
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

18

Manuscript received November 5, 2013
Manuscript revised November 20, 2013

NOC-based Embedded Systems Co-synthesis – Developmental
Genetic Programming Approach

Dariusz Dorota

Cracow University of Technology; Krakow, Poland

Summary
In the presented paper presents a new method to generate the
architecture of embedded systems based on the developmental
genetic programming. Previously used methods, based on
developmental genetic programming in their chromosomes
represent solutions. In the presented approach, chromosomes are
used to construct a system. Evolution in the depicted case does
not concern but the co-synthesis process. A proposal of represent
the process in the form of trees forming so-called. Genotype.
Despite the fact that the architecture of Network-on-Chip (NoC)
is an interesting alternative to a bus architecture based on multi-
processors systems, it requires a lot of work that ensures the
optimization of communication. This paper proposes an effective
approach to generate dedicated NoC topology solving
communication problems. Network NoC is generated taking into
account the energy consumption and resource issues. Ultimately
generated is minimal, dedicated NoC topology. The proposed
solution is assumed to be a simple router design and the
minimum number of lines.
Key words:
Network on Chip, NoC-based embedded system co-synthesis,
Developmental Genetic Programming.

1. Introduction

 Currently designed embedded systems are characterized
by increasing complexity, which is a result of integration
of many different functions in a single system [1]. Another
aspect of the development of embedded systems is ever
increasing hardware requirements related to cost, power
consumption, short time of design and speed. To meet
these requirements it is necessary to use computer-based
tool supporting the design of specialized embedded
systems architectures. Should like to concentrate on the
development of effective methods to optimize the design
of embedded systems, taking into account the above
described parameters. The term synthesis system, refers to
the process of computer architecture design. If that process
surrender embedded systems, combining both hardware
components and software, it assumes the name co-
synthesis hardware-software. Some papers of co-synthesis
[2]. adopt the simplified architecture of the system, which
consists of one general purpose processor and one
processor in the form of dedicated ASIC or FPGA, for
such cases the problem boils down to division of functions
between hardware and software. Generally not accepted

such limitations, so the co-synthesis results is to obtain the
mapping specification systems architecture consisting of
different types of processors, specialized modules, etc., the
system having a distributed and heterogeneous nature. Co-
synthesis process is the automatic generation of embedded
systems architectures based on the specification given in
the form of current processes. The aim of co-synthesis is to
optimize the properties of the system, such as cost,
execution time and power consumption. Most modern
methods of co-synthesis assumes a distributed architecture
consisting of computational elements PE (Processing
Element) which are hardware components HC (Hardware
Core) or software-PP (Programmable Processor). Co-
synthesis process consists the following tasks:
- Allocation of CPUs and communication channels
- Assignment of tasks to resources
- Scheduling and transmission
 The allocation is a step in which the system architecture
is defined. To make this possible, it is necessary to define
the available library modules and their parameters (the
speed of execution tasks, cost, etc.). The assignment of
tasks to processors is a generalized problem of the division
of tasks between hardware and software. This step is being
closely related to the allocation is typically performed in
parallel with it. And scheduling is to determine the order
of execution of each task. Both scheduling, as well as the
assignment of tasks to resources is NP-complete problems.
Therefore, efficient heuristics should be applied to find the
best target architecture for a given system. Moreover, in
case of NoC systems, one of the most serious research
problem is application to NoC mapping with the respect to
performance and power consumption constraints and
communication contention control [4], [15], [16].
 One of the most important problems and design is a
process for mapping application in NoC network, which
takes into account the limitation of the operation speed,
power consumption and solving communication conflict.
Due to the specialized nature of embedded systems, in
most cases, they are characterized by a predictable model
of consumption and transmission [5]. Such application can
be represented by a graph of tasks (TG) and used in the
target NoC architecture. Use the graph of tasks can by
optimized by applying exists algorithms such as allowing
for finding shortest path and then use appropriate ways of

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

19

mapping in the NoC network. Mapping in NoC network is
performed using common heuristic algorithms [6,7] and
genetic algorithms [8,9]. Design algorithm have low
computational complexity, but also tend to pick up in local
minima optimized parameters. The quality of the results
can be improved by adding a relapse in the design of
solution [10], but this creates a risk of entanglement in the
algorithm, thereby increasing the computational
complexity. The ability of escaping from local minima has
genetic algorithms [11]. Genetic methods are also
commonly used to optimize the selected stages of the
synthesis system.
 This paper presents new method hardware-software co-
synthesis based on developmental genetic programming
[12,13]. The existing genetic methods of co-synthesis
define the evolution of the refining architecture, where
chromosomes define solution. An exception is the
work[14], which is a process of evolution of co-synthesis.
However, in this work the authors assumed that each node
of the tree genotype will implement the task corresponding
to given node in the graph of tasks, which is not entirely
consistent with the principles of genetic programming, in
which evolution should proceed without restriction. The
approach proposed in this article allows to obtain a method
for constructing the target system. Presented at work
algorithm is subjected co-synthesis process to evolution,
dividing the tasks of the graph on different types of genes.
In next section, you will learn the problem co-synthesis of
embedded systems.

