
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

47

Manuscript received October 5, 2013
Manuscript revised October 20, 2013

Performance Improvement of Multi-Core Architecture Using
Whetstone Application in Linux

P. Bala Subramanyam Raju P.Govindarajulu

Research Scholar, Professor, Department of Computer Science, SVU College of CM&CS S.VUniversity, Tirupathi

Abstract
The most important characteristic of computers is the speed of
the central processing unit. Application [1] Performance on
modern processors has become increasingly dictated by the use
of on-chip structures speed and software’s like Operating system
services, Compilers etc. The need of more performance was
increasing day by day. The [21] computer system needs to
satisfy an end-user application in terms of performance. It is
useful as an initial filter to compare systems using 'standard'
benchmark programs. This paper uses whetstone synthetic
benchmark application to measure the speed and performance at
which a computer performs floating point operations on
multicore processor and improves the multi-core processor
performance by modifying the existing algorithm to run on
multicores by dividing the program as parent and child process
to obtain the maximum performance on Linux operating systems.
Keywords:
Chip Multiprocessors (CMPs), MWIPS stands for Million
Whetstones Instructions per Second. MIPS, Million Instructions
per Second, MOPS Millions of Operations per Second.

1. Introduction

Application [2] demands have outpaced the conventional
processor's ability to deliver. Since from processor
invention it followed “Moore’s Law” [3] in the last few
years, however, the situation has changed. High
performance computing (HPC) applications demanding
more than processor alone can deliver, creating
technology gap between demand and performance.
Many traditional applications have increased their demand
on processor by implementing more and more complex
algorithms. A number of new applications have also arisen
and become widespread as their performance thresholds
were met. E.g. Medical imaging, including ultrasound,
computer aided tomography(CAT) scanning, and
magnetic scanning resonance imaging(MRI).Even
performance demand increases have begun exceeding
Moore’s Law processors have begun faltering. In this
situation performance of a processor is the most important
criteria. So this paper tries to achieve more performance
by modifying the existing application.
The rest of the paper is organized as follows Section 2
provides brief introduction about whetstone application,
Section 3 gives the whetstone algorithm Section 4

presents the modified whetstone algorithm, Section 5
presents the hardware and software environment details,
Section 6 gives experimental Results, Section 7 concludes
the paper with future work.

2. Whetstone

The Fortran [8][9][10][11] Whetstone programs were the first
general purpose benchmarks that set industry standards of
computer system performance. Whetstone programs also
addressed the question of the efficiency of different
programming language. The first Whetstone benchmark,
known as HJC11 (later ALPR12), was written in
Algol60 and completed in November 1972. The
FORTRAN codes (HJC12 and HJC12D) were published
in April 1973 as FOPR12 and FOPR13. The first results
published were for IBM and ICL mainframes in 1973. The
speed rating was calculated in terms of Kilo Whetstone
Instructions per Second or KWIPS. Later, Millions or
MWIPS was used.
It contains several modules that are meant to represent a
mix of operations typically performed in scientific
applications. A wide variety of C functions including sin,
cos, sqrt, exp, and log are used as well as integer and
floating-point math operations, array accesses, conditional
branches, and procedure calls. The primary aim of this

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

48

benchmark is to measure the performance of both integer
and floating-point arithmetic.
The benchmark is very simple, comprising some 150
statements with eight active loops, three of which execute
via procedure calls. Three loops carry out floating point
calculations, two functions, one assignments, one fixed
point arithmetic and one branching statements. The
dominant loop, usually accounting for 30% to 50% of the
time, carries out floating point calculations via procedure
calls.
The tests only reference a small amount of data which will
fit in the L1 cache of any CPU. Hence, L2 cache and
memory speed should have no influence on performance
ratings. Speeds are invariably proportional to CPU MHz
on a given type of processor. The code was designed to be
non-optimisable and optimizing compilers did not have a
significant impact until the introduction of in-lining of
subroutine instructions.

2.1 Pros of whetstone application

 The Whetstone benchmark was the first
intentionally written to measure computer speed
and performance and was designed to simulate
floating point numerical applications.

 It is written in high-level language making it
portable across different machines.

 It contains a large percentage of floating point
data and instructions; A high percentage of
execution time (approximately 50%) is spent in
mathematical library functions;

 The majority of its variables are global and the
test will not show up the advantages of
architectures such as RISC where the large
number of processor registers enhance the
handling of local variables;

 Whetstone contains a number of very tight loops
and the use of even fairly small instruction
caches will enhance performance considerably;

3. Whetstone Algorithm

The[22] Whetstone benchmark main loop executes in a few
milliseconds on an average modern machine, so its
designers decided to provide a calibration procedure that
will first execute 1 pass, then 5, then 25 passes, etc... until
the calibration takes more than 2 seconds, and then guess
a number of passes xtra that will result in an approximate
running time of 100 seconds. It will then execute xtra
passes of each one of the 8 sections of the main loop,
measure the running time for each (for a total running
time very near to 100 seconds) and calculate a rating in
MWIPS, the Whetstone metric.

