
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

61

Manuscript received October 5, 2013
Manuscript revised October 20, 2013

Hyperspheres and Clusters in Hybrid Algorithm for Aided
Design of Systems

Mieczyslaw Drabowski* and Edward Wantuch**,

 *Cracow University of Technology, **AGH University of Science and Technology

Summary
This paper presents a new approach for modeling and
aided design of heterogeneous system. This approach
based on hybrid algorithm: genetic method and simulated
annealing strategy with Boltzmann tournament selection.
In order to eliminate solution convergence we use
following data structure: n-dimension hyper-spheres and
clusters for separates solutions with different allocations
functions to resources.
Key words:
design of systems, genetic method, hyper-spheres, clusters,
Boltzmann tournament

1. Introduction. Hybrid method for aided
design of systems

The aim of high-level design of heterogeneous
systems is to find an optimal solution which will meet the
requirements and constraints enforced by the given
specification of the system. The following criteria of
optimality are usually considered: the cost of system
implementation, its operating speed, power consumption
and dependability. The specification describing a computer
system may be considered then as a set of interactive
functions.
The function partition of a so defined system into hardware
and software is the basic problem of synthesis. Such a
partition is significant, because every computer system
must be realized as result of hardware implementation of
its certain tasks. The constructed system consists of
peripheral elements and software components, selected
from the available pool of hardware modules. The system
is specified as a set of requirements and constraints to be
met. In general, each requirement may be realised by
hardware elements or software components executed by
universal processors and memory. Obviously, at this stage
of design, one must look into appropriate system
constraints and criteria of optimal system operation.
Accordingly, the key issue in the synthesis is an efficient
partitioning of system resources due to their hardware and
software implementation, providing the fulfilment of all
requirements and the minimum implementation cost.

Such partitioning methodology may accept, as a starting
point, the assignment of hardware implementation to all
system functions and for further optimization of project
costs may search for possibilities of replacing certain tasks
realized by hardware with their software equivalents.
Other methods of the resource partitioning may start with
an exclusive software implementation and further search
for implementation of certain tasks by hardware. In both
approaches the objective is to optimize the implementation
cost of the designed system for the same tasks, i.e.
minimization of peripheral solutions especially specialized
ones. Obviously, requirements and constraints, particularly
those regarding time and dependability have a decisive
influence upon selection of necessary hardware
components.
The measure for an efficient implementation of a computer
system is the degree of its modules utilization, minimized
idle-time of its elements and maximized parallel operation
of its elements.
A non-optimum system contains redundant modules or
modules that are excessively efficient in comparison with
the needs defined by the tasks which, consequently,
increases the system cost. In high-level synthesis, the
optimization of the designed system costs, speed and
power consumption is usually an iterative process,
requiring both changes in the architecture and task
scheduling. Therefore, an optimum system should be
created as a compromise between the projects: system
control and its hardware organization.
System synthesis is a multi-criteria optimization problem.
As for the optimality criteria for the system to be designed,
we shall assume its minimum cost, maximum operating
speed minimum power consumption and maximum
dependability.
We will apply multi-criteria optimization in sense of
Pareto [1]. The solution is optimized in sense of Pareto if it
is not possible to find a better solution, regarding at least
one criterion without deterioration in accordance to other
criteria. The solution dominates other ones if all its
features are better. Pareto ranking of the solution is the
number of solutions in a pool which do not dominate it.
The process of synthesis will produce a certain number of
non-dominated solutions. Although non-dominated
solutions do not guarantee that they are an optimal Pareto

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

62

set of solutions; nevertheless, in case of a set of suboptimal
solutions, they constitute one form of higher order optimal
set in sense of Pareto and they give, by the way, access to
the problem shape of Pareto optimal set of solutions.
Due to the fact that synthesis problems and their
optimizations are strongly NP-complete [2] we suggest
meta-heuristic approaches, in this paper, hybrid: genetic
with simulated annealing [3].
From this section, input the body of your manuscript
according to the constitution that you had. For detailed
information for authors, please refer to [1].