2. The System on Chip co-synthesis problem

 The behavior of the designed embedded system can be
described by a task graph G ={V,E}, which is directed
acyclic graph. Each node represents a task, and the edge
describes the relationship between tasks and . An edge

 describes a dependency between tasks and .
Each edge is annotated with a number describing the
amount of data that have to be transferred between the two
connected tasks. A sample task graph is presented on Fig.1.

T2

T0

T1

T3 T4

100 80

90

50 40

T5

60 40

 Figure 1. Sample task graph.

One of the objectives of the existing database of
computing elements, containing the task execution times(t),
surface module (s) for implementation System on Chip.

There are two basic types of PE: purpose programmable
processor (PP) and specialized hardware modules (HC).
Each can perform all the tasks that are compatible with
them. By task size is determined by the memory
footprint required by the task, and determines the
area of . HC hardware module performs only one task

, but there may by multiple hardware implementations of
the same task. All communication channels have the same
bandwidth defined by .

Table 1 shows an example of the resource base for the system described
by the task graph in figure 1.

PP1

S=300

PP2

S=400
HC1 HC2

t s t s t s t s

T0 200 6 150 6 60 180 40 250

T1 50 4 40 3 24 90 15 150

T2 250 16 190 18 170 200 150 500

T3 220 13 140 14 110 140 100 300

T4 150 12 120 15 70 20 30 50

T5 60 5 55 5 35 110 - -

 Task is not compatible with component ,
and have only one hardware implementation. All other
tasks are four alternative implementations. Each task can
have a specific requirement and time , indicated the
moment of time in which the task must by performed.
Let will be a start time of task . Created system is the
correct solution if and only if the following conditions are
met.

 (1)

 (2)

If the task are assigned to the same , the .
Condition (1) implies the correct ordering of tasks, while
(2) ensures that all timing requirements. If we assume that
the target architecture for the system described task graph
containing n process, consists of m programmable
processors, p communication bus, the total area occupied
by the SOC system is given by:

 (3)
Where is the surface k-th communication channel. Thus,
if A is the cost system, the purpose of the optimization is
to find architecture witch smallest A under the conditions

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

20

1 and 2. If tIn the proposed methodology, the minimization
of two components contained in the first of (4) is
performed during co-synthesis, while the other parameters
are optimized when the NoC topology is generated.

 (4)

Result of the co-synthesis is specified using the Attributed
Task Graph (ATG), which is an input model for the second
step performing topology generation. ATG is a directed
acyclic graph, where vertices Ti are tasks and edges Mi,j
are messages sent between them (i,j are sender – receiver
task indices). Every graph node Ti has information about
assigned processor PE (P(Ti)), execution time |Ti |
(measured in clock cycles), and pre-scheduled start time
tSTART(Ti). Similarly, edges are marked with transmission
volume |Mi,j| (measured in flits) and with pre-scheduled
start time tSTART(Mi,j). In our model, volume of the
message equals its transmission time through the network,
regardless of the hop count. It is because many current
NoC routers offer latency of 1-2 cycles, so for wormhole
switching and large messages latency caused by routers is
omitted.

3. NoC system architecture with router.

 Depending on the input model applications and target
NoC topology, synthesis methods can be divided into the
following groups: Synthesis of ACG in architecture
regular/irregular, TG synthesis in regular/irregular
architecture. Selection of regular NoC topology simplifies
the design process, because the design decision then
narrows the search for subset of solutions. Previously, the
algorithms take as input the task graph. This approach
allows for the benefits, but also some limitations. Task
Graph (TG) is used as a representation of the application
process, used with good results in [3-18].
 Most of the existing algorithms of co-synthesis is a
refinement [4,5]. In these methods, starting from sub-
optimal solutions, during an operation algorithmic is
performed improvement of the system by local
modifications of architecture. Typically, in such cases as
the initial solution is proposed architecture ensures the
execution of all tasks in the shortest possible time, where
each process is handled by another PE. Aiming to obtain
the best system are transferred process to other PE,
removes and adds PE, etc.
 Network on chip is constructed from multiple point-to-
point links interconnected by routers. In this paper assume
a router capable of establishing many simultaneous full-
duplex connections [17], with wormhole switching and
source routing. The router has one Local Port (LP,
connected to one NI - Network Interface of PE) and up to

