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Summary 
The use of Weighted Laguerre Polynomials to overcome Courant-
Friedrich-Levy (𝐶𝐹𝐿) stability condition leads to unconditionally 
Finite-Difference Time-Domain (𝐹𝐷𝑇𝐷)  method. This 
formulation results in a huge sparse matrix equation which needs 
important memory storage when modelling Three Dimensional 
(3𝐷) electromagnetic problems with fine meshes. Recently, a new 
efficient algorithm which consists in using factorization splitting 
scheme based on two sub-steps to decompose the previous huge 
sparse matrix equation has been proposed. In this paper, we 
develop a New Node Numbering Scheme in order to optimize 
𝐿𝑈 Decomposition and to overcome the memory storage limitation. 
Therefore, the programming code is partially modified and finally 
used to model rectangular patch antenna which is fed by uniform 
or non uniform microstrip Lines, in order to achieve the Ultra 
Wideband Matching of the rectangular patch antenna. The results 
obtained from the Implementation of Laguerre Finite-Difference 
Time-Domain (𝐿𝐹𝐷𝑇𝐷)  method are compared to those of the 
conventional 𝐹𝐷𝑇𝐷 method. 
Key words: 
𝐹𝐷𝑇𝐷  method, Laguerre Polynomials, 𝐿𝐹𝐷𝑇𝐷  formulation, 
microstrip antenna and microstrip lines, node numbering scheme. 
 

1. Introduction  
Numerical formulations to analyse electromagnetic 
problems have been chosen since they have many 
advantages. Among these formulations, the Finite-
Difference Time-Domain (𝐹𝐷𝑇𝐷)  method (known as 
conventional 𝐹𝐷𝑇𝐷 method) still taking the main place and 
it is easy to implement [1]-[2]. This Marching-On in Degree 
formulation is conditionally stable and the Courant-
Friedrich-Levy (𝐶𝐹𝐿)  stability condition, which is its 
bottleneck, depends on the smallest cell size. Therefore, for 
applications requiring fine meshes, the time step is small 
and the 𝐶𝑃𝑈  Computation Time increases too. Over the 
past decades, many modifications have been proposed in 
order to overcome the CFL stability condition [3]-[8]. 

The Alternating-Direction Implicit (𝐴𝐷𝐼)  formulation 
has been proposed first [3]. This formulation is 
unconditionally stable but suffers from the numerical 
dispersion error when the time step is greater than the 
maximum time step in conventional 𝐹𝐷𝑇𝐷  method. Few 
years later, Crank-Nicolson (𝐶𝑁)  and Crank-Nicolson-
Douglas-Gunn (𝐶𝑁𝐷𝐺)  formulations [9]-[11] were 
proposed and found more efficient and accurate than the 
𝐴𝐷𝐼  formulation. These formulations involve inverse 
matrix operations which need more memory storage and the 
problem of memory limitation is considered as the main 
bottleneck in unconditionally stable formulations. 

Recently, significant progresses have been made to 
optimize the resolution of the huge sparse matrix equation 
[14]-[15][18]-[19]. Simulation using weighted Laguerre 
polynomials was proofed to be much faster than 
conventional 𝐹𝐷𝑇𝐷  formulation [7], [15]. Laguerre 
formulation is suitable for one and two dimension problems 
but presents long time limitation [13]-[14] [19]. Many 
improvements such as the Balanced Laguerre Polynomials 
[19], the equivalent circuit in the 𝐹𝐷𝑇𝐷 grid [14] and an 
efficient algorithm to implement the huge sparse matrix 
equation [18] have been proposed. The use of Factorization 
splitting scheme to resolve the huge matrix equation into 
two sub-steps [9]-[11] reduces the memory storage 
limitation. In this paper, we propose a new node numbering 
scheme leading to optimum tri-diagonal matrices, suitable 
for 𝐿𝑈 Decomposition. Therefore, the incorporation into the 
code of the Perfectly Matched Layers (𝑃𝑀𝐿)  Absorbing 
Boundary Conditions (ABCs)[20] for truncating 𝐹𝐷𝑇𝐷 
grids to model Rectangular Patch Antenna, fed by either 
Uniform or Non Uniform microstrip Lines, is carried out. 
 
2.  Laguerre Formulation 
Numerical methods based upon Laguerre Polynomials 
combined with 𝐹𝐷𝑇𝐷 algorithm have been proposed first in 
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[7]. Laguerre polynomials of order p exist for (t ≥ 0) and 
satisfy a recursive relation (Equation 1-3): 

𝐿0(𝑡) = 1                                       (1) 
𝐿1(𝑡) = 1 − 𝑡                                    (2) 

𝑝𝐿𝑝(𝑡) = (2𝑝 − 1 − 𝑡)𝐿𝑝−1(𝑡) − (𝑝 − 1) 𝐿𝑝−2(𝑡)  𝑓𝑜𝑟 𝑝
≥ 2 

     (3)  
Laguerre Polynomials have been chosen among others [19] 
because they are causal and defined from t = 0 to ∞ 
(Equation 4). They present orthogonal property with respect 

to the weighted or exponential function 𝑒−
𝑡
2 (Equation 6): 

∫ 𝑒−
𝑡
2
�+∞

0  𝐿𝑝(𝑡̅) 𝑒−
𝑡�
2  𝐿𝑞(𝑡̅) 𝑑𝑡̅ = 𝛿𝑝𝑞               (4) 

where the scaled time 𝑡̅ = 𝑆 ∗ 𝑡 ≥ 0 represents the real time 
multiply by the time scale factor s. In fact, the weighted 
Laguerre Polynomials or Laguerre Basis functions result in 
the product of Laguerre polynomials and the weighted 
functions and they present also orthogonal property 
according to weighted function. 
 