The main loop consists of 8 sections each containing a
mix of various instructions representative of some type of
computational task. Each section is itself a very short,
very small loop, and has its own timing calculation.

Section 1 performs array elements operations

initialize i:=0
repeat the following steps until i<n1*n1mult
begin
 e1[0] := (e1[0] + e1[1] + e1[2] - e1[3]) * t;
 e1[1] := (e1[0] + e1[1] - e1[2] + e1[3]) * t;
 e1[2] := (e1[0] - e1[1] + e1[2] + e1[3]) * t;
 e1[3] := (-e1[0] + e1[1] + e1[2] + e1[3]) * t;
 i:=i+1;
end
 t := 1.0 - t;
 t := t0;
calculate time consumed
print the result using pout function

Section 2 performs passing array elements as
arguments,

initialize ix:=0
repeat the following steps until ix<xtra
begin
initialize i:=0
 repeat the following steps until i<n2
 begin

 call function pa(e1,t,t2)
 i:=i+1;

 end
ix:=ix+1;
t: = 1.0 - t;
end
t := t0;
calculate time consumed
print the result using pout function

Section 3 performs conditional jump operations,
initialize j := 1,ix:=0
repeat the following steps until ix<xtra
begin
initialize i:=0;
 repeat the following steps until i<n3; i++)
 begin
 if(j=1) j:=2;
 else j:=3;
 if(j>2) j:=0;
 else j:=1;
 if(j<1) j:=1;
 else j:=0;
 i:=i+1

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

49

end
 ix=ix+1

end
calculate time consumed
print the result using pout function

Section 4 performs Integer Arithmetic operations

initialize j: = 1, k := 2, l := 3, ix:=0
 repeat the following steps until ix<xtra; ix++)
 begin

initialize i:=0;
repeat the following steps until i<n4

 begin
 j:= j *(k-j)*(l-k);
 k:= l * k - (l-j) * k;
 l:= (l-k) * (k+j);
 e1[l-2]:= j + k + l;

 e1[k-2]:= j * k * l;
 i:=i+1

end
 ix:=ix+1
 end
 calculate time consumed
 x := e1[0]+e1[1];
 print the result using pout function

Section 5 does Trigonometric functions

 initialize x:= 0.5,y:= 0.5,ix:=0;
 repeat the following steps until ix<xtra
 begin
 initialize i:=1;
 repeat the following steps until i<n5
 begin
 x:= t*atan(t2*sin(x)*cos(x)/
 (cos(x+y)+cos(x-y)-1.0));

 y:= t*atan(t2*sin(y)*cos(y)/
 (cos(x+y)+cos(x-y)-1.0));
 i:=i+1
 end

t = 1.0 - t;
 ix:=ix+1
 end
t = t0;
calculate time consumed print the result using pout
function

Section 6 does procedure calls,

initialize x: = 1.0,y: = 1.0,z: = 1.0,ix=0
repeat the following steps until ix<xtra

begin
 initialize i:=0
 repeat the following steps until i<n6
 begin
 call function p3(&x,&y,&z,t,t1,t2);
 i:=i+1
 end
 ix:=ix+1
end
calculate time consumed
print the result using pout function

Section 7 does Array Reference,
initialize j: = 0;k:= 1,l:= 2,e1[0]:= 1.0,
 e1[1]:= 2.0,e1[2]:= 3.0,ix:=0
repeat the following steps until ix<xtra
begin

initialize i:=0
repeat the following steps until i<n7
begin ;i++)

 call function po(e1,j,k,l);
 i:=i+1

end
 ix:=ix+1
end

calculate time consumed print the result using pout
function

Section 8 performs Standard functions.
initialize x:= 0.75,ix:=0
repeat the following steps until ; ix<xtra; ix++)
begin
 initialize i:=0;
 repeat the following steps until i<n8
 begin
 x = sqrt(exp(log(x)/t1));
 i:=i+1
 end
 ix:=ix+1
end
calculate time consumed print the result using pout
function

the below figure shows program execution on single
core

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

50

4. Modified whetstone Algorithm

The whetstone program has been divided into
two programs one is main program which calls whetstone
program to perform calibration and mathematical
operations test. The whetstone program consist of eight
modules to perform the mathematical functions such array
passing, array references, trigonometric functions etc. The
whetstone program create a child process on successful
creation it replaces its parent copy with the child assigned
module, similarly creates another seven child processes
for remaining seven modules and made the child process
to execute on different cores based on the work load.
These functions are created as child process using fork ()
method, and then they are assigned to run on different
cores using taskset () method, the abstract algorithm is
given below.