4 inter-router, full-duplex ports – like in many popular
mesh approaches. One port can use two unidirectional
links: input and output. Only one-flit input buffer is
necessary. One router supports one PE module, one PE is
attached to one router, and there is no routers without PE
attached to it. The concept of the router is presented in
Figure 2.
 The restriction to impose heuristic algorithms have been
level, after propose to use in the synthesis of NoC network
probabilistic algorithm [13]. Particularly good results were
obtained after application of the genetic algorithms in [11].
In many works are presented approach to the multi-
mapping space, based on mesch structure of the NoC
architecture, using evolutionary computation techniques.
Usually in this work are used heuristic mechanisms based
on multitasking genetic algorithm to explore the space and
finding the Pareto mappings the optimize performance and
power consumption. NoC design allows for hardware
virtualization, which can map one or more logical tasks on
a single PE. This allows the preparation of PE for the
calculation for one or more logical calculations.
 The results of this approach is the optimal way to map
and to reduce the communication and the highest
temperature in comparison with a purely random mapping
of the network. In some cases, the proposed hierarchical
genetic algorithm reduces the energy demand in NoC.
According to the present state of our knowledge this the
first work presents the use of developmental genetic
programming in the synthesis of embedded systems.

 Network on chip is constructed from multiple point-to-
point links interconnected by routers. We assume a router
capable of establishing many simultaneous full-duplex
connections [17], with wormhole switching and source
routing. The router has one Local Port (LP, connected to
one NI - Network Interface of PE) and up to 4 inter-router,
full-duplex ports – like in many popular mesh approaches.
One port can use two unidirectional links: input and output.
Only one-flit input buffer is necessary. One router supports
one PE module, one PE is attached to one router, and there
is no routers without PE attached to it. The concept of the
router is presented in figure 2. Co-synthesis algorithm is
designed to perform allocation and mapping stages, also
aims to scheduling of tasks and messages.
 During this step every port-based contention is resolved,
but potential conflicts between messages transmitted by
different PEs are omitted. Has been adopted that must be
met four principles:
 - PE executes only one task at the same time without
 pre-emption
 - NI (NI - Network Interface of PE) can send only one
 message at the same time without interleaving the
 messages

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

21

 - tasks can start when have received all messages, and
 message can start when its task (producer) is finished

Figure 2. Router architecture

- Every PE module has its own local memory and the
 programming model is message-passing. If it will be
 not possible to find the contention-free topology
 then rescheduling of transmissions and/or tasks is
 performed.

To estimate the quality of the generated NoC topologies
were proposed three measures of assessment:

- execution time of the whole system - the longer time
 of execution system, makes worse the performance,

which also affects the static energy consumption of
 the system,
- number of links used to build topology - From the
 point of view of energy and resources in the system is
 as small as possible all the desired quantity links. [18].
 By minimizing the number of connections can

 facilitate the synthesis of systems.
- average hop count - impacts the both of these factors:
 performance and power of NoC. The longer route
 means more latency during transmissions; besides it
 Affect dynamic energy consumption [19].

We defined weighted average (5), where n is the total
number of messages, |Mi,j| is duration of the Mi,j message
and hop(Mi,j) is the number of hops for Mi,j. Thus longer
transmissions sent through more routers impact more on
the average hop than the shorter ones.

 (5)

4. Developmental Genetic Progrmming

 Genetic Programming (GP) [13] is a method for
optimizing involving the generation of a genetic algorithm.
Optimization in genetic programming is evolution of the
tree structure of the program, in order to get the best
program, which, for sets of input data generates the
expected results. Genetic Programming has been
successful to generate efficient programs that perform
mathematical calculations robot control algorithms, text
recognition, data analysis, and many other fields. There is
36 known problems for which using the method of genetic
programming solution is found comparable or better than
found manually.
 The need for optimization problems showed strongly
reduced, that genetic programming is not sufficient to meet
the requirements of a functional or timing. Been proposed
an extended version of PG, that is the Developmental
Genetic Programming (DGP) [14]. In this method, instead
of programs (complete solutions) are generated algorithms
for constructing a solution to the problem.
These algorithms are represented by a tree, where the
nodes correspond to the decisions of the design, and the
edges describe the order. DGP developed an effective
method for solving many problems in the field of linear
design of electronic circuits (filters, amplifiers) logic
synthesis, and others. But so far not tested the applicability
of the method DGP in co-synthesis of embedded systems.
 Development of genetic programming method is
especially effective for the optimization problem strongly
limited (for example, the co-synthesis problem). In such
cases, the solutions provided by traditional genetic
approach or deterministic does not meet the requirements.
Traditional genetic approach imposes constraints control
the optimization process in a manner considered to be only
correct solution. However, these restrictions also narrow
the search space, while making it impossible to find the
best solutions if they are the result of the evolution of
refining or incorrect solutions. These problems do not
occur in the DGP, where evolution takes place without any
restrictions, while the correctness of this solution is
provided by the mapping genotype to phenotype. This
feature allows the DGP method in many cases get a lot
better results than previously used methods.