𝜑𝑝(𝑡̅) = 𝑒−
𝑡�
2  𝐿𝑝(𝑡̅)                                    (5) 

∫ 𝜑𝑝(𝑡̅) 𝜑𝑞(𝑡̅)+∞
0  𝑑𝑡̅ = 𝛿𝑝𝑞                            (6) 

where: 

𝛿𝑝𝑞 = �1       𝑖𝑓  𝑝 = 𝑞
0      𝑖𝑓  𝑝 ≠ 𝑞  

 
The main objective is to form an orthonormal set Laguerre 
basis functions (𝜑0, 𝜑1, 𝜑2, . . . , 𝜑𝑁𝑙) where 𝑁𝑙  represents the 
number of Laguerre basis functions. In the Laguerre 
Domain, each time-domain quantity F (t) is expressed in 
terms of basis functions [7], as follow: 

𝐹(𝑡) = ∑ 𝐹(𝑝)𝑁𝑙
𝑝=0  𝜑𝑝(𝑡̅)                             (7) 

𝜕𝐹(𝑡)
𝜕𝑡

= 𝑆�0.5𝐹(𝑝) + ∑ 𝐹(𝑘)𝑝−1
𝑘=0 �                   (8) 

On the other hand, Laguerre polynomials are involved in 
order to eliminate the time dependence in the Maxwell’s 
equations. So, Laguerre coefficients F (p) which are needed 
to update different equations can be calculated by using 
(Equation 9): 

𝐹(𝑝) = ∫ 𝐹(𝑡̅) 𝜑𝑝(𝑡̅) 𝑑𝑡̅+∞
0                           (9) 

 
Figure 1: Laguerre basis functions for p = 0 − 4 

As example, we plot (Figure 1) basis functions for p 
ranging from 0 to 4. We notice that basis functions decay to 
zero as the time increases. Therefore, each temporal 
quantity that is spanned by these functions decay also to 
zero. 
 
3. Laguerre-FDTD Formulation 
3.1.  Maxwell’s equations in Laguerre Domain 
Consider Maxwell’s equations with PML ABCs according 
to the general expressions: 

�𝜀 𝜕
𝜕𝑡

+ 𝜎𝑥� 𝐸𝑥(𝑟, 𝑡) = 𝜕𝐻𝑧(𝑟,𝑡)
𝜕𝑦

− 𝜕𝐻𝑦(𝑟,𝑡)

𝜕𝑧
− 𝐽𝑥(𝑟, 𝑡)     (10)  

�𝜀 𝜕
𝜕𝑡

+ 𝜎𝑦� 𝐸𝑦(𝑟, 𝑡) = 𝜕𝐻𝑥(𝑟,𝑡)
𝜕𝑧

− 𝜕𝐻𝑧(𝑟,𝑡)
𝜕𝑥

− 𝐽𝑦(𝑟, 𝑡)     (11) 

�𝜀 𝜕
𝜕𝑡

+ 𝜎𝑧�𝐸𝑧(𝑟, 𝑡) = 𝜕𝐻𝑦(𝑟,𝑡)

𝜕𝑥
− 𝜕𝐻𝑥(𝑟,𝑡)

𝜕𝑦
− 𝐽𝑧(𝑟, 𝑡)     (12) 

�𝜇 𝜕
𝜕𝑡

+ 𝜎𝑥∗�𝐻𝑥(𝑟, 𝑡) = 𝜕𝐸𝑦(𝑟,𝑡)

𝜕𝑧
− 𝜕𝐸𝑧(𝑟,𝑡)

𝜕𝑦
                (13) 

�𝜇 𝜕
𝜕𝑡

+ 𝜎𝑦∗�𝐻𝑦(𝑟, 𝑡) = 𝜕𝐸𝑧(𝑟,𝑡)
𝜕𝑥

− 𝜕𝐸𝑥(𝑟,𝑡)
𝜕𝑧

                (14) 

�𝜇 𝜕
𝜕𝑡

+ 𝜎𝑧∗�𝐻𝑧(𝑟, 𝑡) = 𝜕𝐸𝑥(𝑟,𝑡)
𝜕𝑦

− 𝜕𝐸𝑦(𝑟,𝑡)

𝜕𝑥
                (15) 

 
where: 

�
𝜎𝑥 = 𝜎𝑥𝑦 + 𝜎𝑥𝑧   𝑎𝑛𝑑  𝜌𝑥 = 𝜌𝑥𝑦 + 𝜌𝑥𝑧
𝜎𝑦 = 𝜎𝑦𝑥 + 𝜎𝑦𝑧  𝑎𝑛𝑑  𝜌𝑦 = 𝜌𝑦𝑥 + 𝜌𝑦𝑧
𝜎𝑧 = 𝜎𝑧𝑥 + 𝜎𝑧𝑦  𝑎𝑛𝑑  𝜌𝑧 = 𝜌𝑧𝑥 + 𝜌𝑧𝑦

