
IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

42

Manuscript received November 5, 2013
Manuscript revised November 20, 2013

Testing Object-Oriented Systems by Using a Random Sequence
of UML Diagrams

Anna Mroczek

Cracow University of Technology; Krakow, Poland

Summary
UML (Unified Modeling Language) as a standard as a standard
of specification of object systems should be a natural source of
information relevant to the testing. However, the systems are
usually very complex. Moreover, the UML models contain a lot
of data which are difficult for formalization and require human
assistance. This makes ATPG (Automatic Test Pattern Generatio)
from UML very doubtful. Consequently, random testing might be
an interesting alternative for ATPG.
Key words:
UML, random testing, object-oriented system, test scenarios.

1. Introduction

OOS (object-oriented systems) facilitate the change in the
system in order to improve the functionality of the system.
This allows the re-use of code which was previously
applied in each of the subsystems. It also facilitates the
integration of subsystems to a large system, as well as the
design of distributed systems [1].
UML was adopted by the Object Management Group
(OMG) and it is a standard for modeling the object-
oriented system (OOS). Unified Modeling Language is
used to specify, visualize, modify, construct, and to
document the artifacts of the object-oriented software-
intensive system during its development. Unified Modeling
Language (UML) combines the techniques of modeling
entity–relationship model (ER model), activities (Data
flow diagram - DFD), Object -Oriented Analysis (OOA)
and management complexity. UML allows you to present a
plan of the system, both the system functions as well as the
detailed information about the system [3].
Each system must meet all of the functions set by the user.
Therefore, during the development of the system, it should
be thoroughly verified and tested. One should check the
correctness of the specification to validate the model
object net model (ONM) [7].
Another way is to use the evaluation of test scenarios.
When the user meets the requirements of the specification,
it can be concluded that the system is correct. However,
the development of scenarios will be compared to the
specification [9].
Each instance of the class is tested at the individual level.
They are used in UML diagrams, object states and

transitions between states. The method presented in the
work of Abdurazik and Offutt [10] shows that the
relationship as an external event affects the behavior of the
object.
The rationale OOSs at work [11] is a method of a semi-
automatic generation of test paths. This method uses the
objects appearing in the OOS and their interactions.
Because objects perform all the operations of the system, it
can be interpreted as a sub with its own attributes and
operations. In [11] ONM was presented, as well as the way
in which the test paths that represent the behavior of
objects can be generated.
In my publication I present a method of random testing of
object-oriented systems which is based on their UML
models: use case diagrams, sequence diagrams, and class
diagrams.
The paper is organized as follows. In section 2 states the
problem. Section 3 we briefly discuss related work.
Section 4 gives an overview of the method and sections 5
describes the main steps of the random testing. The paper
ends with conclusions.

2. Problem statement

Structural testing requires a good definition of the error
codes and it is connected with the necessity of defining test
vectors for complex errors. This process is very time-
consuming. There is also a possibility of omitting the
unknown error codes. Functional testing also possesses
some limitations on its complexity. Hence the popularity of
random testing (pseudorandom testing). It is based on
generating an arbitrary subset of input vectors. It can be
reasoned that the longer testing sequence is generated, the
better error coverage can be obtained. What is more, we do
not have to be familiar with the error codes. This simple
idea can be proven in practice. The most important thing
here is to select an appropriate length of such a sequence in
order to obtain the required error coverage.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