5. The Methodology

 During the first step the co-synthesis of the system
specified by task graph is performed. In accordance with
the principle of developmental genetic programming the

IN

IN

IN

IN

IN

Cr
os

sb
ar

sw
itc

h

In
pu

t/o
ut

pu
t

lin
ks

N
or

th

So
ut

h

Ea
st

W
es

tLo
ca

l Port

bu
ffe

r

Ad
dr

es
s

de
co

de
r

fli
t

fli
t

to
 th

e
cr

os
sb

ar

sw
itc

h

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

22

developed algorithm evolution of the subject tree
(genotype) describing the construction of the designed
system. Root of tree sets embryonic system design, nodes
correspond to those building the system. To ensure the
implementation of all tasks, the structure of the genotype
is a tree mapper graph tasks. Each node of the tree
genotype implements the corresponding part, which had
previously separated. The structure of the genetic
operations. Co-synthesis allocates PEs, assigns tasks to the
allocated PEs and performs initial scheduling of all tasks
and messages. Communication links are not considered in
this step, it is assumed that all messages may be sent as
soon as possible i.e. without collisions (the goal of the
second step is to satisfy this assumption). Co-synthesis
optimizes the total system cost (taking into consideration
only the cost of PEs and routers) while preserving all time
constraints. Optimization is performed using the
developmental genetic programming.
 Results of the co-synthesis method is presented as
attributed task graph, and then use to generate a dedicate
NoC topology using the proposed approach. If it is
impossible to create a desired topology according to the
proposed methodology is performed rescheduling tasks. If
rescheduling is not possible, then proposed methodology
make modifications of violates time requirements and then
re-synthesis is performed for tighter time constraint, but
this case is very sporadic. During this step the NoC is
optimized using deterministic methods.

5. 1 The embryonic
 Embryo implements the first of the generated (a division
algorithms graph) part of the graphs. The number of
embryos is equal to use the number of split graph
algorithms. For each embryo solution is randomly
generated. The root of this tree specifies the construction
of an embryonic system, while all other nodes correspond
to functions progressively building the system.

5.2 Genotype and initial population
 Genotypes are structured in a tree. Each node
corresponds to function implementing some tasks. To the
root node has been assigned the whole graph. Function
assigned to a node select a specified number of tasks and
then implement them. Other and unallocated tasks are
partitioned into groups and assigned to parent nodes. The
functions associated with the nodes are responsible for the
criteria that determine the allocation, task selection and
task partitioning. The initial population for each solution
are generated randomly. N determines size of initial
population, where N is number of tasks. Size of the initial
population is defined by the parameter α, such that:
population_size=α*N*r (N is the number of tasks and r is
the number of PEs in the resource database).

5.3 Algorithm of creating system
 Mapping genotype to phenotype should always
generate valid system. Creating system should meet the all
the constraints. System is constructed by executing
functions corresponding to the following nodes of the
genotype browsed in the breath-first order. Extreme
system is creating according to the algorithm presented on
Fig 3. As extreme system in this paper is considered the
system with largest sum of stack times for all deadlines. In
this paper slack time mean difference between the deadline
and the finish time of constrained task. First, each task is
allocated to the PE which executes this task in shortest
time and the system is scheduled using ASAP (As Soon
As Possible) method. Next, if it is possible to increase the
system speed by reassigning any pair of communicating
tasks to the same PP (in this case transmission is omitted)
then such reassignment is registered. Each task may by
reclassification more than once, thus all multiple
reassignments should be resolved by choosing the best one.
All possible conflicts are presented on Fig. 4, in all cases
the reassignment giving largest increase of the slack time
is chosen.
1: for every Ti in TG do

2: assign_fastest_PE(Ti);

3: ASAPScheduling();

3: for every adjacent_pair(Ti,Tj) do

4: for every PPk in resource_database
do

5: if (tk(Ti)+tk(Tj) < tf(Ti)+
t(Mi,j)+tf(Tj)) then

6: save_reassignment(Ti,Tj,PPk)

7: ResolveAllReassignments();
Figure 3. Algorithm for construction of extreme system

T1

T0 T2

PPi PPj

T1

PPk

T1

T0

T2

PPi

PPj

T1

T0 T2

PPi PPj

Figure 4. Possible conflicts in reassignments

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

23

 All genes possess sets out the rules to changing the
implementation and through the use of specific genes is
constructed system. There is possibility to applied only
design decisions that do not violate time constraints. In
this way each genotype is always mapped onto valid
phenotype.