 

 
and 𝜀, 𝜇,𝜎𝑖  𝑎𝑛𝑑 𝜌𝑖  represent permittivity, permeability, 
electric and magnetic losses in direction i (with 𝑖 = 𝑥,𝑦, 𝑧 ), 
respectively.  Using Laguerre basis functions and Laguerre 
Coefficients expressions, Maxwell’s equations with PML 
ABCs can be expressed in terms of Laguerre coefficients 
(Equation 17–21), as follow:  

𝐸𝑥(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐸𝑥
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0             (16) 

𝐸𝑦(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐸𝑦
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0             (17) 

𝐸𝑧(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐸𝑧
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0             (18) 
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𝐻𝑥(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐻𝑥
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0            (19) 

𝐻𝑦(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐻𝑦
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0            (20) 

𝐻𝑧(𝑥,𝑦, 𝑧, 𝑡) = ∑ 𝐻𝑧
𝑝(𝑥,𝑦, 𝑧)𝜑𝑝(𝑡̅)𝑁𝑙

𝑝=0            (21) 

where 𝑁𝑙  represents the basis function number and directly 
depends on time duration and frequency of the  excitation. 
In fact, by using (Equations 17-21) and Galerkin’s testing 
procedure, Maxwell’s equations in Laguerre Domain can be 
expended as follow: 

𝐸𝑥
𝑝 = 𝑎𝑥�𝐷𝑦𝐻𝑧

𝑝 − 𝐷𝑧𝐻𝑦
𝑝 − 𝐽𝑥

𝑝� − 𝑎1𝑥 ∑ 𝐸𝑥𝑘
𝑝−1
𝑘=0        (22) 

𝐸𝑦
𝑝 = 𝑎𝑥�𝐷𝑧𝐻𝑥

𝑝 − 𝐷𝑥𝐻𝑧
𝑝 − 𝐽𝑦

𝑝� − 𝑎1𝑦 ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0        (23) 

𝐸𝑧
𝑝 = 𝑎𝑥�𝐷𝑥𝐻𝑦

𝑝 − 𝐷𝑦𝐻𝑥
𝑝 − 𝐽𝑧

𝑝� − 𝑎1𝑧 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0        (24) 

𝐻𝑥
𝑝 = 𝑏𝑥�𝐷𝑧𝐸𝑦

𝑝 − 𝐷𝑦𝐸𝑧
𝑝� − 𝑏1𝑥 ∑ 𝐻𝑥𝑘

𝑝−1
𝑘=0                (25) 

𝐻𝑦
𝑝 = 𝑏𝑥�𝐷𝑥𝐸𝑧

𝑝 − 𝐷𝑧𝐸𝑥
𝑝� − 𝑏1𝑦 ∑ 𝐻𝑦𝑘

𝑝−1
𝑘=0                (26) 

𝐻𝑧
𝑝 = 𝑏𝑥�𝐷𝑦𝐸𝑥

𝑝 − 𝐷𝑥𝐸𝑦
𝑝� − 𝑏1𝑧 ∑ 𝐻𝑧𝑘

𝑝−1
𝑘=0                (27) 

where: 

⎩
⎪
⎨

⎪
⎧𝑎𝑥 =

𝑆 𝜀
2

+ 𝜎𝑥 𝑎𝑛𝑑 𝑏𝑥 =
𝑆 𝜇
2

+ 𝜌𝑥

𝑎𝑦 =
𝑆 𝜀
2

+ 𝜎𝑦 𝑎𝑛𝑑 𝑏𝑦 =
𝑆 𝜇
2

+ 𝜌𝑦

𝑎𝑧 =
𝑆 𝜀
2

+ 𝜎𝑧 𝑎𝑛𝑑 𝑏𝑧 =
𝑆 𝜇
2

+ 𝜌𝑧

 

�
𝑎1𝑥 = 𝑆 𝜀 𝑎𝑥   𝑎𝑛𝑑  𝑏1𝑥 = 𝑆 𝜇 𝑏𝑥
𝑎1𝑦 = 𝑆 𝜀 𝑎𝑦  𝑎𝑛𝑑  𝑏1 = 𝑆 𝜇 𝑏𝑦
𝑎1𝑧 = 𝑆 𝜀 𝑎𝑧  𝑎𝑛𝑑  𝑏1 = 𝑆 𝜇 𝑏𝑧

 

Unlike Marching-In-on Degree formulation, electric field 
components depend on the magnetic components at the 
same order p. By substituting magnetic field expressions 
into electric field expressions, we ensure the conventional 
Laguerre-FDTD formulation where the electric field in 
Laguerre domain is function of the magnetic field with 
order lower than p (Equation 28). 