43

3. Testing OOS

OOS is the subject of many studies. First of all, it is used in
the context of UML models as a source of test cases. To a
large extent, these studies implement the deployment and
testing of integrated systems.
Testing of the system involves the testing of the whole
system according to its specifications. It comprises many
activities, such as functional testing (the study with a
preservation of system specifications) and testing the
system efficiency (time to respond as well as the use of
resources), [5] In other words, the way the test is
performed is compared with the aim of the specification.
In the object-oriented context, the UML artifacts take the
advantage of the development of UML, so the artifacts
(use case, sequence, interaction diagram, class diagram,
and object diagram) may be used to analyze operations on
the system. Therefore, the most suitable testing scenarios
can be obtained [9]. For example, use cases, their relevant
sequence or interaction diagrams and class diagrams can
be used as a source of valuable information for testing
purposes. UML diagrams are a potential source of
information in order to generate testing scenarios or to test
OOSs. It can be proven by many scientific publications.
The publications relate to unit testing as well as to
implemented and integrated systems.
OSS testing can distinguish six levels at which software
testing occurs – unit test, module test, integration test,
subsystem test, system test, and acceptance test [7].
The first level (a unit test) evaluates the validity of the way
in which particular units of the system work. In this case a
state diagram can be used. It displays particular states of
the object, how they are changed, and conditions under
which there occur, as well as the hierarchy of states.
The paper presents techniques of Abdurazik and Offutt that
use Outt’s state-based specification test data generation
model to generate test cases from UML state charts. The
above mention model involves the conversion of state
diagrams into transition tables. [3] It also proposes testing
criteria for generating test cases according to state
diagrams.
Kim and Hong proposed the application of state diagrams
in UML to class testing. A set of coverage criteria is
proposed based on control and data flow in UML state
diagrams and it is shown how to generate test cases
satisfying these criteria from UML state diagrams [8].
The requirements of analytical models, such as a use case
model, an interaction diagram, or a class diagram, may be
used to generate tests. The recent publications suggest the
use of the sequence of messages between objects and UML
diagram sequences, so that they may be joined by a
category zone of the study [9]. UML sequence diagrams
may be also used to generate tests and to study the object
integration. The diagrams are used to generate test cases in

order to identify the most erroneous way of testing the
software. Shanthi proposed the use of SDT and a genetic
algorithm in order to obtain the aims of diagram sequence
studies [10]. On the other hand, Sokenou [11] proposed the
method which applies state diagrams and sequence
diagrams at the same time. In his work, Sokenou presented
a sequence diagram as a collection of tests, where state
diagrams are used in order to add information about
participating objects. The tests which are generated due to
this method may be used in class as well as integration
testing. Testing of the level of integration consists in
interface testing and the integration between modules and
systems. UML is used here by means of interaction
diagrams (sequence or collaboration). Abdurazik and
Offutt research [12] used testing in accordance with a
traditional control and analysis of the flow of data in
collaboration diagrams.
System level testing is performed in order to check
whether once an integrated system fulfills as a whole the
requirements of the specification. The system is tested as a
whole by the use of black box testing. The knowledge
about the code and the internal structure of an application
is not required at the system level. Testing of the system is
the first level at which the system can be tested as a whole.
At the lower levels (unit tests, integration tests), particular
components and interfaces between them can be tested.
Many publications proposed methods of system level
testing which were based on different UML diagrams [13,
14, 15]. The methods mentioned above were differences in
the use of UML diagrams: activity diagrams [15] or a Flow
Graph [14], which were used as the base artifacts for
testing. Sarma and Mall [16] also presented the method
which used use case diagrams and sequence diagrams. A
UML use case diagram is transformed into a graph called a
use case diagram graph (UDG), while a sequence diagram
is transformed into a graph called a sequence diagram
graph (SDG). Then UDG and SDG are integrated in order
to form the System Testing Graph (STG). STG is used
with the purpose of generating use cases which may
indicate the relation between case, interaction, and defect
scenarios.
In my publication uses UML models: use case diagram,
sequence diagrams and class diagrams. A use case diagram
shows a set of use cases and actors (a special kind of class)
and their relationships. An interaction diagram shows an
interaction, consisting of a set of objects and their
relationships, including the messages that are sent among
them. Interaction diagrams address the dynamic view of a
system. A sequence diagram emphasizes the time ordering
of messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

44

4. Estimating random test sequence length
using UML diagrams

The main problem when testing the system with random
sequences, the problem is the reliability of the testing and
estimation of a random sequence length required to
achieve the desired level of quality tests.
Quality testing (QT) can determine the quality of the tests
that are written for the test application. Quality tests can
measure two parameters: coverage code (code coverage)
and coverage of cases (case coverage). This method (cover
cases) during the test design is created and describes the
test cases and test data. Test case contains set of input
values, initial conditions, expected results and created the
conditions for the end to cover the objectives of the tests or
test conditions. "Standard for Software Test
Documentation” [IEEE STD 829-1998] describes the
contents of the test design specification and the
specification of test cases.
The quality of testing is also being exploited in the testing
method random [19]. In this method, test scenarios
considered in a system in which errors can occur r set by =
{b1, b2, ..., bar}. They assumed that they were tested with
random sequence for lengths L. All possible random
sequences of length L are included in the set S consisting
of |S|=2nL components, wherein S is a subset Sk, bk error
detection.
The probability pk of this that the random sequence does
not test the error bk is equal [20]:

