 
appropriately when the malware is running with the same 
privileges as the security software. Some notable products 
like MS-Patchguard and Mandiant's MIR has features for 
performing a self-checksum over the security product 
itself to verify that the product hasn't been tampered by the 
malware. But in reality, it just adds another layer of 
indirection, the malware can target the self-checksum 
routine of the security product and the security product 
would never know that it has been tampered with. 
Patchguard v2 had been subverted by Skywing in [3] who 
subjected it to a rigorous analysis by reverse engineering 
the product. Pioneer used software based attestation by a 
trusted verifier to achieve trusted code execution on x86 
processor architecture. Pioneer is based on a challenge 
response protocol between an external trusted entity called 
the dispatcher and an untrusted computing platform.  
As depicted in fig(1), the dispatcher sends a nonce 
uniformly chosen at random to the untrusted platform. 
Pioneer uses a nonce to prevent pre-computation attacks. 
The untrusted platform uses the checksum code and the 
nonce it received to compute the checksum of the 
verification function. The checksum code also sets up the 
execution environment in which the send function and the 
hash function can execute untampered regardless of the 
presence of malware in the untrusted platform. The send 

function sends the computed checksum to the dispatcher. 
It is assumed by Pioneer that the dispatcher knows the 
exact hardware configuration of the untrusted platform 
and therefore can compute the time required for the 
checksum to be calculated. If the time exceeds a particular 
threshold value, then the untrusted platform is 
compromised and further actions that are implementation 
defined are taken. Pioneer makes sure that the checksum 
code runs with the highest privileges, the interrupts are 
turned off to avoid pre-empting the checksum code, all the 
NMI interrupt handlers are replaced with an iret 
instruction when the checksum code is executed and the 
empty slot issues in the super scalar architecture of the 
processor are eliminated. 
 

 

 
Fig 1. Pioneer protocol 

 
The checksum itself is strongly ordered to prevent 
instruction level parallelism. A strongly ordered function 
is a function whose output differs with high probability if 
the operations are evaluated in a different order. For 
example, if a1, a2, a3, a4 are inputs then a1 ⊕ a2 + a3 ⊕ 
a4 is strongly ordered. For example the correct order of 
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evaluating the function is (((a1 ⊕ a2) + a3)⊕ a4), If the 
adversary tries to parallelize the computation by 
computing (a1 ⊕ a2), (a3 ⊕ a4) in parallel and adding the 
intermediate results to get the final result, the result will 
be different with high probability for both the cases. 
We give a brief overview of memory copy attacks and 
how it can be prevented by Pioneer in the x86 architecture 
and then proceed to show how it can be subverted in a 
RISC processor architecture like ARM. 

2. Attacker model 

The adversary is assumed to have complete privileges 
over the untrusted platform and can tamper with all the 
software including the operating system itself. 

3. Pioneer Architecture  

3.1 Data Pointer and Program Counter 

Pioneer defines a Data Pointer (DP) and an Program 
Counter (PC). The Data pointer DP is the pointer to the 
memory from where the bytes, whose checksum needs to 
be computed, are fetched. And PC points to address of the 
next instruction that needs to be executed. In Pioneer, 
because we perform self-checksum, both the DP and the 
PC point to the same memory location initially. Pioneer 
assumes that the external dispatcher knows the correct 
value of PC and DP. 

3.2. Structure of the checksum code 

 
Fig 2. Structure of the checksum code 

 
The checksum code is constructed as a series of 4 blocks, 
each 128 bytes in length as depicted in fig[2]. The blocks 
are aligned in memory so that the first instruction in each 
block is at an address that is a multiple of 128. This 
simplifies the jump target address generation akin to one 
depicted below. 
 