[𝐼 − 𝐷𝐻𝐷𝐸]𝐸𝑝 = 𝐷𝐻𝑉𝐻
𝑝−1 + 𝑉𝐸

𝑝−1 + 𝐽𝐸
𝑝                (28) 

where: 

𝐸𝑝 = �
𝐸𝑥
𝑝

𝐸𝑦
𝑝

𝐸𝑧
𝑝
�; 𝐷𝐻 = �

0 −𝑎𝑥𝐷𝑧 𝑎𝑥𝐷𝑦
𝑎𝑦𝐷𝑧 0 −𝑎𝑦𝐷𝑥
−𝑎𝑧𝐷𝑦 𝑎𝑧𝐷𝑥 0

� 

𝐼 = �
1 0 0
0 1 0
0 0 1

�  ;𝐻𝑝 = �
𝐻𝑥
𝑝

𝐻𝑦
𝑝

𝐻𝑧
𝑝
�  

𝐷𝐸 = �
0 𝑎𝑥𝐷𝑧 −𝑎𝑥𝐷𝑦

−𝑎𝑦𝐷𝑧 0 𝑎𝑦𝐷𝑥
𝑎𝑧𝐷𝑦 −𝑎𝑧𝐷𝑥 0

� ;  𝐽𝐸
𝑝 = �

−𝑎𝑥  𝐽𝑥
𝑝

−𝑎𝑦 𝐽𝑦
𝑝

−𝑎𝑧 𝐽𝑧
𝑝
� 

𝑉𝐻
𝑝−1 = �−𝑏1𝑥�𝐻𝑥𝑘

𝑝−1

𝑘=0

−𝑏1𝑦�𝐻𝑦𝑘
𝑝−1

𝑘=0

−𝑏1𝑧�𝐻𝑧𝑘
𝑝−1

𝑘=0

�

𝑇

 

𝑉𝐸
𝑝−1 = �−𝑎1𝑥�𝐸𝑥𝑘

𝑝−1

𝑘=0

−𝑎1𝑦�𝐸𝑦𝑘
𝑝−1

𝑘=0

−𝑎1𝑧�𝐸𝑧𝑘
𝑝−1

𝑘=0

�

𝑇

 

 
3.2.  Finite-Difference scheme 

The decomposition of the sparse matrix equation [18] leads 
to three general matrix equations, as given bellow: 

�1 − �𝑎𝑥 𝑏𝑦𝐷2𝑧 + 𝑎𝑥𝑏𝑧𝐷2𝑦��𝐸𝑥
𝑝 + 𝑎𝑥𝑏𝑧𝐷𝑥𝐷𝑦𝐸𝑦

𝑝 +

𝑎𝑥𝑏𝑦𝐷𝑥𝐷𝑧𝐸𝑧
𝑝 = 𝑎𝑥𝑏1𝑦 ∑ 𝐻𝑦𝑘

𝑝−1
𝑘=0 − 𝑎𝑥𝑏1𝑧 ∑ 𝐻𝑧𝑘

𝑝−1
𝑘=0 −

𝑎1𝑥 ∑ 𝐸𝑥𝑘
𝑝−1
𝑘=0 − 𝐽𝑥

𝑝                                                    (29) 

�1 − �𝑎𝑦 𝑏𝑥𝐷2𝑧 + 𝑎𝑦𝑏𝑧𝐷2𝑥��𝐸𝑦
𝑝 + 𝑎𝑦𝑏𝑧𝐷𝑥𝐷𝑦𝐸𝑥

𝑝 +

𝑎𝑦𝑏𝑥𝐷𝑥𝐷𝑧𝐸𝑧
𝑝 = 𝑎𝑦𝑏1𝑥 ∑ 𝐻𝑧𝑘

𝑝−1
𝑘=0 − 𝑎𝑦𝑏1𝑥 ∑ 𝐻𝑥𝑘

𝑝−1
𝑘=0 −

𝑎1𝑦 ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0 − 𝐽𝑦

𝑝                                                           (30) 

�1 − �𝑎𝑧 𝑏𝑦𝐷2𝑥 + 𝑎𝑧𝑏𝑥𝐷2𝑦��𝐸𝑧
𝑝 + 𝑎𝑧𝑏𝑦𝐷𝑥𝐷𝑧𝐸𝑥

𝑝 +

𝑎𝑧𝑏𝑥𝐷𝑧𝐷𝑦𝐸𝑦
𝑝 = 𝑎𝑧𝑏1𝑦 ∑ 𝐻𝑥𝑘

𝑝−1
𝑘=0 − 𝑎𝑧𝑏1𝑧 ∑ 𝐻𝑦𝑘

𝑝−1
𝑘=0 −

𝑎1𝑧 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0 − 𝐽𝑧

𝑝                          (31) 

 
Figure 2: Position of the electric and magnetic field components about a 

unit cell in the Yee space Lattice (proposed in 1966). 
 