S
kS

-1kp = (1)

The probability p of this that the random sequence does
not test all errors fulfills the inequality:

∑≤≤
k kppkp

k
max (2)

Testing the system with the random sequence one receives
the result affirmative or negative. He qualifies the state
testifying about the correctness or the error of the system.
Specifying or the system is positive or is negative an
inaccurate notion. Because also one ought to pay attention
with which probability one can infer about the correctness
of the system on the ground the affirmative result of the
test or with which probability one can ascertain that the
system is incorrect if the test fell out negatively. Thereby
one introduced the measure of the quality of testing (QT).
A measure of the quality testing [19] called is the
probability of this that from testing one receives the correct
result only then, when tested system will be efficient.
Proved that 1-QT was equivalent 1-p, and the value QT
results by definition of probabilities p and pk. In order to
provide the positive result of testing for the credibility one
should be sure that the random sequence is testing all

mistakes being included in a harvest B. In compliance with
[19] the uncertainty for testing system equals p and
determine the length of the random sequence. To estimate
of the required length of the random sequence uses the
information on the probability of detectable error detection
hardest.
The probability pk (probability of detectable error
detection hardest) of detecting k error is distinguished as a
conditional probability, where a generated vector x
belongs to Tk a test vector set of k error. In this case equal:

knkp
11

⋅= (3)

where n -the quantity to enter, k - the quantity of errors.

For such testing is fatal the error whose the detection is
less probable. From here the uncertainty is equal kk

pmax .

The quality of the detection Q is equal to the probability,
wherein the inefficient system was identified as incorrect.
In practice belongs so to assure the proper good quality of
the detection of errors (4):

S
k
S

kpDQ maxmax1 =−= (4)

where |S|=2nL is constants for all errors,
from here the quality of the detection Q size depends on

|
−

k
S |. In order to simplify determine the length of the

random sequence adopted a constant Q value equal 10-3.
Probability random of the test here is equal to p if the
error is detected by bk scenario and 1-p the probability of
not random the test. However the probability of not
random by of this test of this test sequence L is equal to be
equal to (1-p) L, what can be recorded in the form:

Lpkp
kDQ)1(max −== (5)

Transforming the dependence (5) can be estimated the
length of the random necessary sequence for the assurance
of required quality of testing, which is:

)1log(

log

kP
DQ

L
−

= (6)

where Pk is a probability of the detection of the most
difficult detectable error and is equal p.

This type of testing never gives the results (the validation
of a given result) which are at 100% correct. It is always
less than 100%. The above mentioned type of testing is
bound to improve the system performance.
The given method is designed to estimate and to test the
undetectable error in the object system by the use of UML
diagrams. It should be proven which of the tested paths

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

45

give greater and which of them give lesser probability to
be chosen. To that end, tests will examine random critical
paths.
The method suggested above consists of two stages:

 Making a table with the data from diagrams –
concerning use cases, sequences, classes – and
assigning them to particular chart records.

 Making a pseudorandom test and checking its
accuracy, estimating the probability and the
length of the sequences.

By means of UML diagrams (use case diagram, sequence
diagram, class diagram), the user creates a file with data
concerning actors of the system, use cases, text scenarios
and objects/methods. The information is stored by means
of tables which are marked with a unique label. Below we
have an algorithm for this operation:

Fig1. Algorithm operation

The following method enables pseudorandom testing of the
object system by the use of data from UML diagrams. The
program loads a file with data and verifies its accuracy.
Then the user makes a choice of particular elements to be
tested. First the method of testing should be selected. It
may be done in a way- by testing with text scenarios. After
the selection of the method of testing, the main part of the
program can be developed. Among all actors of the system,
one of them should be selected. After that, a use case is
assigned to a selected actor. Only then a text scenario can
be selected. When all of the elements are approved, there
is the testing of scenario. When the test is over, the
information about its results, probability, and length of

random path is given. The user may cancel testing at any
stage of the process. Below presents a method for testing
to figure 2.

Fig 2. Algorithm operation

The discussed method tests the system in the
pseudorandom manner. The probability (P) of the every
tested object is calculated and the length (L) of random
path is established. The undetectable error from the
example is located in the testing path.