2. Clusters and hyper-spheres in hybrid
algorithm

 In order to eliminate solution convergence in genetic
algorithms, we use data structures which ensure locality
preservation of features occurring in chromosomes and
represented by a value vector. Locality is interpreted as the
inverse of the distance between vectors in an n-dimension
hyper-sphere [4]. Then, crossing and mutation operators
are data exchange operations not between one-dimensional
vectors but between fragments of hyper-spheres. Thanks to
such an approach, small changes in a chromosome
correspond to small changes in the solution defined by the
chromosome. The presented solution features two hyper-
spheres: task hyper-sphere and resource hyper-sphere. The
solutions sharing the same allocations form the so-called
clusters. The introduction of solution clusters separates
solutions with different allocations from one another. Such
solutions evolve separately, which protects the crossing
operation from generating defective solutions. There are
no situations in which a task is being allocated to a non-
allocated resource. Solution clusters define the structures
of the system under construction (in the form of resources
for task allocation). Solutions are the mapping of tasks
allocated to resources and task scheduling. During
evolution, two types of genetic operations (crossing and
mutation) take place on two different levels (clusters and
solutions). A population is created whose parameters are:
the number of clusters, the number of solutions in the
clusters, the task graph and resource library. For the
synthesis purposes, the following criteria and values are
defined: optimization criteria and algorithm iteration
annealing criterion if the solution improvement has not
taken place, maximum number of generations of evolving
within clusters solutions, as well as the limitations –
possibly the biggest number of resources, their overall cost,
total time for the realization of all tasks, power
consumption of the designed system and, optionally, the
size of the list of the best and non-dominated individuals.
Application of the same resources clusters aims at
separating solutions [5] of different allocation from one

another. Such solutions evolve separately which protects
crossbreeding operation from producing defective
solutions; the situation where the task will be attached to
the recourse which has not been allocated does not happen.
Figure – Fig. 1 – illustrates what crossing of two solutions:
1 and 2 would be if solutions of different allocations to
resource were not separated. In solution 1 – tasks A and B
are conducted on processor P1; in solution 2 tasks A and B
are conducted on processor P2. After the crossing new
solutions: 3 and 4 are created. As a result of this operation,
task A in solution 3 has been allocated to processor P2
which is not used in this solution. In solution 4 there is a
similar situation. Then as a result of crossbreeding
operation incorrect solutions would be created.

Fig. 1. Faulty crossbreeding of two solutions

Hyper-sphere of system features contains the information
related to the similarities between features of resources.
This structure contains the following information:
 Each gene in chromosome is described by feature

vector (e.g. hardware resource – by the cost, power
consumption, speed and degree of reliability). Hyper-
sphere stores the distance of feature vectors from the
centre of hyper-sphere. The data is needed while
crossbreeding in order to define which information will
be transformed into successors.

 Co-ordinate axes of the centre of hyper-sphere –
assigned by the set of feature vectors – are used at
constructing hyper-plane dividing hyper-sphere into
two parts.

 Length of the diameter – the distance between the most
distant feature vectors –used at constructing hyper-
plane.

After crossbreeding

Solution 1 Solution 2

Solution 3 Solution 4

A

B

P1

A

B

P2

A

B

P1 P2

A

B

P2A

P1

Before crossbreeding

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

63

 The coefficients are calculated during each
crossbreeding. After the operation of crossbreeding, two
new individuals (successors) are created. Each of the
successors comprises one part of the first parent‘s
chromosome and the second part of the other.

System structure is represented by the set of data tables.
Each chromosome consists of a vector describing recourse
allocation and vector describing task allocation and
scheduling. Each gene comprises multidimensional
information. Resource processor is described by cost,
speed and power consumption, reliability. During
crossbreeding it comes to the exchange of data between the
tables.
Skilful performance of evolutionary algorithm needs
storing the locality in data structure representing solution.
The exchange of data between individuals (crossbreeding)
should separate the information describing similar features
of system structure more rarely than information describing
entirely different features. Small changes in chromosome
should reflect small changes in the solution which is
represented by the chromosome.
Introducing linear order into multidimensional information
destroys locality. To solve this problem we used data
structures representing hyper-sphere. Multidimensional
information is recorded in the shape of vector. Locality is
interpreted as the inverse length of n-dimensional vectors
inside n-dimensional hyper-sphere.
The most distant vectors mark diameters and the centre of
hyper-sphere. The example of two-dimension hyper-sphere
is illustrated by Fig. 2.