5.4 System-construction functions
 Genotype which has tree structure represents in every
node a function implementing some tasks from the task
graph. First it allocates one PE. If PE is a hardware core
then only one task is chosen (first task from the group) and
assigned to this core, otherwise a group of tasks is
implemented. In the proposed system, we can distinguish
two types of genes: genes and gene mapping division. In
each population genotype is randomly generated. On fig5
is showed simple random choosing genotype and on fig 6
is shown graph shared by genotype from fig5. For the
selected tracks are laid down time limits that the
performance of the functions of the system are examined
using the algorithm Dynamic Time Limit (DTL). Figure 7
shows an alignment tasks in the processors in the chosen
region NoC network. The last step is to create a complete
network of NoC architecture, combining all its regions and,
if necessary, appropriate rescheduling task, as shown in
Figures 8a and 8b. Then, using the corresponding genes
are created NoC network regions, which are mapped to a
particular task. Each node in the tree genotype represents a
function to generate the target a network of NoC or region
of NoC. Constructing the system is in accordance with the
following steps:
 1. Random selection genotype. With the available
 resources genes sharing and mapping is drawn
 genotype.
 2. Selection of the gene responsible for the division of
 the graph, the set of genes sharing. This step is
 always carried out, as the input data is assumed the
 graph or a portion thereof.
 3. Performing split graph / part of the graph according
 to the rules defined in the selected gene division.
 After selecting the appropriate gene in step 1 is
 carried out the division of input data to the next
 layer genotype (graph / part of the graph) into
 smaller parts.
 4. Selection of the gene responsible for the
 implementation of the graph / graph fragment to
 the region of the NoC network
 5. Mapping graph / graph fragment to NoC network.
 After selecting the appropriate gene in step 3 is
 performed mapping input data (graph / part of the
 graph) in the region NoC network.
 6. The combination of all regions NoC networks
 grouped into one network. After mapping all the
 tasks in the respective regions NoC network is
 made one single network NoC.

Figure 5.
genotype Architecture of
the created NoC network.

Figure 7.Simple genotype

Figure 6. Task Graph after sharing by genotype from Figure 5

In Table 2 are presented preferences for each system-
construction function. At the beginning of the initial
generation is generated composed of randomly generated
composed of randomly generated genotypes. The size of
initial generation defines the parameter α and is: π = α * n
* e (n - is the number of tasks, and e is the number of
possible embryos). In the initial population, preferences
for all steps are selected randomly, with the probability
given in the last column. During mutation to modify the
gene is used the same probability.
 Preferences for allocation of a new PE are the
following:

(a) Hardware component – type of HC is chosen
according to preferences for step 2;

(b) PP occupying the smallest area;
(c) PP executing in shortest time all tasks assigned to

gene;

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

24

(d) PP minimizing the critical path (path with
shortest slack time), i.e. if after executing steps 2
and 3, the critical path is the shortest one;

(e) PP that executes the first task from the group in
the shortest time;

Table 2. System-construction preferences used for genotype to phenotype
mapping

Step Preference P
1 a. HC

b. PP - smallest area
c. PP - fastest
d. PP – fastest critical path
e. PP – fastest first task

0.3
0.2
0.2
0.1
0.2

2 a. Smallest area
b. Fastest
c. Critical path
d. Minimizing transmission
e. Next
f. minimal

0.1
0.1
0.1
0.2
0.2
0.3

3 LLF scheduling 1

4 a. Min-cut – comm. size
b. Min-cut – transmissions
c. Min-cut – crit. path
d. no-cut

0.3
0.3
0.2
0.2

Column the probability represents the probability of
choosing a particular gene. The choice of gene sharing and
gene mapping decide: optimization of speed, optimization
of NoC traffic or network energy optimization NoC. The
highest probability of being selected is the gene
responsible for the optimization of NoC traffic. Because
the transmission of the longest execution time can cause
collisions. In proposing the division of the graph by
cutting at the site of the longest transmission, which
disables the selected transmission in the region considered
NoC network. The inclusion of the longest transmission
network in a region NoC offers greater possibilities of
other transmission scheduling.
 The system can distinguish two types of genes: Genes
division graph and mapping genes. The first type of genes
responsible for the division of the graph, or its part into
smaller fragments. The second type of gene is responsible
for the mapping portion of the graph (which is the result of
the division by the gene / genes share) in the region NoC
network. The system is constructed by the performance at
the level of the node in the tree. The tree is the genotype of
specific genes at different levels, depending on the
location of the node in the tree algorithm is performed
assigned to the corresponding gene. If the node is a leaf
genotype is performed gene mapping that performs the
mapping in question the graph in the network NoC.
Otherwise, if the node is not a leaf is made of the graph
division / section of the graph according to the rules of a
particular gene. Each gene sharing and gene mapping

ensures that the time constraints imposed on individual
tracks will be met. Compliance with time limits and, as
proposed here, the algorithm Dynamic Time Restriction.
 During mapping genotype to phenotype each functions
take into consideration constraints. If the selected
allocation/assignment causes constraint violation then the
next matching design decision will be chosen. To avoid
infinite growth of genotypes during evolution, unused
genes are removed from genotypes. Fig. 9a presents a
sample genotype for the task graph from Fig.1. Assume
that the deadline for task T5 is defined as c5=620, then the
system is constructed as follows. Final system is given on
Fig. 5b.