By applying the Finite-Difference Scheme [1] and the Yee 
Cell (Figure 2) to one of the three equations, we obtain: 
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−𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑧2

𝑏𝑦(𝑖, 𝑗,𝑘 − 1)𝐸𝑥
𝑝(𝑖, 𝑗,𝑘 − 1) − 𝑎𝑥(𝑖,𝑗,𝑘)

∆𝑦2
∗

𝑏𝑧(𝑖, 𝑗 − 1,𝑘)𝐸𝑥
𝑝(𝑖, 𝑗 − 1,𝑘) + �1 + 𝑎𝑥(𝑖,𝑗,𝑘)

∆𝑧2
∗

�𝑏𝑦(𝑖, 𝑗,𝑘) + 𝑏𝑦(𝑖, 𝑗,𝑘 − 1)� + 𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑦2

�𝑏𝑧(𝑖, 𝑗,𝑘) +

𝑏𝑧(𝑖, 𝑗 − 1,𝑘)�� 𝐸𝑥
𝑝(𝑖, 𝑗,𝑘) −

𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑧2

𝑏𝑦(𝑖, 𝑗,𝑘)𝐸𝑥
𝑝(𝑖, 𝑗,𝑘 + 1) −

𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑦2

𝑏𝑧(𝑖, 𝑗,𝑘)𝐸𝑥
𝑝(𝑖, 𝑗 + 1,𝑘) +

𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑥∆𝑦

�𝑏𝑧(𝑖, 𝑗,𝑘) �𝐸𝑦
𝑝(𝑖 + 1, 𝑗,𝑘) − 𝐸𝑦

𝑝(𝑖, 𝑗, 𝑘)� −

𝑏𝑧(𝑖, 𝑗 − 1,𝑘) �𝐸𝑦
𝑝(𝑖 + 1, 𝑗 − 1,𝑘) − 𝐸𝑦

𝑝(𝑖, 𝑗 −

1,𝑘)�� + 𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑥∆𝑧

�𝑏𝑦(𝑖, 𝑗,𝑘) �𝐸𝑧
𝑝(𝑖 + 1, 𝑗,𝑘) −

𝐸𝑧
𝑝(𝑖, 𝑗,𝑘)� − 𝑏𝑦(𝑖, 𝑗,𝑘 − 1) �𝐸𝑧

𝑝(𝑖 + 1, 𝑗,𝑘 − 1) −

𝐸𝑧
𝑝(𝑖, 𝑗,𝑘 − 1)�� =

𝑎𝑥(𝑖,𝑗,𝑘)
∆𝑧

∑ �𝑏1𝑦(𝑖, 𝑗,𝑘)𝐻𝑦𝑘(𝑖, 𝑗,𝑘) − 𝑏1𝑦(𝑖, 𝑗,𝑘 −𝑝−1
𝑘=0

1)𝐻𝑦𝑘(𝑖, 𝑗,𝑘 − 1)� −
𝑎𝑥(𝑖,𝑗,𝑘)

∆𝑦
∑ [𝑏1(𝑖, 𝑗, 𝑘)𝐻𝑧𝑘(𝑖, 𝑗,𝑘) − 𝑏1(𝑖, 𝑗 −𝑝−1
𝑘=0

1,𝑘)𝐻𝑧𝑘(𝑖, 𝑗 − 1,𝑘)] − 𝑎1𝑥(𝑖, 𝑗,𝑘)∑ 𝐸𝑥𝑘(𝑖, 𝑗,𝑘)𝑝−1
𝑘=0 −

𝑎𝑥(𝑖, 𝑗,𝑘)𝐽𝑥
𝑝                                                            (32) 

From the previous equation, we notice that each electric 
field variable is in relationship with adjacent 10 electric 
components. In addition, the magnetic field variables are 
known as the order is still lower than those of the electric 
field. Therefore, the three general equations should be 
performed in order to obtain matrix equation, as follow: 

𝐴𝐸𝑝 = 𝐽𝑝 + 𝛽𝑝−1                                    (33) 

where 𝛽𝑝−1  and 𝐽𝑝  represent summation on the second 
member for 𝑘 = 0 𝑡𝑜 𝑝 − 1  and excitation at order p, 
respectively. Even if the inverse matrix 𝐴−1  is performed 
once at the beginning of the simulation, important resources 
remain needed when using conventional Laguerre--FDTD 
formulation.  Moreover, this formulation has been turned 
out to be not suitable for long time duration [14].  
 
4. Efficient implementation of 3-D LFDTD 

Method 

This part is devoted to overcoming time limitation by 
adopting Balanced Laguerre Polynomials [19] and 
optimising the memory storage limitation. By this way, the 
memory storage optimization can be achieved by 
employing factorizing splitting technique [18] and solving 
the matrix system in two sub-steps. As proposed in [19], the 
technique consists on performing the huge sparse matrix 
equation  (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 28) by adding perturbation term and 
finally by proposing an efficient node numbering scheme in 
order to obtain tri-diagonal matrices which are suitable for 
LU Decomposition.  

4.1.  Factorizing-Splitting Scheme 

As mentioned previously, the main step consists in 
decomposing the matrix 𝐷𝐻𝐷𝐸  into two triangular 
matrices𝐴 𝑎𝑛𝑑 𝐵, as shown: 

𝐷𝐻𝐷𝐸 = 𝐴 + 𝐵                                 (34) 
where:  