5. Example

This chapter Provides an example of a system of object-
oriented ATM. An example will be used for analysis and
random testing of the system. Used UML diagrams: use

START

initiation TABLE by adding NULL ID to it

create a set A of all actors assign to n id a set An:=A

create a set U of all use case assign to l id a set Ul:=U

create a set S of all scenarios assign to j id a set Sj:=S

STOP

until user stop Error

initiation T by adding a NULL node it

select A of all actors using the system assign Ao a
set DefaultMutableTreeNode tP(An):= 1/n

tempW=getTAB(W, diagrams, N, M)

tempW=getTAB(W, diagrams, N, M)

Succes

until Tg is not

select Un of all use_case the system assign Ul
n a

set DefaultMutableTreeNode tP(Ul
n):= 1/n/l

select scenarios Sn of scenarios the system assign
Sj

n a set DefaultMutableTreeNode tP(Sj
n):=

1/n/l/j

Final Wtresult:=temW
Final int TemP=tP

STOP

if{node,getActor

instanceof DiagramUseCase

if (node:=null
&& node.isLeaf()

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

46

case diagrams, sequence diagram and class diagram. Also
used in test scenarios.
The application examines the random testing of object-
oriented systems based on their UML models (use case
diagram, sequence diagram and class diagram.)
The configuration file must contain the following syntax as
in the example configuration file, as follows: ID none of
the elements cannot be repeated. If any id occurs twice this
error message appears. In this file, you must specify how
the system testing.
Create a file with data in UML diagrams. In the figure 3
shows a diagram of a use case. Distinguished three actors:
Customer (A1), Operator (A2), and Bank (A3). Each actor
has an identifier Ai, where i is the number of the next actor.

Fig 3. ATM use case diagram

Next step selects random actor A1 Customer. The use case
diagram created table 'Table Uses case'. Each use case has
an identifier Ui

j, where j is a sequence number, j is the
actor associated with this use case. Then select U1

1 the use
case for the actor - Session. On the Figure 4 (Session

Sequence Diagram) shows the sequence diagram for the
use case.

Fig 4. Session Sequence Diagram

Then assigned identifiers Sn
j test scenario, where n is

another scenario number and j is the ID of the use case.
The next step: selection of the test scenario S1

1 (Invalid
PIN). The table shows the test scenarios for ATM.
Following the initial test cases can be Identified early in
the design process as a vehicle for checking the
Implementation That is basically correct.

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

47

Table 1: Margin specifications

Use
Case

Function
Being
Tested

Initial
System
State

Input Expected
Output

System
Startup

System is
started

when the
switch is
turned

System is
off

Activate
the "on"
switch

System
requests

initial cash
amount

System
Startup

System
accepts

initial cash
amount

System is
requestin

g cash
amount

Enter a
legitimate
amount

System is
on

System
Startup

Connectio
n to the
bank is

established

System
has just

been
turned on

Perform a
legitimate

inquiry
transactio

n

System
output
should

demonstrat
e that a

connection
has been

established
to the Bank

System
Shutdow

n

System is
shut down
when the
switch is
turned
"off"

System is
on and

not
servicing

a
customer

Activate
the "off"
switch

System is
off

Invalid
PIN

Extension

Customer
is asked to
reenter PIN

Enter an
incorrect

PIN;
Attempt

an inquiry
transactio
n on the

customer's
checking

Customer is
asked to re-
enter PIN

The next step: selection of the test scenario S1

1. Select
Transaction scenario. Testing scenario. Available all the
actors of the use case diagram. Choice actor A2 (Operator).
Then the choice of case use U2

2 (System Shoutdown).
Then select the next item. Follow the guidelines. The
algorithm terminates when it reaches the final outcome.
After approval of the summary. The results of probability
(from the equation 3) and length (from the equation 6) of
the random sequence. Information concerning the
probability of drawing a path and the length of random
sequences. Probability values of detectable error detection
hardest are Pk=1/6 (from the equation 3) (Pk= 0,1667),
random sequence of length L= 37,888 (from the equation
6). While, random sequence of length is L = 369, 554 and
it is the longest path in the example ATM.

