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Summary 
In the presented paper presents a new method to generate the 
architecture of embedded systems based on the developmental 
genetic programming. Previously used methods, based on 
developmental genetic programming in their chromosomes 
represent solutions. In the presented approach, chromosomes are 
used to construct a system. Evolution in the depicted case does 
not concern but the co-synthesis process. A proposal of represent 
the process in the form of trees forming so-called. Genotype. 
Despite the fact that the architecture of Network-on-Chip (NoC) 
is an interesting alternative to a bus architecture based on multi-
processors systems, it requires a lot of work that ensures the 
optimization of communication. This paper proposes an effective 
approach to generate dedicated NoC topology solving 
communication problems. Network NoC is generated taking into 
account the energy consumption and resource issues. Ultimately 
generated is minimal, dedicated NoC topology. The proposed 
solution is assumed to be a simple router design and the 
minimum number of lines. 
Key words: 
Network on Chip, NoC-based embedded system co-synthesis, 
Developmental Genetic Programming. 
 
1. Introduction 
 
    Currently designed embedded systems are characterized 
by increasing complexity, which is a result of integration 
of many different functions in a single system [1]. Another 
aspect of the development of embedded systems is ever 
increasing hardware requirements related to cost, power 
consumption, short time of design and speed. To meet 
these requirements it is necessary to use computer-based 
tool supporting the design of specialized embedded 
systems architectures. Should like to concentrate on the 
development of effective methods to optimize the design 
of embedded systems, taking into account the above 
described parameters. The term synthesis system, refers to 
the process of computer architecture design. If that process 
surrender embedded systems, combining both hardware 
components and software, it assumes the name co-
synthesis hardware-software. Some papers of co-synthesis 
[2]. adopt the simplified architecture of the system, which 
consists of one general purpose processor and one 
processor in the form of dedicated ASIC or FPGA, for 
such cases the problem boils down to division of functions 
between hardware and software. Generally not accepted 

such limitations, so the co-synthesis results is to obtain the 
mapping specification systems architecture consisting of 
different types of processors, specialized modules, etc., the 
system having a distributed and heterogeneous nature. Co-
synthesis process is the automatic generation of embedded 
systems architectures based on the specification given in 
the form of current processes. The aim of co-synthesis is to 
optimize the properties of the system, such as cost, 
execution time and power consumption. Most modern 
methods of co-synthesis assumes a distributed architecture 
consisting of computational elements PE (Processing 
Element) which are hardware components  HC (Hardware 
Core) or software-PP (Programmable Processor). Co-
synthesis process consists the following tasks: 
- Allocation of CPUs and communication channels 
- Assignment of tasks to resources 
- Scheduling and transmission 
    The allocation is a step in which the system architecture 
is defined. To make this possible, it is necessary to define 
the available library modules and their parameters (the 
speed of execution tasks, cost, etc.). The assignment of 
tasks to processors is a generalized problem of the division 
of tasks between hardware and software. This step is being 
closely related to the allocation is typically performed in 
parallel with it. And scheduling is to determine the order 
of execution of each task. Both scheduling, as well as the 
assignment of tasks to resources is NP-complete problems. 
Therefore, efficient heuristics should be applied to find the 
best target architecture for a given system. Moreover, in 
case of NoC systems, one of the most serious research 
problem is application to NoC mapping with the respect to 
performance and power consumption constraints and 
communication contention control [4], [15], [16]. 
    One of the most important problems and design is a 
process for mapping application in NoC network, which 
takes into account the limitation of the operation speed, 
power consumption and solving communication conflict. 
Due to the specialized nature of embedded systems, in 
most cases, they are characterized by a predictable model 
of consumption and transmission [5]. Such application can 
be represented by a graph of tasks (TG) and used in the 
target NoC architecture. Use the graph of tasks can by 
optimized by applying exists algorithms such as allowing 
for finding shortest path and then use appropriate ways of 
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mapping in the NoC network. Mapping in NoC network is 
performed using common heuristic algorithms [6,7] and 
genetic algorithms [8,9]. Design algorithm have low 
computational complexity, but also tend to pick up in local 
minima optimized parameters. The quality of the results 
can be improved by adding a relapse in  the design of 
solution [10], but this creates a risk of entanglement in the 
algorithm, thereby increasing the computational 
complexity. The ability of escaping from local minima has 
genetic algorithms [11]. Genetic methods are also 
commonly used to optimize the selected stages of the 
synthesis system. 
    This paper presents new method hardware-software co-
synthesis based on developmental genetic programming 
[12,13]. The existing genetic methods of co-synthesis 
define the evolution of the refining architecture, where 
chromosomes define solution. An exception is the 
work[14], which is a process of evolution of co-synthesis. 
However, in this work the authors assumed that each node 
of the tree genotype will implement the task corresponding 
to given node in the graph of tasks, which is not entirely 
consistent with the principles of genetic programming, in 
which evolution should proceed without restriction. The 
approach proposed in this article allows to obtain a method 
for constructing the target system. Presented at work 
algorithm is subjected co-synthesis process to evolution, 
dividing the tasks of the graph on different types of genes. 
In next section, you will learn the problem co-synthesis of 
embedded systems. 
 