𝐴 = �
𝑎𝑥𝑏𝑧𝐷2𝑦 0 0
𝑎𝑦𝑏𝑧𝐷𝑥𝐷𝑦 𝑎𝑦𝑏𝑥𝐷2𝑧 0
𝑎𝑧𝑏𝑦𝐷𝑥𝐷𝑧 𝑎𝑧𝑏𝑥𝐷𝑦𝐷𝑧 𝑎𝑧𝑏𝑦𝐷2𝑥

� 

𝐵 = �
𝑎𝑥𝑏𝑦𝐷2𝑧 𝑎𝑥𝑏𝑧𝐷𝑥𝐷𝑦 𝑎𝑥𝑏𝑦𝐷𝑥𝐷𝑧

0 𝑎𝑦𝑏𝑧𝐷2𝑥 𝑎𝑦𝑏𝑥𝐷𝑦𝐷𝑧
0 0 𝑎𝑧𝑏𝑥𝐷2𝑦

� 

Therefore, we use 𝐴 𝑎𝑛𝑑 𝐴 instead of  𝐷𝐻𝐷𝐸   and the huge 
sparse matrix becomes: 

[𝐼 − 𝐴 − 𝐵]𝐸𝑝 = 𝐷𝐻𝑉𝐻
𝑝−1 + 𝑉𝐸

𝑝−1 + 𝐽𝐸
𝑝         (35) 

 By adding a perturbation term 𝐴𝐵�𝐸𝑝 + 𝑉𝐸
𝑝−1�, the huge 

matrix equation becomes: 

[𝐼 − 𝐴 − 𝐵 + 𝐴𝐵]𝐸𝑝 = [𝐴𝐵 + 𝐼]𝑉𝐸
𝑝−1 + 𝐷𝐻𝑉𝐻

𝑝−1 + 𝐽𝐸
𝑝 

(36) 

As explained in [10], one can solve the previous equation 
according to sub-steps, as given: 

[𝐼 − 𝐴]𝐸∗𝑝 = [𝐴 + 𝐼]𝑉𝐸
𝑝−1 + 𝐷𝐻𝑉𝐻

𝑝−1 + 𝐽𝐸
𝑝               (37) 

[𝐼 − 𝐵]𝐸𝑝 = 𝐸∗𝑝𝐵𝑉𝐸
𝑝−1                                (38) 

where: 

 �
𝐸∗𝑝 = �𝐸𝑥

∗𝑝 𝐸𝑦
∗𝑝 𝐸𝑧

∗𝑝�𝑇  𝑎𝑟𝑒 𝑛𝑜𝑛𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠

𝐸𝑝 = �𝐸𝑥
𝑝 𝐸𝑦

𝑝 𝐸𝑧
𝑝�𝑇        𝑎𝑟𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
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This new formulation leads to six matrix equation system: 

�1 − 𝑎𝑥𝑏𝑧𝐷2𝑦�𝐸𝑥
∗𝑝 = −𝑎1𝑥�1 + 𝑎𝑥𝑏𝑦𝐷2𝑧� ∑ 𝐸𝑥𝑘

𝑝−1
𝑘=0 +

𝑎𝑥𝑎1𝑦𝑏𝑧𝐷𝑥𝐷𝑦 ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0 + 𝑎𝑥𝑎1𝑧𝑏𝑦𝐷𝑥𝐷𝑧 ∑ 𝐸𝑧𝑘

𝑝−1
𝑘=0 +

𝑎𝑥𝑏1𝑦 ∑ 𝐻𝑦𝑘
𝑝−1
𝑘=0 − 𝑎𝑥𝑏1𝑧 ∑ 𝐻𝑧𝑘

𝑝−1
𝑘=0 − 𝑎1𝑥 ∑ 𝐸𝑥𝑘

𝑝−1
𝑘=0 − 𝐽𝑥

𝑝   

      (39)  

𝑎1𝑦�1 + 𝑎𝑦𝑏𝑧𝐷2𝑥� ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0 − 𝑎𝑦𝑏𝑧𝐷𝑥𝐷𝑦𝐸𝑥

∗𝑝 +

𝑎1𝑧𝑎𝑦𝑏𝑥𝐷𝑦𝐷𝑧 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0 − 𝑎𝑦𝑏1𝑥𝐷𝑧 ∑ 𝐻𝑥𝑘

𝑝−1
𝑘=0 +

𝑎𝑦𝑏1𝑧𝐷𝑥 ∑ 𝐻𝑧𝑘
𝑝−1
𝑘=0 − 𝑎1𝑦 ∑ 𝐸𝑦𝑘

𝑝−1
𝑘=0 − 𝐽𝑦

𝑝                         (40)                              

�1 − 𝑎𝑧𝑏𝑦𝐷2𝑥�𝐸𝑧
∗𝑝 = −𝑎1𝑧�1 + 𝑎𝑧𝑏𝑥𝐷2𝑦� ∑ 𝐸𝑧𝑘

𝑝−1
𝑘=0 −

𝑎𝑧𝑏𝑦𝐷𝑥𝐷𝑧𝐸𝑥
∗𝑝 − 𝑎𝑧𝑏𝑥𝐷𝑦𝐷𝑧𝐸𝑦

∗𝑝𝑎𝑧𝑏1𝑧 ∑ 𝐻𝑦𝑘
𝑝−1
𝑘=0 −

𝑎1𝑧 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0 − 𝐽𝑧

𝑝                                                           (41) 

�1 − 𝑎𝑧𝑏𝑥𝐷2𝑦�𝐸𝑧
𝑝 = 𝐸𝑧

∗𝑝 + 𝑎𝑧𝑎1𝑧𝑏𝑥𝐷2𝑦 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0          (42)                           