(a) (b)

Figure 8. Sample genotype (a) and the corresponding phenotype (b)

5.5 Evolution
 On the evolution of the use of genetic operators:
crossover, reproduction and mutation generates a new
generation of solutions. The number of solutions in each
population is always equal to population_size. After the
genetic operations are performed on the current population,
the new population replaces the current one. The evolution
is controlled by parameters reproduction_rate,
crossover_rate and mutation_rate, as follows:

• reproduction_rate*population_size is the number
of solutions created using reproduction,

• crossover_rate*population_size is the number of
solutions created using crossover,

• mutation_rate *population_size is the number of
solutions created using mutation,

• reproduction_rate+crossover_rate+mutation_rat
e=1, this condition ensures that each population
will have the same number of individuals.

 All solutions are ranked by the cost defined in previous
chapters, which defines the fitness function. Solutions are
selected randomly, but with different probability, which is
defined according to the position in the ranking r as:

 sizepopulation
rsizepopulationP

_
_ −

=

HC1

pe0

T0

pe1

PP1

pe2

PP3

T3 T4

T1

T2 T5

1c2b
4d

1a2a
4a

1b2c
4b

1d2b
4a

1b2a
4d 1d2b

4a
1c2c
4c

G1

G2

G3 G4

G5

G6 G7

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

25

Thus the best solutions are preferred for reproduction, but
worse solutions are not necessarily passed over.
 Crossover randomly selects two solutions, then a single
point of intersection is selected at random for both parents.
All data beyond this point are swapped between parents
and the resulting solutions are children added to the new
population. Figure 9 shows an example of crossing two
solutions. The dotted line is a cutting point. Mutation
randomly selects one solution, then randomly selects a
node and replaces it by generating new options. The
algorithm stops if the best found solution does not improve
in the last ε steps. The best solution obtained during the
run is the result of the algorithm.

F(T2)

F(T0)

F(T1)

F(T3) F(T4)

F(T5)

M(T2)

M(T0)

M(T1)

M(T3) M(T4)

M(T5)

F(T2)

M(T0)

M(T1)

F(T3) F(T4)

M(T2)

F(T0)

F(T1)

M(T3) M(T4)

M(T5) F(T5)

 Figure 9 Crossover of genotypes

6. Experimental results and discussion

 The effectiveness of the proposed method was tested
after a certain amount of testing. First, systems represented
with random generated task graphs were synthesized using
DGP, Yen-Wolf [2] and EWA [3] methods. The results of
conducted experiments are given in Table 3. The following
columns contain: number of tasks, constraint for the whole
graph, and synthesis results. The target system architecture
cost and for each method the time required for execution
of all tasks are given. In all cases four types of PE were
available in the resource library. The Developmental
Genetic Programming method found comparable or better
solution for all systems. We assumed the following
parameters: α=10, reproduction_rate=0.2,
crossover_rate=0.7, mutation_rate=0.1 and ε=5. In the
worst case (system with 90 tasks), the algorithm stopped
after 150 seconds, and 53 generations were evaluated.
Figure 10 presents the comparison of the optimization
flow for all methods mentioned above. Graph with 50
tasks was synthesized with constraint Tmax=2200. The Y
(vertical) axis represents the cost of a solution, found in
the following optimizations steps (generations). For DGP
approach the X (horizontal) axis represents the population
number, while for EWA and Yen-Wolf it represents the
following refinement steps. The Developmental Genetic

Programming method was run 3 times, with populations
equal to 10000, 20000 and 40000 individuals (α*50*4). In
this methods solutions with costs: 4042, 4024, 3919 were
found, while using iterative improvement methods the best
solution found had a cost equal to 4151.

Table 3. Experimental results obtained using Yen-Wolf, EWA and DGP
cosynthesis methods: N-number of tasks in a task graph, Tmax – deadline,
Time - time of execution of all tasks, Cost – area of the target system

N Tmax Yen-Wolf EWA DGP
Time Cost Time Cost Time Cost

10 400 315 1573 287 1517 395 1545

30 800 773 3441 796 3600 792 3167

50 1200 1171 6182 1179 5606 1142 5518

70 1600 1548 6859 1563 6650 1599 5947

90 2000 1917 13184 1996 7873 1991 7411

Figure 10. Optimization flows for different co-synthesis methods. GP50,
GP100 and GP200 represent the DGP method with α=50, α=100 and
α=200, respectively.