6. Conclusions

Testing of systems demands applications on the examined
system of the sequence appropriate testing. Test vectors
can be generated for the definite gathering of errors

defined on the level of the logical structure (test structure)
or so that to check functions realized by the system (testing
functional). Both these approaches have their own
advantages and defects, both on the level of the generation
of vectors of tests, as and costs of tests. Because of this
work the attention was sacrificed to testing of random
whose an advantage is simple generators and the
possibility of composite detections. Very essential is here
however the quality of the length of the test which warrants
the suitable fault coverage. The smaller the probability of
detectable error detection hardest the higher the quality of
the test.
Introduced method of testing of random permissible to test
the system into the simple and quick manner, obtaining
good results of testing.
The discussed method tests the system in the
pseudorandom manner. The probability (Pk) of the every
tested object is calculated and the length (L) of random
path is established. The undetectable error from the
example is located in the testing path.
The progress of the technology courses that the sphere of
testing and the reliability dynamically is developed
because following works they will develop this method.

References
[1] Booch G., Maksimchuk R., Engle M., Young B., Conallen

J., Houston K., Object Oriented Analysis and Design with
Applications, Pearson Education 2007

[2] Dockerill K., The Importance of Animation with UML, 9th
International Symposium of the INCOSE, Brighton, 1999

[3] Myers G.J., Sandler C., Badgett T., Thomas T.M., The art of
testing, Wiley, 2004

[4] Abdurazik A., Offutt J., Generating test cases from UML
specifications, In: Proc. 2nd International Conference on the
Unified Modeling Language (UML99) , Fort Collins, CO,
1999

[5] Sapiecha K., Strug J., Automatic Test Paths Generation
from UML Models, 4th IFIP TC2 Central and East
European Conference of Software Engineering Techniques,
Cracow, 115-128, 2009

[6] Binder R. V. , Testing Object-Oriented Systems - Models,
Patterns, and Tools, Addison-Wesley, 2000

[7] Addison-Wesley, 1999. Carleton University TR SCE-01-01-
Version 4 Revised, 2002

[8] Briand L., Labichen Y., A UML-Based Approach to System
Testing, 2002

[9] Beizer B., Software Testing Techniques, Van Nostrand
Reinhold, New York, 2nd Ed., 1990

[10] Kim Y.G., Hong H.S., Cho S.M., Bae D.H., Cha S.D., Test
Cases Generation from ULM State Diagrams, IEEE
Proceedings -Software 146(4), 187-192, 1999

[11] Ostrand T. J., Balcer M. J., “The Category-Partition Method
for Specifying and Generating Functional Test,”
Communications of the ACM, vol. 31 (6), 676-686, 1988

[12] Shanthi, Kumar , Automated Test Cases Generation from
UML Sequence Diagram, 2012 International Conference on
Software and Computer Applications (ICSCA 2012), 2012

IJCSNS International Journal of Computer Science and Network Security, VOL.13 No.11, November 2013

48

[13] Sokenou D., Gnerating Test Sequences from UML sequence
Diagrams and State Diagrams

[14] Offutt A. J., Abdurazik A., “Using UML Collaboration
Diagrams for Static Checking and Test Generation,” Proc.
3rd International Conference on the Unified Modeling
Language (UML'00), 383-395, October, 2000

[15] Booch G., Rumbaugh J., Jacobson I., The Unified
Modeling Language User Guide, Addison Wesley, 1999

[16] Salem A.M., Balasubramaniam L., Utilizing UML use case
for testing requirements, International Conference on
Software Engineeing resarch and practice, Las Vegas, USA,
2004

[17] Meyer B., “Design by Contracts,” IEEE Computer, vol. 25
(10), 40-52, 1992

[18] Sarma M., Mall R., Automatic Test Case Generation from
UML Models, 10th International Conference on Information
Technology, Roulkela, India, 2007

[19] Dictionary of terms associated with testing, version 2.0,
ISTQB, 2006

[20] Sapiecha K., Testing and diagnosis of digital systems, PWN,
1987

Anna Mroczek. Research and
teaching assistant of Laboratory of
Computing Science, Faculty of
Electrical and Computer Engineering,
Cracow University of Technology.
She received the M. Sc. degree in
Applied Computer Science from AGH
University of Science and Technology
in Cracow, Poland, in 2010. Her
research interest includes diagrams

UML, modeling and testing object of systems.