2. The System on Chip co-synthesis problem 
 
    The behavior of the designed embedded system can be 
described by a task graph G ={V,E}, which is directed 
acyclic graph. Each node represents a task, and the edge 
describes the relationship between tasks and . An edge 

 describes a dependency between tasks and . 
Each edge is annotated with a number describing the 
amount of data that have to be transferred between the two 
connected tasks. A sample task graph is presented on Fig.1. 

 

T2 

T0 

T1 

T3 T4 

100 80 

90 

50 40 

T5 

60 40 

 
 Figure 1. Sample task graph. 

 
One of the objectives of the existing database of 
computing elements, containing the task execution times(t), 
surface module (s) for implementation System on Chip. 

There are two basic types of PE: purpose programmable 
processor (PP) and specialized hardware modules (HC). 
Each can perform all the tasks that are compatible with 
them. By task size is determined by the memory 
footprint required by the task, and  determines the 
area of . HC hardware module performs only one task 

, but there may by multiple hardware implementations of 
the same task. All communication channels have the same 
bandwidth defined by .  
 
Table 1 shows an example of the resource base for the system described 
by the task graph in figure 1. 

 

PP1 

S=300 

PP2 

S=400 
HC1 HC2 

t s t s t s t s 

T0 200 6 150 6 60 180 40 250 

T1 50 4 40 3 24 90 15 150 

T2 250 16 190 18 170 200 150 500 

T3 220 13 140 14 110 140 100 300 

T4 150 12 120 15 70 20 30 50 

T5 60 5 55 5 35 110 - - 

 
    Task is not compatible with component , 
and have only one hardware implementation. All other 
tasks are four alternative implementations. Each task can 
have a specific requirement and time , indicated the 
moment of time in which the task must by performed. 
Let will be a start time of task . Created system is the 
correct solution if and only if the following conditions are 
met.  
                  

                    (1) 
      
                                                (2) 
  
If the task are assigned to the same , the . 
Condition (1) implies the correct ordering of tasks, while 
(2) ensures that all timing requirements. If we assume that 
the target architecture for the system described task graph 
containing n process, consists of m programmable 
processors, p communication bus, the total area occupied 
by the SOC system is given by: 
                    
                               (3) 
Where is the surface k-th communication channel. Thus, 
if A is the cost system, the purpose of the optimization is 
to find architecture witch smallest A under the conditions 
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1 and 2. If tIn the proposed methodology, the minimization 
of two components contained in the first of (4) is 
performed during co-synthesis, while the other parameters 
are optimized when the NoC topology is generated. 

 
     (4) 
 
Result of the co-synthesis is specified using the Attributed 
Task Graph (ATG), which is an input model for the second 
step performing topology generation. ATG is a directed 
acyclic graph, where vertices Ti are tasks and edges Mi,j 
are messages sent between them (i,j are sender – receiver 
task indices).  Every graph node Ti has information about 
assigned processor PE (P(Ti)), execution time |Ti | 
(measured in clock cycles), and pre-scheduled start time 
tSTART(Ti). Similarly, edges are marked with transmission 
volume |Mi,j| (measured in flits) and with pre-scheduled 
start time tSTART(Mi,j). In our model, volume of the 
message equals its transmission time through the network, 
regardless of the hop count. It is because many current 
NoC routers offer latency of 1-2 cycles, so for wormhole 
switching and large messages latency caused by routers is 
omitted.  
 