Jump target address = base address of block 0 + (((Block-
size) * PRN)& 0x3) 

3.3. External dispatcher 

The external dispatcher is assumed to be trusted and has a 
copy of the verification function. It also knows the correct 
DP and PC value. Since the dispatcher generates the nonce 
based on a PRNG (Pseudo Random Number Generator),it 
can compute the correct checksum as it already has the 
verification function code and also knows the correct DP 
and PC value. The checksum sent by the untrusted 
platform is verified with this generated checksum and also 
the time taken for the checksum to arrive is noted based 
on which the conclusion as to, whether the verification 
function in the untrusted platform is tampered or not, is 
derived. 

4. Memory copy attacks 

Memory copy attacks occur as a result of the adversary 
modifying either the DP or PC or both. As depicted in 
fig(3) 
 

 
 

 
Figure 3. Memory copy attacks 
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5. How Pioneer protects against memory copy 
attack in x86 architecture 

 
Figure 4. Pseudo random memory traversal 

 
Scenario 1: DP points to incorrect memory location where 
untampered code for the verification function is stored. PC 
points to the correct memory location but the checksum 
code is tampered with. 
An adversary can take advantage of the segmentation of 
the x86 architecture to have the processor add a 
displacement automatically to the data pointer DP for each 
iteration of the checksum loop[*]. 
 To illustrate with an example, let us assume that the 
correct value of the data pointer DP is 0x2000 and the 
modified DP is at 0x1000. So the adversary needs to add 
0x1000 to the DP for each iteration of the checksum loop. 
But that would normally take an additional add instruction 
which would cause an execution overhead unless we take 
advantage of the segmentation to automatically add an 
offset to the DP as in: 

 
mov DP,gs:0x1000; gs = 0x1000 initially 

 
The introduction of gs register in the instruction doesn’t 
increase the execution time, however, it  increases the 
instruction length by a byte. Therefore with just 
the 1overhead of one instruction that would initially set the 
value of the segment register gs to 0x1000 , we would get 
the correct checksum. This overhead is too low to cause a 
significant delay in the timings. Pioneer constructs 
                                                
[*]The adversary can also use a processor mode which adds an 
immediate or register value to the data pointer. All general 
purpose registers are used by the checksum code, so the 
adversary can only add an immediate value to the DP. 

defenses against these type of memory copy attacks by 
taking advantage of the increase in instruction length 
caused by the introduction of the gs register and by using 
pseudo random memory traversal as depicted in fig[4]. 
Pioneer places an instruction with a memory reference 
such add mem, reg as the first instruction in each of the 
four checksum blocks. In each of the jump target address 
computation, we either jump to the starting address of the 
block or to the address that is 3 bytes away from the 
starting address of the block. In an unmodified code this 
works perfectly fine but in a modified checksum code, 
because of the addition of an extra byte, the second 
instruction in the next block cannot begin before the 4th 
byte of the block. Thus 50% of the jumps would land in 
the middle of the first instruction resulting in the processor 
to generate an illegal opcode exception. 
The adversary can overcome this by aligning the 
checksum code blocks on 256 byte boundaries and 
separating the first and second instruction of a block by 8 
bytes. The adversary has to left shift the jump target 
address generated by one to jump to the next block and 
then immediately right shift the address by one to preserve 
the correct jump target address because the jump target 
address is also used in the checksum computation. Thus 
this adds a latency of two instructions for each iteration of 
the checksum loop. The timing delay is noticeable once 
the checksum loop is computed. The timing delay can be 
made more significant by repeating the checksum loop for 
say, a million times as pointed out by [4]. 
In the second memory attack, the adversary keeps the 
unmodified verification function at the correct memory 
location but computes the checksum using a modified 
checksum code that runs at a different memory location. 
In short, DP and its contents are untampered whereas PC 
and its contents are tampered. Since Pioneer includes the 
jump target address in its checksum computation, the 
adversary needs to generate the correct jump target 
address which could be done in a similar way as 
mentioned above, but with the added latency of a few 
instructions. 
In the third memory attack, both PC and DP are tampered 
with and therefore would cause even more latency to 
generate the right checksum. 