�1 − 𝑎𝑦𝑏𝑧𝐷2𝑥�𝐸𝑦
𝑝 = 𝐸𝑦

∗𝑝 + 𝑎𝑦𝑎1𝑦𝑏𝑧𝐷2𝑥 ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0 −

𝑎𝑦𝑏𝑥𝐷𝑦𝐷𝑧𝐸𝑧
𝑝 − 𝑎1𝑧𝑎𝑦𝑏𝑥𝐷𝑦𝐷𝑧 ∑ 𝐸𝑧𝑘

𝑝−1
𝑘=0                         (43) 

�1 − 𝑎𝑥𝑏𝑦𝐷2𝑧�𝐸𝑥
𝑝 = 𝐸𝑦

∗𝑝 + 𝑎𝑥𝑎1𝑥𝑏𝑦𝐷2𝑧 ∑ 𝐸𝑥𝑘
𝑝−1
𝑘=0 −

𝑎𝑥𝑏𝑧𝐷𝑥𝐷𝑦𝐸𝑦
𝑝 − 𝑎𝑥𝑏𝑦𝐷𝑥𝐷𝑧𝐸𝑧

𝑝 − 𝑎𝑥𝑏𝑧𝐷𝑥𝐷𝑦 ∑ 𝐸𝑦𝑘
𝑝−1
𝑘=0 −

𝑎𝑥𝑏𝑦𝐷𝑥𝐷𝑧 ∑ 𝐸𝑧𝑘
𝑝−1
𝑘=0                               (44) 

By applying the Finite-Difference Scheme to the previous 
six matrix equations, six tri-diagonal matrices which are 
suitable for LU Decomposition when using an optimum 
node numbering scheme, are obtained. Therefore, one can 
propose an efficient node numbering technique [19] to 
optimize the memory storage limitation. As mentioned in 
the introduction, we propose an optimum node numbering 
scheme to obtain tri-diagonal matrices where the non null 
coefficients are three diagonals (Figure 3). 
Therefore, the lower and upper triangular matrices which 
result in LU Decomposition of each matrix are two-
diagonal matrices. Furthermore, the two matrices remain 
sparse and are very useful. This new node numbering 
scheme is applied to six tri-diagonal matrices.  
 

 
Figure 3: One of the six tri-Diagonal Matrices obtained after the new node 

numbering Technique. 
 
5. Rectangular Patch Antenna 
 
As mentioned above, the second purpose in this paper is to 
model Rectangular Patch Antenna with numerical methods 
(conventional 𝐹𝐷𝑇𝐷  and Laguerre 𝐹𝐷𝑇𝐷  Method). When 
modelling radiating structures, one should model ground 
plane, radiating patch and the strip line. The proposed 
rectangular patch antenna is fed either by uniform or non 
uniform lines. Therefore, non uniform microstrip lines are 
dealt with in order to achieve Ultra Wideband matching. 

 

Figure 4. To view of the rectangular patch antenna fed by uniform 
microstrip line (UML). 

On the contrary of the conventional 𝐹𝐷𝑇𝐷  where PEC 
(Perfect Electric Conductor) or PMC (Perfect Magnetic 
Conductor) are modelled by putting to zero all electric or 
magnetic components, in the Laguerre 𝐹𝐷𝑇𝐷 formulation, 
PEC, ground plane (taking as a PEC) and radiating patch 
are modelled by replacing the correspondent coefficients by 
zeros except those of the main diagonal of the matrix. The 
patch antenna of interest (Figures 4-5-6) has  𝑓𝑟 = 7.5 𝐺𝐻𝑧, 
𝜀𝑟 = 2.2  and ℎ = 0.8𝑚𝑚  as resonant frequency, relative 
permittivity of the substrate and the substrate thickness, 
respectively [2]. 
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Figure 6: To view of the rectangular patch antenna fed by sinus tapered 
microstrip line (STML).  

Although, knowing these parameters, its dimensions can be 
obtained through formulas given below [21]: 

𝑊 = 𝑐

2𝑓𝑟�
𝜀𝑟+1
2

                                     (45) 

𝐿𝑒𝑓𝑓 = 𝑐
2𝑓𝑟�𝜀𝑒𝑓𝑓

                                  (46) 

∆𝐿 = 0.412ℎ �𝜀𝑒𝑓𝑓+0.3�

�𝜀𝑒𝑓𝑓−0.258�

�𝑊ℎ+0.264�

�𝑊ℎ+0.8�
                     (47) 

𝐿 = 𝐿𝑒𝑓𝑓 − 2∆𝐿                                      (48) 

where c is velocity in the vacuum.  

 

Figure 5: To view of the rectangular patch antenna fed by linear tapered 
microstrip line (LMTL). 

When modelling patch antennas, one can either pick up the 
pattern, gain, directivity, return loss, input impedance, etc. 
In this paper, we take into account two configurations of 
microstrip to determine the return loss 𝑆11  and the input 
impedance 𝑍𝑖𝑛 of the antenna (Figures 5-6). In fact, Return 
loss   𝑆11  can be obtained from the 𝐹𝐹𝑇  (Fast Fourier 

Transformer) based on a relationship between the reflected 
and incident waves [2]. 