3. NoC system architecture with router. 
 
    Depending on the input model applications and target 
NoC topology, synthesis methods can be divided into the 
following groups: Synthesis of ACG in architecture 
regular/irregular, TG synthesis in regular/irregular 
architecture. Selection of regular NoC topology simplifies 
the design process, because the design decision then 
narrows the search for subset of solutions. Previously, the 
algorithms take as input the task graph. This approach 
allows for the benefits, but also some limitations. Task 
Graph (TG) is used as a representation of the application 
process, used with good results in [3-18]. 
    Most of the existing algorithms of co-synthesis is a 
refinement [4,5]. In these methods, starting from sub-
optimal solutions, during an operation algorithmic is 
performed improvement of the system by local 
modifications of architecture. Typically, in such cases as 
the initial solution is proposed architecture ensures the 
execution of all tasks in the shortest possible time, where 
each process is handled by another PE. Aiming to obtain 
the best system are transferred process to other PE, 
removes and adds PE, etc. 
    Network on chip  is constructed from multiple point-to-
point links interconnected by routers. In this paper assume 
a router capable of establishing many simultaneous full-
duplex connections [17], with wormhole switching and 
source routing. The router has one Local Port (LP, 
connected to one NI - Network Interface of PE) and up to 

4 inter-router, full-duplex ports – like in many popular 
mesh approaches. One port can use two unidirectional 
links: input and output. Only one-flit input buffer is 
necessary. One router supports one PE module, one PE is 
attached to one router, and there is no routers without PE 
attached to it. The concept of the router is presented in 
Figure 2. 
    The restriction to impose heuristic algorithms have been 
level, after propose to use in the synthesis of NoC network 
probabilistic algorithm [13]. Particularly good results were 
obtained after application of the genetic algorithms in [11]. 
In many works are presented approach to the multi-
mapping space, based on mesch structure of the NoC 
architecture, using evolutionary computation techniques. 
Usually in this work are used heuristic mechanisms based 
on multitasking genetic algorithm to explore the space and 
finding the Pareto mappings the optimize performance and 
power consumption. NoC design allows for hardware 
virtualization, which can map one or more logical tasks on 
a single PE. This allows the preparation of PE for the 
calculation for one or more logical calculations. 
    The results of this approach is the optimal way to map 
and to reduce the communication and the highest 
temperature in comparison with a purely random mapping 
of the network. In some cases, the proposed hierarchical 
genetic algorithm reduces the energy demand in NoC. 
According to the present state of our knowledge this the 
first work presents the use of developmental genetic 
programming in the synthesis of embedded systems. 
 
    Network on chip  is constructed from multiple point-to-
point links interconnected by routers. We assume a router 
capable of establishing many simultaneous full-duplex 
connections [17], with wormhole switching and source 
routing. The router has one Local Port (LP, connected to 
one NI - Network Interface of PE) and up to 4 inter-router, 
full-duplex ports – like in many popular mesh approaches. 
One port can use two unidirectional links: input and output. 
Only one-flit input buffer is necessary. One router supports 
one PE module, one PE is attached to one router, and there 
is no routers without PE attached to it. The concept of the 
router is presented in figure 2. Co-synthesis algorithm is 
designed to perform allocation and mapping stages, also 
aims to scheduling of tasks and messages. 
    During this step every port-based contention is resolved, 
but potential conflicts between messages transmitted by 
different PEs are omitted. Has been adopted that must be 
met four principles: 
      - PE executes only one task at the same time without    
         pre-emption 
      - NI (NI - Network Interface of PE) can send only one  
        message at the same time without interleaving the       
        messages 
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      - tasks can start when have received all messages, and   
        message can start when its task (producer) is finished 

 
Figure 2. Router architecture 

 
- Every PE module has its own local memory and the    
   programming model is message-passing. If it will be     
   not    possible to find the contention-free topology    
   then rescheduling of transmissions and/or tasks is  
   performed. 

To estimate the quality of the generated NoC topologies 
were proposed three measures of assessment: 

- execution time of the whole system - the longer time  
        of execution system, makes worse the performance,  

which also affects the static  energy consumption of  
  the system, 
- number of links used to build topology - From the  
  point of view of energy and resources in the system is  
  as small as possible all the desired quantity links. [18]. 
  By minimizing the number of connections can  

        facilitate the synthesis of systems. 
- average hop count - impacts the both of these factors:  
  performance and power of NoC. The longer route    
  means more latency during transmissions; besides it  
  Affect dynamic energy consumption [19]. 