For the experimental purposes we applied the co-synthesis
algorithm (Deniziak et al. 2008a) to 10 synthetic task
graphs (application models) using our tool similar to well-
known TGFF (Dick et al. 1998). Every graph has 20-30
tasks, 15-30 messages and 5-9 allocated PEs. For the
experimental purposes we applied the co-synthesis
algorithm (Deniziak et al. 2008a) to 10 synthetic task
graphs (application models) using our tool similar to well-
known TGFF (Dick et al. 1998). Every graph has 20-30
tasks, 15-30 messages and 5-9 allocated PEs. We have also
calculated calculation/message time and collision/message
time factors. The first one ranges from 0,36
(communication-oriented system) to 1,83 (calculation-
oriented system with less probability of message
contention). The second factor we interpret as the
probability indicator of the message conflict. It ranges
from 0,25 (little probability of contention) to 0,64 (high
probability of contention). Next, via mathematical analysis,
we compared our custom network topology (“Custom”)
against randomly generated minimal rectangular mesh
(“NxM”), random minimal regular mesh (“NxN”), and
against custom topology obtained by applying

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

26

methodology similar to bandwidth-based approach (Neeb
et al. 2008)(Murali et al. 2006) (“Bndwdth”). In particular,
we transformed generated ATGs into Core Graphs, next
we generated direct links for cores exchanging the largest
amounts of data and dedicated links to remove possible
contention. Such approach reminds also the one presented
in (Leary et al. 2009), but is far chip resource conserving –
no routers without PE are allowed. It is achieved at the
price of possible longer transmission paths. To make
comparison with our method fair, we followed the rule
“one router - one PE” and no more than 4 bidirectional
router ports. Moreover – every link in the topology has the
same bandwidth. Meshes use XY routing and are made
contention-free by rescheduling. For our topology and
bandwidth-based one, performance is the same (i.e.
execution time of the system), as both solutions are
contentionless.

Table 4. Link usage deterioration

App.
Name

calc./
msg. coll./msg. Custom

[%]

NxM
mesh
[%]

NxN
mesh
[%]

G01 0,54 0,35 7,08 11,39 11,39
G02 0,69 0,64 10,77 37,25 18,84
G03 0,36 0,48 7,79 15,09 12,25
G04 0,66 0,3 8,66 12,52 19,14
G05 1,32 0,41 9,86 19,8 14,44
G06 1 0,4 5,02 9,55 7,04
G07 0,58 0,5 0 8,34 9,17
G08 1,22 0,4 0 7 7
G09 1,83 0,25 0 0 3,24
G10 1,06 0,52 10,9 14,2 16,18

The information about graphs is showed in Table 4
(columns 2 and 3 contain previously mentioned factors)
and performance (i.e system latency) loss compared to
system just after co-synthesis (with path-based contention
ignored). In every case superiority of topology generated
by our methodology over meshes is demonstrated. In four
cases our approach gave result equal to the fastest system
(performance loss "0" means no additional latency). This
means that it is not necessary to prevent network
contention because there is no transmission scheduling
required. Performance (latency) loss results.

 The results for topology generation contains in table 5.
In this paper unidirectional links used in every topology
are counted. Its a coarse factor of chip resources and
energy requirements. Proposed approach if far better than
mesh approaches - minimum link saving is over 39%. Also
bandwidth-based topology demands more resources than
presented in this paper. There is only one case – G03 -
where we noticed deterioration of our solution.

Table 5. Performance (latency) loss results

App.
Name

Custo
m

[links]

NxM
mesh

link loss
[%]

NxN mesh
link loss

[%]

Bndwdth
link loss

[%]

G01 9 33,71 60,15 16,17
G02 9 52 61,52 31,17
G03 9 33,17 63,35 -14,5
G04 6 54,12 72 43,45
G05 10 46,5 55,33 27,57
G06 9 33,17 60,35 9
G07 12 37,2 48 0
G08 13 41,38 42,23 26,78
G09 8 39,68 66,67 26,27
G10 13 31 43,33 12,33

7. Conclusion

 A novel approach to hardware/software codesign was
presented in this paper. The system is generated using
developmental genetic programming method during using
design procedure. To best knowledge it is the first DGP
method dealing with the codesign problem. Preliminary
experimental results show that the method is very
promising. While there is still a large space for
improvements, not examined yet, for all benchmarks we
received results comparable or better than using other co-
synthesis methods. Future research will concentrate on
further improvements of the presented approach.
Especially, we will examine alternative implementations
of genetic operators, other structures of the system
construction tree, other system-construction functions, etc.
In future work is planned to achieve better results in a
reasonable time for the final DGP co-synthesis method.
 In this paper is proposed a novel methodology for
application-specific and contention-free NoC generation.
The goals are achieved through dedicated links generation
(topology part) and temporal ordering of the
tasks/messages (schedule part). The presented smethod, is
suitable for distributed embedded systems, i.e. systems
with predictable pattern of communication. As
demonstrated through experiments, our approach is far
better than typical, random mesh networks.

References
[1] Wolf W. High-Performance Embedded Computing:

Architectures, Applications, and Methodologies, Morgan
Kaufman, St. Louis, USA 2006.

[2] Gupta R.J., De Micheli G., Hardware-Software Co-synthesis
for Digital Systems, IEEE Design & Test, Vol 10, No. 3,
29-41, September 1993.