Fig. 2. Two dimensional hyper-sphere (circle) – resources are described

by two features here, (e.g. speed and cost)

The presented algorithm stores hyper-sphere of resources
is four-dimensional hyper-sphere representing the
dependability of resource features. Each of the resources
may be defined by the following coordinates: reliability,
cost, speed and power consumption.

2. Resources partition algorithm for aided
design of systems

It tasks into account the data of task graph, pool of
resources as well as criteria of optimality. The aim of this

algorithm is to determine resources for execution all tasks
in accordance with the criteria of optimality.

Initialization of algorithm
The aim of initializations of algorithm is to construct such
structure of system which is the initial, the simplest and
based on available resources and at the same time
satisfying the demands of functions and given criteria.
Algorithm executes the following steps:

 Construction of tasks graph.
 Creating resources.
 Creating population.
 Initialization of hyper-sphere.
 Population initialization.
 Solution evaluation.
 Cluster evaluation.

Construction of task graph
On the basis of input data (available from system
specification of type complex operations) the structure
describing the digraph of task graph is created. The
digraph of tasks represents the functionality of the system.
After graph creation, nodes are sorted. Topological order
defines the position of tasks in graph. Nodes located close
to one another are situated similarly close on the list of
typologically sorted nods. This information is applied by
algorithm of task scheduling in accordance with graph
levels.
The first step of algorithm is graph searching by method of
DFS (Depth First Search) in order to indicate the tasks
levels in graph. The nod level is perceived as the longest
path from the nod without predecessors to the examined
nod. This information is used in algorithm of task
scheduling. If tasks are scheduled according to the levels in
graph (in an increasing order), keeping constraints’
sequence is preserved. The next step is to search the graph
by algorithm BFS (Breadth-First Search). The nods are
given indexes calculated during the algorithm run. These
indexes store information which applies to task parallelism
in the graph. This information is used in algorithm as one
of the task dependence features in the graph.

Creating resources
On the grounds of data input (specification of resource
pool), the set representing the accessible resources for
system synthesis is created. This set makes the information
about recourses (such as cost of processors, cost of
operating memory, executing times, speed, power
consumption, sum of power consumption of all the tasks,
degree of reliability) available.

Creating population
Parameters of population are:

 Table feature
(Two co-ordinates)

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

64

 Number of clusters in population.
 Number of solutions in clusters.
 Digraph of tasks – the functionality of system.
 Accessible resources.
 Criterion of halt – defines the numbers of algorithm

loops when the solution improvement has not happened.
 Map of criteria – defines, which of the criteria of

optimization will be considered while searching for the
optimum solution.

 Considering the costs of operating memory during cost
optimization.

 Maximum number of evolving solution generations
inside the clusters.

 Constraints – maximum number of processors,
maximum cost, maximum time, maximum power
consumption.

 Size of the list of the best individuals. The best non-
dominated individuals are enrolled onto the list. The
longer the list is, the more individuals can be
remembered by algorithm. The list is the of FIFO queue.

Clusters and solutions in cluster are created as well as
hyper-spheres of resources and task graph. Also, this stage
the parameter “global temperature” is introduced.

Initialization of hyper-sphere
Two hyper-spheres are created: resources and task graph.
The hyper-sphere of processors is of 1 to 4 dimensions.
The dimension depends on the number of optimized
features (cost, time, power consumption, reliability).
Hyper-sphere for the graph of tasks is two dimensional.
Definitions of hyper sphere consist of:
 Filling multi-dimensional vectors with data defining a

given object (resources, tasks).
 Calculating the diameters of the hyper spheres, i.e. the

distance between the two most remote points and
determining the hyper sphere center on the basis of the
extreme coordinate.

 Defining the centre of hyper-sphere on the grounds of
coordinate axes.

Population initialization
Clusters and solutions are initialized at random.
Algorithm of allocation initialization
 For each task, a resource capable of completing the task

is selected.
 If the resource is allocated, the algorithm proceeds to

the next task.
 A resource capable of completing the task is selected

and allocated.

Initialization algorithm of allocating tasks to resources
 We assign resources for each task which are allocated
and capable of task completing.

 Resource type and number are randomly assigned to the
tasks.