We  defined weighted average (5), where n is the total 
number of messages,  |Mi,j| is duration of the Mi,j message 
and hop(Mi,j) is the number of hops for Mi,j. Thus longer 
transmissions sent through more routers impact more on 
the average hop than the shorter ones. 

 

    (5) 

4. Developmental Genetic Progrmming 

    Genetic Programming (GP) [13] is a method for 
optimizing involving the generation of a genetic algorithm. 
Optimization in genetic programming is evolution of the 
tree structure of the program, in order to get the best 
program, which, for sets of input data generates the 
expected results. Genetic Programming has been 
successful to generate efficient programs that perform 
mathematical calculations robot control algorithms, text 
recognition, data analysis, and many other fields. There is 
36 known problems for which using the method of genetic 
programming solution is found comparable or better than 
found manually. 
    The need for optimization problems showed strongly 
reduced, that genetic programming is not sufficient to meet 
the requirements of a functional or timing. Been proposed 
an extended version of PG, that is the Developmental 
Genetic Programming (DGP) [14]. In this method, instead 
of programs (complete solutions) are generated algorithms 
for constructing a solution to the problem. 
These algorithms are represented by a tree, where the 
nodes correspond to the decisions of the design, and the 
edges describe the order. DGP developed an effective 
method for solving many problems in the field of linear 
design of electronic circuits (filters, amplifiers) logic 
synthesis, and others. But so far not tested the applicability 
of the method DGP in co-synthesis of embedded systems. 
    Development of genetic programming method is 
especially effective for the optimization problem strongly 
limited (for example, the co-synthesis problem). In such 
cases, the solutions provided by traditional genetic 
approach or deterministic does not meet the requirements. 
Traditional genetic approach imposes constraints control 
the optimization process in a manner considered to be only 
correct solution. However, these restrictions also narrow 
the search space, while making it impossible to find the 
best solutions if they are the result of the evolution of 
refining or incorrect solutions. These problems do not 
occur in the DGP, where evolution takes place without any 
restrictions, while the correctness of this solution is 
provided by the mapping genotype to phenotype. This 
feature allows the DGP method in many cases get a lot 
better results than previously used methods. 
 
5. The Methodology 
 
    During the first step the co-synthesis of the system 
specified by task graph is performed. In accordance with 
the principle of developmental genetic programming the 
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developed algorithm evolution of the subject tree 
(genotype) describing the construction of the designed 
system. Root of tree sets embryonic system design, nodes 
correspond to those building the system. To ensure the 
implementation of all tasks, the structure of the genotype 
is a tree mapper graph tasks. Each node of the tree 
genotype implements the corresponding part, which had 
previously separated. The structure of the genetic 
operations. Co-synthesis allocates PEs, assigns tasks to the 
allocated PEs and performs initial scheduling of all tasks 
and messages. Communication links are not considered in 
this step, it is assumed that all messages may be sent as 
soon as possible i.e. without collisions (the goal of the 
second step is to satisfy this assumption). Co-synthesis 
optimizes the total system cost (taking into consideration 
only the cost of PEs and routers) while preserving all time 
constraints. Optimization is performed using the 
developmental genetic programming. 
    Results of the co-synthesis method is presented as 
attributed task graph, and then use to generate a dedicate 
NoC topology using the proposed approach. If it is 
impossible to create a desired topology according to the 
proposed methodology is performed rescheduling tasks. If 
rescheduling is not possible, then proposed methodology 
make modifications of violates time requirements and then 
re-synthesis is performed for tighter time constraint, but 
this case is very sporadic.  During this step the NoC is 
optimized using deterministic methods. 
 
5. 1 The embryonic  
    Embryo implements the first of the generated (a division 
algorithms graph) part of the graphs. The number of 
embryos is equal to use the number of split graph 
algorithms. For each embryo solution is randomly 
generated. The root of this tree specifies the construction 
of an embryonic system, while all other nodes correspond 
to functions progressively building the system. 
 
5.2 Genotype and initial population 
    Genotypes are structured in a tree. Each node 
corresponds to function implementing some tasks. To the 
root node has been assigned the whole graph. Function 
assigned to a node select a specified number of tasks and 
then implement them. Other and unallocated tasks are 
partitioned into groups and assigned to parent nodes. The 
functions associated with the nodes are responsible for the 
criteria that determine the allocation, task selection and 
task partitioning. The initial population for each solution 
are generated randomly.  N determines size of initial 
population, where N is number of tasks. Size of the initial 
population is defined by the parameter α, such that: 
population_size=α*N*r (N is the number of tasks and r is 
the number of PEs in the resource database).  
 