[3] Deniziak,S.: Cost-efficient synthesis of multiprocessor
heterogeneous systems. Control and Cybernetics,
Vol.33, 2, 341-355, 2004.

[4] Yen T.-Y., Wolf W.H.: Sensivity-Driven Co-Synthesis of
Distributed Embedded Systems. Proc. of the Int.
Symposium on System Synthesis, 4-9 , 1995.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

27

[5] Hu J., Marculescu R., Communication and task scheduling
of application-specific Networks-on-Chip, IEEE
Proceedings of Euromicro Symposium on Digital
Techniques, 643-651 , 2005.

[6] Julien Delorme, Dominique Houzet, A complete 4G
radiocommunication applicationmapping onto a 2D mesh
NoC architecture, INSA/ IETR Laboratory, 20 avenue des
Buttes de Coesmes 35043 Rennes Cedex, France, 93-
96 ,2006.

[7] Ghosh Pavel and Arunabha Sen, Energy Efficient
Application Mapping to NoC Processing Elements
Operating at Multiple Voltage Levels, Department of
Computer Science and Engineering Arizona State
University, Tempe, AZ Alexander Hall Department of
EECS UC Berkeley, CA, USA, Networks-on-Chip, 2009.
NoCS 2009. 3rd ACM/IEEE International Symposium, 80-
85 ,2009.

[8] Lei Tang, Hong Peng, Yang Yanhui, Mapping Concurrent
Applications to a NoC, Datang Microelectronics
Technology Co., LTD., Beijing, China, Solid-State and
Integrated Circuits Technology, 2004. Proceedings. 7th
International Conference, 1960-1963 vol.3, 2004.

[9] Deniziak S, Górski A. Co-synthesis of SoC systems using
Developmental Genetic Programming, Cracow University
of Technology Publishing House, Cracow, 2008 (in polish)

[10] Dve B.P., Lakshinarayana G., Jha N.K., COSYN:
Hardware-Software Co-Synthesis of Embedded Systems,
Proc. Of the Design Automation Conference, Anaheim,
USA, 703-708, 1997.

[11] Dick R. P., Jh N.K., MOGAC: A multiobjective Genetic
Algorithm for the Co-Synthesis of Hardware-Software
Embedded Systems, IEEE Trans. On CAD, Vol. 17, No. 10,
Piscataway, NJ, USA 1998

[12] Koza J. R., Genetic Programing: On the Programming
Computers by Means of Natural Selection,
MIT Press, Cambridge, MA, USA 1992.

[13] Koza J. R., Genetic Programing: On the Programming
Computers by Means of Natural Selection,
MIT Press, Cambridge, Sokenou D., Gnerating Test
Sequences from UML sequence Diagrams and State
Diagrams, MA, USA 1992.

[14] Keller R. E., Banzhaf W., The evolution of genetic code in
genetic programming, Proc. of the Genetic and Evolutionary
Computation Conference, Orlando, USA, 1077-1082, 1999,

[15] Deniziak, S., Górski, A. (2008a). „Hardware/software co-
synthesis of distributed embedded systems using genetic
programming”, Lecture Notes in Computer Science,
Springer, 5216, 83-93, 2008.

[16] Deniziak, S., Tomaszewski, R. (2008b). "Adaptive routing
protocols validation in NoC systems via rapid prototyping",
Proceedings of the IEEE Human System Interaction, 115-
120, 2008.

[17] Sethuraman, B., Bhattacharya, P., Khan, J., Vemuri, R.
"LiPaR: A light-weight parallel router for FPGA-based
Networks-on-Chip", In 15th Great Lakes Symposium on
VLSI, 452–457, 2005.

[18] Wang, D., Matsutani, H., Amano, H., Koibuchi, M., "A link
removal methodology for Networks-on-Chip on
reconfigurable systems", International Conference on Field
Programmable Logic and Application, 269-274, 2008.

[19] Hu, J., Marculescu, R.,"Communication and task scheduling
of application-specific Networks-on-Chip", IEEE
Proceedings of Computers and Digital Techniques, 643-651,
2005.

Dariusz Dorota. Research and teaching
assistant of Laboratory of Computing
Science, Faculty of Electrical and
Computer Engineering, Cracow
University of Technology. He received
the M. Sc. degree in Applied Computer
Science from AGH University of Science
and Technology in Cracow,
Poland, in 2010. His research interest

includes embedded system co-synthesis, NoC-based system
design.

http://expertus.biblos.pk.edu.pl/han/IEEE/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://expertus.biblos.pk.edu.pl/han/IEEE/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5066987
http://expertus.biblos.pk.edu.pl/han/IEEE/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9804
http://expertus.biblos.pk.edu.pl/han/IEEE/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9804
http://expertus.biblos.pk.edu.pl/han/IEEE/ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9804