 Task scheduling by ASAP (As Soon As Possible)
algorithm is initialized:
 We examine subsequently the tasks on the graph

levels; such sequence ensures the intact of
sequence constraints.

 We allocate it to the list of scheduling according
to the previously allocated processor.

Solution evaluation
The following values are calculated depending on
optimization criteria:

 Resource cost (processors: general, dedicated and
operating memory).

 Task completion time.
 Power consumption.

The whole cost is the cost sums of allocated recourses; the
entire time of executed tasks is the time of completing all
the tasks on all the allocated recourses, the whole power
consumption is the sum of power consumption taken by
the selected recourses. If, for the representing individual,
the unlimited solution of the optimization criteria excesses
the maximal available number of value, the individual is
fined. The suitable value for this individual is multiplied
and the chance of survival definitely decreases. As a result
of the above mentioned operations, we receive the table
comprising the value of optimized criteria (time, cost,
power consumption). The following stage is to determine
solution ranking. Ranking of a solution is the number of
solutions in population which do not dominate this solution.
Solution is dominated if each of its optimized criteria value
is lower or equal to the value for the dominated solution
(optimization in sense of Pareto).

Cluster evaluation
Solution cluster ranking is created. Cluster ranking is the
sum of the solution ratings within the cluster.

Main algorithm
The input data for resource partition (after initialization)
are the task digraph, the library of available resources and
the optimization criteria, and its goal is to divide tasks into
the software and the hardware part and to select resources
for the realization of all the tasks with established
optimization criteria. The diagram of the algorithm of
resource partition is showed on Fig. 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

65

Fig. 3. Algorithm of resource partition

Cluster reproduction
Clusters are reproduced with the use of genetic operators:
crossing and mutation. At the reproduction stage, the
cluster population is doubled and its initial size is restored
at the elimination stage. This method was introduced
arbitrarily and ensures that within a population some new
individuals appear and fight for survival with their parents.
The mutation operator creates one, and the crossing
operator two new clusters. The likelihood of using either of
the genetic operators is defined by the algorithm
parameters.
Genetic operators:
 Cluster mutation operator is to mutate allocation

tables in the following way: a cluster with identical
likelihood is picked at random and copied. The
number of the resource which will be mutated in a new
cluster is picked randomly. Then, a number in the 0-1
range is picked – if the number is smaller than the
parameter of global temperature, the resource is
added; otherwise it is subtracted. Adding resources is
limited by the parameter of constraints: maximum
resource number parameter. At the beginning of the
algorithm operation, resources will be added to the
structure of the system. As the algorithm approaches
the end of the run defined by the cooling process,
resources will be subtracted. This method aims at
creating a cost-economical structure.

 Cluster crossing operator is to pick randomly two
clusters and copy them. Crossing is achieved through
cutting the resource hyper-sphere with a hyper-plane.
The information contained on "one side" of the hyper-
plane is exchanged between clusters – Fig. 4.

The example (Example *) shows the result of the
performance of crossing tables for resource selection with
the use of resource hyper-sphere. Each resource is
described with help of two features (e.g. cost and speed).

4. The crossing operator with the hyper-sphere

Example *:

Table 1 of allocation of resources before crossing

Table 2 of allocation of resources before crossing

Table 1 of allocation of resources after crossing

Hyper-sphere

1

2

3

4

5

6

7

Hyper-plane
Reproduction of

clusters

Evolution of solutions inside the
clusters

Optimization of resource selection

Result of algorithm

Algorithm
initialization

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

1 2 2 1 0 2 0

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

3 0 2 2 2 1 0

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

1 2 0 1 0 2 5

The area of features of resource (time, cost).

○ crossing with changes ●crossing without changes

i

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

66

Table 2 of allocation of resources after crossing

The similarity of resources is interpreted as the distance
between the tables describing resource features in two-
dimensional space. During the crossing, two-dimensional
hyper-sphere is cut (circle) by hyper-plane (straight line).
As a result of this operation, the information contained on
one side of the line is exchanged between the tables of
resource selection.

The algorithm for cutting the hyper-sphere with a
hyper-plane

 Determining the cutting of hyper-plane by picking
n points inside an n-dimensional hyper sphere.

 Creating a random permutation of n
dimensions, e.g. for n = 3, the
permutation can be (2, 1, 3).