 

 
5.3 Algorithm of creating system 
     Mapping genotype to phenotype should always 
generate valid system. Creating system should meet the all 
the constraints. System is constructed by executing 
functions corresponding to the following nodes of the 
genotype browsed in the breath-first order. Extreme 
system is creating according to the algorithm presented on 
Fig 3. As extreme system in this paper is considered the 
system with largest sum of stack times for all deadlines. In 
this paper slack time mean difference between the deadline 
and the finish time of constrained task. First, each task is 
allocated to the PE which executes this task in shortest 
time and the system is scheduled using ASAP (As Soon 
As Possible) method. Next, if it is possible to increase the 
system speed by reassigning any pair of communicating 
tasks to the same PP (in this case transmission is omitted) 
then such reassignment is registered. Each task may by 
reclassification more than once, thus all multiple 
reassignments should be resolved by choosing the best one. 
All possible conflicts are presented on Fig. 4, in all cases 
the reassignment giving largest increase of the slack time 
is chosen.  
1: for every Ti in TG do  

2:      assign_fastest_PE(Ti); 

3: ASAPScheduling(); 

3: for every adjacent_pair(Ti,Tj) do   

4:     for every PPk in resource_database 
do 

5:          if ( tk(Ti)+tk(Tj) < tf(Ti)+ 
t(Mi,j)+tf(Tj)) then  

6:            save_reassignment(Ti,Tj,PPk) 

7: ResolveAllReassignments(); 
Figure 3. Algorithm for construction of extreme system 

 

 

T1 

T0 T2 

PPi PPj 

T1 

PPk 

 

T1 

T0 

T2 

PPi 

PPj 

 

T1 

T0 T2 

PPi PPj 

 
Figure 4. Possible conflicts in reassignments 
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    All genes possess sets out the rules to changing the 
implementation and through the use of specific genes is 
constructed system. There is possibility to applied only 
design decisions that do not violate time constraints. In 
this way each genotype is always mapped onto valid 
phenotype. 
 
5.4 System-construction functions 
    Genotype which has tree structure represents in every 
node a function implementing some tasks from the task 
graph.  First it allocates one PE. If PE is a hardware core 
then only one task is chosen (first task from the group) and 
assigned to this core, otherwise a group of tasks is 
implemented. In the proposed system, we can distinguish 
two types of genes: genes and gene mapping division. In 
each population genotype is randomly generated. On fig5 
is showed simple random choosing genotype and on fig 6 
is shown graph shared by genotype from fig5. For the 
selected tracks are laid down time limits that the 
performance of the functions of the system are examined 
using the algorithm Dynamic Time Limit (DTL). Figure 7 
shows an alignment tasks in the processors in the chosen 
region NoC network. The last step is to create a complete 
network of NoC architecture, combining all its regions and, 
if necessary, appropriate rescheduling task, as shown in 
Figures 8a and 8b. Then, using the corresponding genes 
are created NoC network regions, which are mapped to a 
particular task. Each node in the tree genotype represents a 
function to generate the target a network of  NoC or region 
of NoC. Constructing the system is in accordance with the 
following steps: 
       1. Random selection genotype. With the available   
            resources genes sharing and mapping is drawn  
            genotype. 
       2.  Selection of the gene responsible for the division of  
            the graph, the set of genes sharing. This step is  
            always carried out, as the input data is assumed the  
            graph or a portion thereof. 
       3.  Performing split graph / part of the graph according  
            to the rules defined in the selected gene division.  
            After selecting the appropriate gene in step 1 is  
            carried out the division of input data to the next   
            layer genotype (graph / part of the graph) into  
            smaller parts. 
       4. Selection of the gene responsible for the  
            implementation of the graph / graph fragment to  
            the region of the NoC network 
       5. Mapping graph / graph fragment to NoC network.  
            After selecting the appropriate gene in step 3 is  
            performed mapping input data (graph / part of the  
            graph) in the region NoC network. 
      6. The combination of all regions NoC networks  
           grouped into one network. After mapping all the        
           tasks in the  respective regions NoC network is  
           made one single network NoC. 

 

 
 
 

Figure 5. 
genotype  Architecture of 
the created NoC network. 