6. ARM Overview 

ARM processor belongs to a RISC architecture. Using a 
RISC-based approach to computer design, ARM 
processors require significantly fewer transistors than 
processors that would typically be found in a traditional 
computer. The benefits of this approach are reduced costs, 
heat and power usage compared to more complex chip 
designs, traits which are desirable for light, portable, 
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battery-powered devices such as smartphones and tablet 
computers [5]. 

Since ARM is a RISC architecture, all instruction 
are of same length. In ARM execution mode, each 
instruction is of size 4 bytes. 

6.1. ARM Inline Barrel shifter 

The ARM ALU has a 32 bit barrel shifter that is capable 
of shifts and rotates. 
 
This supports:- 
(i) Scaled addressing 
(ii) Multiplication by an immediate value 
(iii) Constructing immediate values 
 
 MOV r0, r0, LSL #1 ; multiply r0 by 2 
 ADD r1, r1, r1, LSL #4 ; multiply r4 by 17 (r4 = r4 + 16 
* r4) 
 RSB r2, r2, r2, LSL #5 ; multiply r5 by 31 (r5 = 32 * r5 
- r5) 

7. Subverting Pioneer in ARM 

Consider memory copy attack scenario one where the DP 
points to incorrect memory location containing the 
untampered verification function whereas the PC points to 
the correct memory location containing the modified 
checksum code. 

To illustrate this, let the correct value of DP be 
0x2000 and the modified version of DP is 0x1000. So for 
each iteration of the checksum loop, the modified DP 
value should be added by 0x1000 to get the correct DP 
value and hence derive the correct checksum to be sent to 
the external dispatcher. This can be done without any 
extra memory requirements or execution overhead in the 
checksum loop by using the ARM Inline barrel shifter as 
follows 

MOV r0, r1, LSL #1 ; r0 is the DP and r1 is the 
incorrect memory location 0x1000 which is left shifted by 
1 using the inline barrel register to get the correct value of 
DP with no compromise in space and time. 

The same technique can also be used for 
adjusting the jump target address to get the correct 
checksum in the memory copy attack scenario two and 
scenario three. 

This increases the code length by the size of the 
immediate. 

8. ARM Trustzone overview 

(i) The security of the system in Trustzone is achieved 
by partitioning all of SoC's hardware and software 
resources so that they exist in either of the two worlds 
- the Secure world for the security subsystem and the 
Normal/Non Secure world for everything else. 

(ii) Trustzone splits a physical processor into two virtual 
processors one running in Secure world and the other  
running in Non Secure world. 

(iii) AMBA3 AXI system bus introduced a new control 
signal (NS bit) for each of the read and write channel 
of the main system bus as depicted in Table 1. 

 
 ARPROT AWPROT 

0 Secure Secure 
1 Non Secure Non Secure 

Table 1. AMBA3 AXI control signals for Trustzone 

Non Secure world bus masters set NS bit to high 
thereby prohibiting access to secure slaves. 

 
(iv) Each physical processor core has 2 virtual cores one 

running in the Secure world and the other in the Non 
Secure world and a mechanism called Monitor mode 
to switch between these two worlds. The value of the 
NS bit is derived from whether the secure world or 
the Non Secure world is making a memory access. 
Context switch between worlds occur through SMC 
(secure monitor call) or through exceptions like aborts, 
FIQ, IRQ  

 
 In a ARM processor implementing Security Extensions 
(Trustzone), there are 3 Exception Vector Tables. 
(i) Non Secure World Exception Vector Table (Non 

Secure World VBAR holds the exception table base 
address)[ **] 

(ii) Secure World Exception Vector Table (Secure World 
VBAR holds the exception table base address) [**] 

(iii) Monitor mode Exception Vector Table ( MVBAR 
holds the exception  table base address)2 

8.1 Avoiding denial of service attacks by the Non 
secure world 

The Non Secure world can mask the IRQ, FIQ, 
Aborts by masking the CPSR.{A,I,F} bits. The secure 
                                                
[**] - If SCTLR.V == 1, then the exception vector table is 
always at 0xffff0000 and cannot be remapped. Only when the 
SCTLR.V == 0, the exception vector table can be remapped. 
For monitor mode, SCTLR.V is ignored and MVBAR always 
holds the exception table base address. 
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world can prevent the modification of the CPSR {A,F} 
bits by setting the Secure Configuration Register 
SCR.{FW, EA} bits to 1.  
  A->Abort 
  I->IRQ 
  F->FIQ 
 
The Non Secure world can still mask the IRQ bit of the 
CPSR. A common mechanism recommended is to make 
FIQ as the Secure world interrupt and IRQ as the 
Non Secure world interrupt. 