 Constructing the point displacement
vector in respect to the hyper- sphere
center for n dimension:

• Square coordinates are picked
according to dimension
permutations, e.g. for three
dimensions with the
permutation (2, 1, 3):
y2 = rand () % r2, x2 = rand () %

(r2 – y2), z2 = rand () % (r2 – (y2 + x2))
Where:
r – hyper-sphere radius, (x, y, z)
are the coordinates of the
constructed point in a three-
dimensional space.

• The roots of square coordinates
are calculated.

• A coordinate radical sign is
picked.

• The hyper-sphere center
coordinates are added to the
new point resulting in obtaining
a new point inside the n-
dimensional hyper-sphere.

 The equation of the hyper-plane cutting the hyper-
sphere is calculated and the obtained system of
linear equations is solved.

After creating new clusters, initiating algorithm of task
allocation and initiating algorithm of scheduling are put
into motion.

Example **
Vectors of resources: P1 (5, 2), P2 (7, 6), P3 (11, 4), P4 (9,
3), P5 (3, 3) – e.g. by the speed and cost.
Construction on hyper-sphere:
length of diameter – the distance between the most distant
feature vectors - P3 i P5 - d2 = (11 – 3)2 + (3 – 4)2 = 65 and
hyper-sphere center S (½*(11 + 3), ½ *(4 + 3)) = (7, 3.5),
r = ½ * d, r2=16.25
x’2 = rand() * r2, y’2 = rand() * (r2 – x2) x’2 = 16, y’2 =
0.16 and x”2 = 9, y”2 = 7.25
x’ = 4, y’ = -3 and x” = -3, y” = 2.69, new vectors: P’ (11,
3.9) i P” (4, 6.19)
and hyper-plane: y = a * x + b with a = - 0.314 i b = 4.84
The example shows the result of the performance of
crossing tables for resource selection with the use of
resource hyper-sphere. Each resource is described with
help of two features (e.g. cost and speed). The similarity of
resources is interpreted as the distance between the tables
describing resource features in two-dimensional space.
During the crossing, two-dimensional hyper-sphere is cut
(circle) by hyper-plane (straight line). As a result of this
operation, the information contained on one side of the line
is exchanged between the tables of resource selection - P1 i
P5.

Evaluation of solutions
This is the same algorithm which is employed in the
initialization of resource partition algorithm.

Saving the best solutions

After the solution reproduction, a new procedure is
called to save globally non-dominated solutions
generated during evolution.
This procedure executes:

 Searches for non-dominated solutions in the present
generation.

 Creates the ranking of the best solutions saved so far
and in the present generation.

 Saves the non-dominated solutions from both the "old"
and the "new" solutions.

 Deletes the solutions saved in the past if they are
dominated by new solutions; if there is more than one
solution that’s all optimized criteria values are identical,
only one of those solutions is saved (the "newest" one).

 If the new solutions dominate none of the ones saved in
the past, the population is not improved.

 Algorithm can remember the defined by algorithm
parameter numbers of non-dominated solutions.

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

3 0 0 2 2 1 5

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

67

Evaluation of clusters
This is the same algorithm which is used during
initialization of resource partition.

Cluster elimination
At this stage of the algorithm, half individuals are removed
from the population. The initial number of individuals is
restored. The elimination of individuals is carried out with
use of Boltzmann tournament selection strategy.

Boltzmann tournament
The winner of the tournament is chosen on the base of
calculating the following equation:

Where:
 r1 – Ranking of the first solution.
 r2 – Ranking of the second solution.
 T – Global temperature.
The values of this function are numbers of the range < 0, 1
>. In order to assign the winner of the tournament, we
choose the number of the range (0, 1). If it is larger than
the one enumerated out of the formula, the individual of
ranking r1 is the winner. Otherwise, the second individual
(of ranking r2) is the winner.
The analysis of the results of tournament can be carried out
on the basis of function graph Fig. 5.

Where:

If r1 < r2, then x is negative, in this case when the
temperature is high, there is a larger probability that an
individual of rank r1 will win the tournament than when
the temperature is lower. For low temperatures an
individual of rank r2 most frequently will be the winner.
If r1 > r2, then x is positive, in case when the temperature
is high, there is a larger probability that an individual r2
will win the tournament than for lower temperatures. For
low temperatures, an individual of rank r1 most frequently
will be the winner.