6. Results and Discussion 

First, we simulate the microstrip line which is seen as an 
infinity microstrip line in order to generate the incident 
wave at the reference plane. An infinity microstrip line is 
modelled by extending its ends in the PML area. The total 
wave is calculated at the reference plane with respect to 
both the antenna and the line parameters. So, the difference 
between the total and incident waves gives us the reflected 
wave in time-domain (Figures 4-5-6). Other parameters are 
summarized in the tables 1-2. 

Table 1: 𝑁𝑙 (Basis functions number), Time scale factor S, ∆𝑥,   ∆𝑦,  ∆𝑧  
cell size. 

∆𝑥(mm) ∆𝑦(mm) ∆𝑧(mm) Factor S 𝑁𝑙 
0.389 0.4 0.265 2.4∗ 1012 400 

 
Table 2: Time step number𝑇𝑚𝑎𝑥, 𝑁𝑝𝑚𝑙 : thickness of the PML area and ∆𝑡 

the time step 
𝑁𝑥 𝑁𝑦 𝑁𝑧 𝑇𝑚𝑎𝑥 𝑁𝑝𝑚𝑙 ∆𝑡(𝑝𝑠) 
50 88 9 1320 7 0.441 

 
Table 3: Comparison of Simulation results of the Rectangular Patch 

Antenna 
Method ∆𝑡 Iterations Memory (MB) 
FDTD 0.4417ps 11448 9 

LFDTD 0.4417ps 400 73 
 
The results obtained (Incident and Total Waves (Figure 8)) 
by means of the 𝐿𝑎𝑔𝑢𝑒𝑟𝑟𝑒–𝐹𝐷𝑇𝐷 formulation are similar 
to those of the 𝐹𝐷𝑇𝐷  formulation. One can increase the 
number of Laguerre Basis functions in order to improve 
𝐿𝐹𝐷𝑇𝐷 accuracy.  

 
Figure 7: Return Loss 𝑆11 of the Rectangular Patch Antenna which is fed 

by UML. 
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We notice that from 5 𝐺𝐻𝑧  to 19 𝐺𝐻𝑧  that the antenna 
presents 4 resonances with narrow bandwidth (Figure 7) 
and the results of both methods are also identical in the 
frequency domain. As previously mentioned, the main goal 
of the use of the non uniform microstrip lines is to achieve 
the ultra wideband matching of the input impedance. So, 
two types of tapered microstrip line (Figure 5-6) are dealt 
with in this paper.  

 
Figure 8: Incident and Total Waves obtained by simulating 

the Rectangular Patch Antenna fed by UML. 
 

By using linear tapered microstrip line rather than the 
uniform microstrip line, the Patch Antenna is matched from 
6 𝐺𝐻𝑧 to 18.5 𝐺𝐻𝑧 (Figure 10). In addition, we can achieve 
good level of matching by increasing the ration R expressed 
as: 

𝑅 = 𝐿1
𝑙−𝐿1

                                       (49) 

where 𝐿1 uniform portion’s length and l is is the total length 
of the microstrip line (Figure 5). In the case of sinus tapered 
microstrip line, the antenna’s matching band ranges from 
6.5 𝐺𝐻𝑧  to 18.5 𝐺𝐻𝑧 (Figure 11). So, the more the 
magnitude increases the higher the matching level is. The 
matching level depends on the number and the magnitudes 
of ripples. All calculations in this paper have been 
performed on an 𝐼𝑛𝑡𝑒𝑙𝑅  𝐶𝑜𝑟𝑒𝑇𝑀𝑖3 2.30 𝐺𝐻𝑧 Machine.  

 
Figure 9: Input Impedance of the rectangular patch antenna 

fed by UML. 

 
Figure 10: Return Loss 𝑆11 of the rectangular patch antenna fed by linear 

tapered microstrip line. 

 
Figure 11: Return Loss  𝑆11of the rectangular patch antenna fed by sinus 

tapered microstrip line. 
 
7. Conclusion  

Simulation based upon Laguerre Polynomials leads to 
unconditionally stable 𝐹𝐷𝑇𝐷  method. A node numbering 
scheme to achieve tri-diagonal a matrix has been proposed 
in this paper and the resulting matrices are sparse and 
suitable for 𝐿𝑈  Decomposition. Consequently, the huge 
sparse matrix obtained from the conventional 𝐿𝐹𝐷𝑇𝐷 
formulation is easily handled. The time steps  ∆𝑡𝐹𝐷𝑇𝐷 and 
∆𝑡𝐿𝐹𝐷𝑇𝐷  were taken equal and the numerical examples 
indicate that the 𝐿𝐹𝐷𝑇𝐷  method need more memory 
storage. Therefore, there are several applications 
(microwaves devices, filters, connectors, couplers, Patch 
antennas) that potentially can make the use of the new 
efficient implementation of 𝐿𝑎𝑔𝑢𝑒𝑟𝑟𝑒 − 𝐹𝐷𝑇𝐷 
formulation. The new programming code has been applied 
to simulate the Rectangular Patch Antenna fed by 
microstrip lines. In order to achieve Ultra Wideband 
Matching, the uniform microstrip is replaced by non 
uniform microstrip lines. Configurations such as linear and 
sinus tapered microstrip lines contribute to have good level 
of matching with Ultra Bandwidth. 
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