8.2 Determine which world the processor is 
executing 

SCR.NS bit determines in which mode the processor is 
executing but in monitor mode the processor is always 
executing in Secure World regardless of the value of the 
NS bit. 

8.3 Securing the MMU 

Two virtual MMUs are provided for each of the two 
virtual processors, so the Non Secure world and the 
Secure world have their own set of virtual address to 
physical address translations. In the secure world MMU, 
the secure world translations has NS bit set to 0. It is 
possible for the Secure World to access Non Secure 
World's memory by creating a mapping for the Non 
Secure world's physical address in the Secure World 
MMU but with the NS bit set to 1 instead of 0 to denote 
that it is a Non Secure Memory. 

TLB (Translation Lookaside Buffer) is tagged 
with NSTID bit to avoid redundant invalidates. Cache is 
also tagged with NS bit to avoid redundant data in the 
cache. 

9. Leveraging Trustzone to achieve trusted 
code execution on untrusted systems 

Since we know the physical address of the Verification 
function (DP and PC) in the untrusted platform, we can 
create a mapping for the Non Secure world physical 
address in the Secure world page table by creating either a 
section entry or a page entry in it and also setting the NS 
bit to 0x1. 
There is no need for a nonce here since the checksum is 
computed by the Trustzone which acts as an external 
verifier in this case. For efficiency, the Integrity Monitor 
running in the Trustzone can have a copy of the 
Verification function, pre-compute the checksum and 
validate the pre-computed checksum with the checksum 

computed from the Non Secure world's memory. If the 
checksum matches with the pre-computed checksum, then 
the Verification function is not tampered with resulting in 
trusted code execution in an untrusted platform , if not , 
the verification function has been tampered with and 
implementation defined actions are taken. 

10. Detecting Kernel Rootkits 

Most of the rootkits like adore [5] and earthworm [6] 
target the system call table or the Exception Vector Table. 
These rootkits can be detected by having a hash of the 
system call table and the Exception Vector table of the 
Non Secure world and then mapping the physical address 
of the system call table and the exception vector table of 
the Non Secure world to the Secure World MMU. We can 
then compare the hashes of these data structures with the 
pre-computed hash stored in the Secure World to check 
for any inconsistencies. 

11. TOCTOU attacks 

TOCTOU (Time of Check, Time of Use) can subvert 
remote attestation as pointed out by [7], [8], [9]. If the 
adversary knows in advance when the check is going to 
happen, then the adversary can roll back any malicious 
changes he made to the Verification Function so that the 
hash computed in the Secure world would match with the 
pre-computed hash and once the check is over, 
overwrite the Verification function so that it behaves 
maliciously once again. This is a classic example of a 
TOCTOU attack. This can be prevented by checking the 
validity of the Verification function in a pseudo random 
manner so that it cannot be predicted by the adversary. 
Also, the Secure world has a separate Secure timer which 
cannot be tampered by the adversary which makes the 
defense against the above mentioned TOCTOU attack 
feasible. 

12. Conclusion 

In this paper we have provided a comprehensive analysis 
of Pioneer and how it can be subverted in a RISC 
processor architecture like ARM. We have also provided 
an overview of Trustzone and how it can be leveraged to 
provide attestation of software running in the Non Secure 
world. We have also provided key insights on how the 
above mentioned can be combined to develop a Kernel 
Integrity Monitor to detect advanced malware like rootkits. 
TOCTOU attacks were mentioned briefly and we also 
discuss defenses against them leveraging the secure timer 
feature of ARM Trustzone. 
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