Fig.5. The chart of probability of winning Boltzmann tournament

depending on global temperature

Report of algorithm
If the number of generations during which the
improvement of individuals did not happen exceeds the
number given in the criterion of halt, algorithm finishes its
working. Non- dominated individuals in the whole scale of
evolution are recorded in a report.

3. Conclusions

Genetic algorithm with hyper- spheres and clusters
obtained solutions with lower cost than algorithm without
this of structures for all instances of problems of design of
systems. Solutions obtained with this algorithm feature
shorter schedule length when compare to solutions of
algorithm without hyper-spheres and clusters.

Selected results: schedule length minimization (speed of
system) and cost minimization - Table 1 and Chart 1 and
Chart 2.

Applications of clusters and hyper-spheres significantly
improved results obtained.

Table 1. Schedule length (speed of system) and cost of system for
algorithms of synthesis: without hyper- spheres and with hyper-spheres

Number
of tasks

without
hyper-spheres

with
hyper-spheres

Schedule
length

Cost
Schedule

length
Cost

10 1,33 10,55 0,80 9,10
20 1,90 13,35 1,40 3,25
30 2,50 13,30 2,00 4,50
40 2,30 13,40 2,50 3,25
50 2,90 22,00 3,10 3,75
75 4,60 21,65 4,40 4,75

100 12,40 19,55 5,70 5,00

0
4
8

12
16
20
24

10 30 50 70 90

Co
st

Number of tasks

without
hyper-
spheres

with hyper-
spheres

Chart. 1 Algorithms without hyper-spheres and with hyper-spheres in

synthesis of system for criterion of cost

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.10, October 2013

68

0

4

8

12

16

10 30 50 70 90

Cm
ax

Number of tasks

without
hyper-
spheres

with hyper-
spheres

Chart. 2 Algorithms without hyper-spheres and with hyper-spheres in
synthesis of system for criterion of speed (schedule length Cmax

References
[1] Drabowski M., Wantuch E., Artificial Intelligence in

synthesis of heterogonous of computer system, International
Symposium on Application of System Theory, Zakopane,
2011.

[2] Garey M. R., Johnson D. S., Computers and intractability,
A guide to the theory of NP-complete, San Francisco, 1979.

[3] Drabowski M., Parallel synthesis of computer systems,
Monographs 225, AGH-UST, Krakow, 2011.

[4] Dick R. P., Jha N. K., COWLS: Hardware – Software co-
synthesis of distributed wireless low power client-server
systems, IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Vol. 23, No. 1, 2-16, 2004.

[5] Dick, R.P., Laskhminarayana G., Raghunathan A., Jha N. K.,
Analysis of Power |Dissipation in real time operating
systems, IEEE Transaction on Computer Aided Design of
integrated circuits and systems, Vol. 22, No. 10, 615-627,
2003.

[6] Drabowski M., Wantuch E., Scheduling in Manufacturing
Systems Ant Colony Approach. [in:] Ant Colony
Optimization Techniques and Applications, Intech Croatia,
Austria, India, 2013.

Mieczyslaw Drabowski, Assistant
Professor and Head of Laboratory of
Computing Sciences, Faculty of Electrical
and Computer Engineering, Cracow
University of Technology, received the M.
Sc. degree in automatic control and
communication from AGH University of
Science and Technology, graduated
mathematic from Jagiellonian University

in Krakow and received the Ph. D. degree (with honors) in
computing science from Poznan University of Technology, in
1977, 1979 and 1986, respectively.
Currently he is member of several editorial boards, among others
Scientific Journals International, International Association for

Development of the Information Society (IADIS), and
International Association of Science and Technology for
Development (IASTED) on Artificial Intelligence and Soft
Computing. His research interests include schedule, assignment
and allocation for tasks and resources, dependable and fault
tolerant systems, artificial intelligence, operating systems and
software engineering, author and co-author of 3 monographs and
over 60 papers in major professional journals and conference
proceedings. Dr. Drabowski is a member of the council of
the Polish Information Processing Society.

	The algorithm for cutting the hyper-sphere with a hyper-plane
	Evaluation of clusters