 
 
 
 
 

 
Figure 7.Simple  genotype 
 

 
Figure 6. Task Graph after sharing by genotype from Figure 5 

 
In Table 2 are presented preferences for each system-
construction function. At the beginning of the initial 
generation is generated composed of randomly generated 
composed of randomly generated genotypes. The size of 
initial generation defines the parameter α and is: π = α * n 
* e (n - is the number of tasks, and e is the number of 
possible embryos). In the initial population, preferences 
for all steps are selected randomly, with the probability 
given in the last column. During mutation to modify the 
gene is used the same probability. 
    Preferences for allocation of a new PE are the 
following:  

(a) Hardware component – type of HC is chosen 
according to preferences for step 2; 

(b) PP occupying the smallest area; 
(c) PP executing in shortest time all tasks assigned to 

gene; 
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(d) PP minimizing the critical path (path with 
shortest slack time), i.e. if after executing steps 2 
and 3, the critical path is the shortest one; 

(e) PP that executes the first task from the group in 
the shortest time;  

Table 2. System-construction preferences used for genotype to phenotype 
mapping 

Step Preference P 
1 a. HC 

b. PP - smallest area 
c. PP - fastest 
d. PP – fastest critical path 
e. PP – fastest first task 

0.3 
0.2 
0.2 
0.1 
0.2 

2 a. Smallest area 
b. Fastest 
c. Critical path 
d. Minimizing transmission 
e. Next  
f. minimal 

0.1 
0.1 
0.1 
0.2 
0.2 
0.3 

3 LLF scheduling 1 

4 a. Min-cut – comm. size 
b. Min-cut – transmissions 
c. Min-cut – crit. path 
d. no-cut 

0.3 
0.3 
0.2 
0.2 

 
Column the probability represents the probability of 
choosing a particular gene. The choice of gene sharing and 
gene mapping decide: optimization of speed, optimization 
of NoC traffic or network energy optimization NoC. The 
highest probability of being selected is the gene 
responsible for the optimization of NoC traffic. Because 
the transmission of the longest execution time can cause 
collisions. In proposing the division of the graph by 
cutting at the site of the longest transmission, which 
disables the selected transmission in the region considered 
NoC network. The inclusion of the longest transmission 
network in a region NoC offers greater possibilities of 
other transmission scheduling.  
    The system can distinguish two types of genes: Genes 
division graph and mapping genes. The first type of genes 
responsible for the division of the graph, or its part into 
smaller fragments. The second type of gene is responsible 
for the mapping portion of the graph (which is the result of 
the division by the gene / genes share) in the region NoC 
network. The system is constructed by the performance at 
the level of the node in the tree. The tree is the genotype of 
specific genes at different levels, depending on the 
location of the node in the tree algorithm is performed 
assigned to the corresponding gene. If the node is a leaf 
genotype is performed gene mapping that performs the 
mapping in question the graph in the network NoC. 
Otherwise, if the node is not a leaf is made of the graph 
division / section of the graph according to the rules of a 
particular gene. Each gene sharing and gene mapping 

ensures that the time constraints imposed on individual 
tracks will be met. Compliance with time limits and, as 
proposed here, the algorithm Dynamic Time Restriction. 
    During mapping genotype to phenotype each functions 
take into consideration constraints. If the selected 
allocation/assignment causes constraint violation then the 
next matching design decision will be chosen. To avoid 
infinite growth of genotypes during evolution, unused 
genes are removed from genotypes. Fig. 9a presents a 
sample genotype for the task graph from Fig.1. Assume 
that the deadline for task T5 is defined as c5=620, then the 
system is constructed as follows. Final system is given on 
Fig. 5b. 
 

(a)                                              (b) 

 
Figure 8.  Sample genotype (a) and the corresponding phenotype (b) 

 
5.5 Evolution 
    On the evolution of the use of genetic operators: 
crossover, reproduction and mutation generates a new 
generation of solutions. The number of solutions in each 
population is always equal to population_size. After the 
genetic operations are performed on the current population, 
the new population replaces the current one. The evolution 
is controlled by parameters reproduction_rate, 
crossover_rate and mutation_rate, as follows:  

• reproduction_rate*population_size is the number 
of solutions created using reproduction, 

• crossover_rate*population_size is the number of 
solutions created using crossover, 

• mutation_rate *population_size is the number of 
solutions created using mutation, 

• reproduction_rate+crossover_rate+mutation_rat
e=1, this condition ensures that each population 
will have the same number of individuals. 