Algorithm Mainprogram()
begin
//Initialize variables
//Call whetstone function to perform calibration test
Initialize calibrate=0;
Whetstone(calibrate)
Display calibration results
//call whetstone function to perform mathematical
opeations
Initialize calibrate=1;
Whetstone(calibrate)
//display mathematical operation results
End

Algorithm whetstone (calibrate)
begin
initialize variables

create new child process 1
assign processor 1 for execution of new process
call section6()

create new child process 2
assign processor 1 for execution of new process

call section8()
create new child process 3
assign processor 1 for execution of new process
call section5()

create new child process 4
assign processor 1 for execution of new process
call section7()

create new child process 5
assign processor 1 for execution of new process
call section4()

create new child process 6
assign processor 1 for execution of new process
call section3()

create new child process 7
assign processor 1 for execution of new process
call section2()

create new child process 8
assign processor 1 for execution of new process
call section1()
end

//end of whetstone function

the below figure shows modified program execution on
multi- core

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

51

5. Experimental Test Bed

5.1 Software

 LINUX KERNEL 3.5.0-17-generic
 LINUX MINT OS
 GCC COMPILER

5.2 Hardware

Processor Intel® Core™ i7-2670QM[17]

No of Cores 4

No of Threads 8

Clock Speed 2.2 GHz

Max Turbo Frequency 3.1 GHz

Intel® Smart Cache 6 MB
RAM: 4 GB

6. Experimental Results

The whetstone benchmark application program has been
run without and with modification to the program
obtained from internet to compare the performance
obtained by modifying the program while running it on
4/8 multicore processor[18]. The results are detailed
below
Below table shows calibration values for Whetstone
application

Before Modification After Modification

Time (in Sec) No of Passes(x 100) Time (in Sec) No of Passes(x 100)

0.00 1 0.00 1

0.02 5 0.00 5

0.11 25 0.00 25

0.56 125 0.02 125

2.69 625 0.09 625

 0.48 3125

 2.38 15625

Use23263 passes(x100) Use 656471 passes(x 100)

The below table shows time, expression values of whetstone application for unmodified and modified

 Unmodified Program Modified Program
Loop content Result MFLOPS MOPS Sec MFLOPS MOPS Se

N1 floating point -1.12475013732910156 674.655 0.662 467.987 26.933
N2 floating point -1.12274742126464844 628.792 4.972 443.159 199.092

N3 if then else 1.00000000000000000 958.428 2.512 548.810 123.804
N4 fixed point 12.0000000000000000 1254.68 5.840 736.464 280.786
N5 sin,cos etc. 0.50000000000000000 101.883 18.997 72.295 755.495

N6 floating point 0.99999982118606567 336.100 37.334 285.823 1007.01
N7 assignments 3.00000000000000000 394.524 10.897 269.024 450.948

N8 exp,sqrt etc. 0.75110864639282227 44.222 19.569 33.767 723.209

 MWIPS 2308.19 100.78 53025.13 123.804

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

52

The below figures shows the core utilization for unmodified and modified whetstone application during
program runtime.

7. Conclusion and Future Work

The above results shows that after modification the
whetstone application has produced more MWIPS and
increased no of passes by utilizing all the existing cores
and threads. While at the same time it produced
less expression values by concentrating more on MWIPS
this may be obtained by further modifying the program to
concentrate on expression values.
When utilizing all the cores the system will produce more
heat and power consumption is more than normal
utilization.

Note: The order of results and values may change
depending on load of the system, processes creation and
execution by the Operating System.

References
[1] Jeffrey C. Mogul, Andrew Baumann, Timothy

Roscoe, Livio Soares Mind the Gap: Reconnecting
Architecture and OS Research, HotOS'13 Proceedings of
the 13th USENIX conference on Hot topics in operating
system,s USENIX Association Berkeley, CA, USA ©2011

[2] White Paper, Altera Corporation, Accelerating High
performance computing with FPGAs, 2007

http://dl.acm.org/author_page.cfm?id=81336492897&CFID=245126988&CFTOKEN=84441074

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

53

[3] www.kth.se/upload/234/Moores_law.pdf
[4] Linux Kernel Development, Robert Love 3rd Edition
[5] www.saneeshththottamkara.wordpress..com/2011/01/15/ad

vantages and disadvantages-of-linux-operating-system-2/
[6] www.ubuntuartists.deviantart.com/journal/8-Advantages-

of-using-Linux-over-Windows-291681914
[7] Weicker, R.P., "An overview of common benchmarks,"

Computer, vol.23, no.12, pp.65, 75, Dec. 1990
doi: 10.1109/2.62094

[8] www.roylongbottom.org.uk/whetstone.htm
[9] www.keil.com/benchmarks/whetstone.asp
[10] www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/Syste

mBenchmarks/BenchMarks.html#introduction
[11] Roy, A.; Jingye Xu; Chowdhury, M.H., "Multi-core

processors: A new way forward and challenges,"
Microelectronics, 2008. ICM 2008. International
Conference on , vol., no., pp.454,457, 14-17 Dec.2008doi:
10.1109/ICM.2008.5393510

[12] John Fruene, Dell Power Solutions. Reprinted from Dell
Power Solutions, May 2005. tions of migrating
applications to multicore processor
technology.www.dell.com/downloads/.../power/ps2q05-
20050103-Fruehe.pdf

[13] Shameem Akhter, Jason, Roberts Multi-Core Programming
Increasing Performance through Software Multi-threading,
April 2006, ISBN 0-9764832-4-6.

[14] Bryan Schauer Multicore processors-A Necessity proQuest
2008

[15] Balaji venu Multi-core processors-An overview, arXiv:
1110.3535 (October 2011)

[16] Shameem Akhter , Jason Roberts ,Multi-Core Programming,
© 2006 Intel Corporation

[17] http://ark.intel.com/products/53469
[18] www.roylongbottom.org.uk/whetstone%20results.htm#anch

ornopt
[19] www.roylongbottom.org.uk/whetstone%20results.htm#anch

orLinux
[20] www.roylongbottom.org.uk/linux%20multithreading%20be

nchmarks.htm#anchor3
[21] www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/Syste

mBenchmarks/BenchMarks.html#introduction
[22] http://www.tux.org/~balsa/linux/benchmarking/articles/html

/Article1d-3.html

P. Bala Subramanyam Raju received
B.Sc(M.E.Cs) . and M.C.A. degrees
from Sri Venkateswara University in
2005 and 2008 respectively. He is a
Research Scholar in the department of
Computer Science, Sri Venkateswara
University, Tirupati,A.P India. His
research focus is on Parallel Computing.

P.Govindarajulu, Professor,Department
of Computer Science, Sri Venkateswara
University,Tirupati, India. He received
his M.Tech. from IIT Madras(Chennai),
Ph.D. from IIT Bombay(Mumbai). His
area of research:Databases, Data Mining,
Image Processing, Intelligent
Systemsand Software

Engineering,Parallel Computing.

http://www.kth.se/upload/234/Moores_law.pdf
http://www.saneeshththottamkara.wordpress..com/2011/01/15/advantages%20and%20disadvantages-of-linux-operating-system-2/
http://www.saneeshththottamkara.wordpress..com/2011/01/15/advantages%20and%20disadvantages-of-linux-operating-system-2/
http://www.ubuntuartists.deviantart.com/journal/8-Advantages-of-using-Linux-over-Windows-291681914
http://www.ubuntuartists.deviantart.com/journal/8-Advantages-of-using-Linux-over-Windows-291681914
http://www.roylongbottom.org.uk/whetstone.htm
http://www.keil.com/benchmarks/whetstone.asp
http://www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/SystemBenchmarks/BenchMarks.html#introduction
http://www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/SystemBenchmarks/BenchMarks.html#introduction
http://ark.intel.com/products/53469
http://www.roylongbottom.org.uk/whetstone%20results.htm#anchornopt
http://www.roylongbottom.org.uk/whetstone%20results.htm#anchornopt
http://www.roylongbottom.org.uk/whetstone%20results.htm#anchorLinux
http://www.roylongbottom.org.uk/whetstone%20results.htm#anchorLinux
http://www.roylongbottom.org.uk/linux%20multithreading%20benchmarks.htm#anchor3
http://www.roylongbottom.org.uk/linux%20multithreading%20benchmarks.htm#anchor3
http://www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/SystemBenchmarks/BenchMarks.html#introduction
http://www.cse.dmu.ac.uk/~bb/Teaching/ComputerSystems/SystemBenchmarks/BenchMarks.html#introduction
http://www.tux.org/~balsa/linux/benchmarking/articles/html/Article1d-3.html
http://www.tux.org/~balsa/linux/benchmarking/articles/html/Article1d-3.html