    All solutions are ranked by the cost defined in previous 
chapters, which defines the fitness function. Solutions are 
selected randomly, but with different probability, which is 
defined according to the position in the ranking r as: 

  sizepopulation
rsizepopulationP

_
_ −

=
   

 

HC1 

pe0 

T0 

pe1 

PP1 

pe2 

PP3 

T3 T4 

T1 

T2 T5 

 

1c2b 
4d 

1a2a 
4a 

1b2c 
4b 

1d2b 
4a 

1b2a 
4d 1d2b 

4a 
1c2c 
4c 
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G2 

G3 G4 

G5 

G6 G7 
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Thus the best solutions are preferred for reproduction, but 
worse solutions are not necessarily passed over. 
    Crossover randomly selects two solutions, then a single 
point of intersection is selected at random for both parents. 
All data beyond this point are swapped between parents 
and the resulting solutions are children added to the new 
population. Figure 9 shows an example of crossing two 
solutions. The dotted line is a cutting point. Mutation 
randomly selects one solution, then randomly selects a 
node and replaces it by generating new options. The 
algorithm stops if the best found solution does not improve 
in the last ε steps. The best solution obtained during the 
run is the result of the algorithm. 
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         Figure 9  Crossover of genotypes 

 
6. Experimental results and discussion 
 
    The effectiveness of the proposed method was tested 
after a certain amount of testing. First, systems represented 
with random generated task graphs were synthesized using 
DGP, Yen-Wolf [2] and EWA [3] methods. The results of 
conducted experiments are given in Table 3. The following 
columns contain: number of tasks, constraint for the whole 
graph, and synthesis results. The target system architecture 
cost and for each method the time required for execution 
of all tasks are given. In all cases four types of PE were 
available in the resource library. The Developmental 
Genetic Programming method found comparable or better 
solution for all systems. We assumed the following 
parameters: α=10, reproduction_rate=0.2, 
crossover_rate=0.7, mutation_rate=0.1 and ε=5. In the 
worst case (system with 90 tasks), the algorithm stopped 
after 150 seconds, and 53 generations were evaluated. 
Figure 10 presents the comparison of the optimization 
flow for all methods mentioned above. Graph with 50 
tasks was synthesized with constraint Tmax=2200.  The Y 
(vertical) axis represents the cost of a solution, found in 
the following optimizations steps (generations). For DGP 
approach the X (horizontal) axis represents the population 
number, while for EWA and Yen-Wolf it represents the 
following refinement steps. The Developmental Genetic 

Programming method was run 3 times, with populations 
equal to 10000, 20000 and 40000 individuals (α*50*4).  In 
this methods solutions with costs: 4042, 4024, 3919 were 
found, while using iterative improvement methods the best 
solution found had a cost equal to 4151. 
 
Table 3. Experimental results obtained using Yen-Wolf, EWA and DGP 
cosynthesis methods: N-number of tasks in a task graph, Tmax – deadline, 
Time - time of execution of all tasks, Cost – area of the target system 
 

N Tmax Yen-Wolf EWA DGP 
Time Cost Time Cost Time Cost 

10 400 315 1573 287 1517 395 1545 

30 800 773 3441 796 3600 792 3167 

50 1200 1171 6182 1179 5606 1142 5518 

70 1600 1548 6859 1563 6650 1599 5947 

90 2000 1917 13184 1996 7873 1991 7411 

 

 
Figure 10. Optimization flows for different co-synthesis methods. GP50, 
GP100 and GP200 represent the DGP method with α=50, α=100 and 
α=200, respectively. 
 
For the experimental purposes we applied the co-synthesis 
algorithm (Deniziak et al. 2008a) to 10 synthetic task 
graphs (application models) using our tool similar to well-
known TGFF (Dick et al. 1998). Every graph has 20-30 
tasks, 15-30 messages and 5-9 allocated PEs. For the 
experimental purposes we applied the co-synthesis 
algorithm (Deniziak et al. 2008a) to 10 synthetic task 
graphs (application models) using our tool similar to well-
known TGFF (Dick et al. 1998). Every graph has 20-30 
tasks, 15-30 messages and 5-9 allocated PEs. We have also 
calculated calculation/message time and collision/message 
time factors. The first one ranges from 0,36 
(communication-oriented system) to 1,83 (calculation-
oriented system with less probability of message 
contention). The second factor we interpret as the 
probability indicator of the message conflict. It ranges 
from 0,25 (little probability of contention) to 0,64 (high 
probability of contention). Next, via mathematical analysis, 
we compared our custom network topology (“Custom”) 
against randomly generated minimal rectangular mesh 
(“NxM”), random minimal regular mesh (“NxN”), and 
against custom topology obtained by applying 
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methodology similar to bandwidth-based approach (Neeb 
et al. 2008)(Murali et al. 2006) (“Bndwdth”). In particular, 
we transformed generated ATGs into Core Graphs, next 
we generated direct links for cores exchanging the largest 
amounts of data and dedicated links to remove possible 
contention. Such approach reminds also the one presented 
in (Leary et al. 2009), but is far chip resource conserving – 
no routers without PE are allowed. It is achieved at the 
price of possible longer transmission paths. To make 
comparison with our method fair, we followed the rule 
“one router - one PE” and no more than 4 bidirectional 
router ports. Moreover – every link in the topology has the 
same bandwidth. Meshes use XY routing and are made 
contention-free by rescheduling. For our topology and 
bandwidth-based one, performance is the same (i.e. 
execution time of the system), as both solutions are 
contentionless. 

Table 4. Link usage deterioration 

App. 
Name 

calc./ 
msg. coll./msg. Custom 

[%] 

NxM 
mesh 
[%] 

NxN 
mesh 
[%] 

G01 0,54 0,35 7,08 11,39 11,39 
G02 0,69 0,64 10,77 37,25 18,84 
G03 0,36 0,48 7,79 15,09 12,25 
G04 0,66 0,3 8,66 12,52 19,14 
G05 1,32 0,41 9,86 19,8 14,44 
G06 1 0,4 5,02 9,55 7,04 
G07 0,58 0,5 0 8,34 9,17 
G08 1,22 0,4 0 7 7 
G09 1,83 0,25 0 0 3,24 
G10 1,06 0,52 10,9 14,2 16,18 

The information about graphs is showed in Table 4 
(columns 2 and 3 contain previously mentioned factors) 
and performance (i.e system latency) loss compared to 
system just after co-synthesis (with path-based contention 
ignored). In every case superiority of topology generated 
by our methodology over meshes is demonstrated. In four 
cases our approach gave result equal to the fastest system 
(performance loss "0" means no additional latency). This 
means that it is not necessary to prevent network 
contention because there is no transmission scheduling 
required. Performance (latency) loss results.  

     The results for topology generation contains in table 5. 
In this paper unidirectional links used in every topology 
are counted.  Its a coarse factor of chip resources and 
energy requirements. Proposed approach if far better than 
mesh approaches - minimum link saving is over 39%. Also 
bandwidth-based topology demands more resources than 
presented in this paper. There is only one case – G03 - 
where we noticed deterioration of our solution.  

Table 5. Performance (latency) loss results  

App. 
Name 

Custo
m 

[links] 

NxM 
mesh 

link loss 
[%] 

NxN mesh 
link loss 

[%] 

Bndwdth 
link loss 

[%] 

G01 9 33,71 60,15 16,17 
G02 9 52 61,52 31,17 
G03 9 33,17 63,35 -14,5 
G04 6 54,12 72 43,45 
G05 10 46,5 55,33 27,57 
G06 9 33,17 60,35 9 
G07 12 37,2 48 0 
G08 13 41,38 42,23 26,78 
G09 8 39,68 66,67 26,27 
G10 13 31 43,33 12,33 

 
7. Conclusion 
 
    A novel approach to hardware/software codesign was 
presented in this paper. The system is generated using 
developmental genetic programming method during using 
design procedure. To best knowledge it is the first DGP 
method dealing with the codesign problem. Preliminary 
experimental results show that the method is very 
promising.  While there is still a large space for 
improvements, not examined yet, for all benchmarks we 
received results comparable or better than using other co-
synthesis methods. Future research will concentrate on 
further improvements of the presented approach. 
Especially, we will examine alternative implementations 
of genetic operators, other structures of the system 
construction tree, other system-construction functions, etc. 
In future work is planned to achieve better results in a 
reasonable time for  the final DGP co-synthesis method.  
   In this paper is proposed a novel methodology for 
application-specific and contention-free NoC generation. 
The goals are achieved through dedicated links generation 
(topology part) and temporal ordering of the 
tasks/messages (schedule part). The presented smethod, is 
suitable for distributed embedded systems, i.e. systems 
with predictable pattern of communication. As 
demonstrated through experiments, our approach is far 
better than typical, random mesh networks.  
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