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Summary 
This paper deals with estimating two parameters of 
Gamma distribution, which are the shape parameter ( ), 
and the scale parameter ( ) using the method of moments, 
maximum likelihood, the scale parameter ( ) which is 
important in estimation of mean of life to failure 
distribution, are also estimated using Bayes estimator 
where ( ) considered random variable have prior 
distribution [ ] and proposed prior [ ] under 
squared error loss function. The third proposed estimator is 
( ) which is the mixture of maximum likelihood ( ) 
and ( ) which is the first Bayes estimator, the value of 
proportion (p) which minimize the mean square error of 
( ) is also derived. The comparison has been done 
through simulation using different sets of initial values and 
different sample size using mean square error (MSE). All 
results of comparison explained in tables. 
Key words: 
Two Parameter Gamma, Gamma ( ), , , 

, , , , MSE. 

1. Introduction 

The estimating of unknown parameters in statistical 
distribution is one of important problems facing constantly 
those who are interested in applied statistics. This paper 
consider the problem of estimation the shape and scale 
parameter of one of the important probability distribution 
of time to failure, which applied in several areas such as 
production, health, biology, agriculture, maintenance and 
others. There are several types of data arise in every day of 
life, were the data are complete or censored or discrete or 
continuous. The two parameters (shape & scale), Gamma 
probability distribution, were studied by [1], [7], [8] and, 
[12]. This model can be used quite effectively in modeling 
time to failure, strength and life time data. 
Our aim in this paper is to estimate the shape parameter 
( ) which is estimated by moments, and this ( ), is 
considered known and used to find different five 
estimators of scale parameter ( ), and the comparison 
between two estimators has been done using (MSER), all 
results explained in tables. 
 

 

2. Definition of Distribution 

The distribution of general Gamma is defined as; 

    (1) 
                                                     

 
  are shape parameters,  is scale parameter, when 

 the  in equation (1) is reduced to the 
Gamma probability density function, defined by; 

             (2) 
Where; 
  
When ( ) is not integer. 
                                            (3) 
When ( ) is positive integer Gamma distribution (2) is 
known as Erlang distribution, when ( ), Gamma 
reduced to exponential probability distribution; 
                                   (4) 
The sum of independent identically distributed exponential 
random variables with two parameters ( ), when 
( ), Gamma distribution reduced to Chi – 
Square with ( ) degree of freedom, i.e; 

                                            (5) 

The cumulative distribution function ( ) for two 
parameters Gamma can be found; 
                          (6) 

When ( ) is positive integer then; 

 
Which is called incomplete Gamma function. 
The  moments about origin for two parameters ( ) is 
found to be; 
                                                (8) 

Therefore, the mean of distribution Gamma ( ) is; 
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While the moment generating function ( ); 
  
Finally, the reliability function is; 

 

3. Methods of Parameter estimation for two 
parameters Gamma 

   We will explain some classical methods and some 
Bayesian methods to estimate the shape parameter ( ) and 
the scale parameter ( ). 

3.1 Methods of Moments (MM) 

   This method depends on equating sample moments; 

  
With population moment ( ); 
  
Then solving equation ( ) to obtain the moment 
estimator, for Gamma (two parameters) we have; 
  

    and; 
  
  
since  
                                                                  (10)  
 and 
  

                                            (11) 
From (10) and (11), we obtain the moment estimator of the 
shape parameter ( ) as; 
                                                                                       

         (sample variance)                (12) 
And 
                                                               (13) 

3.2 Maximum Likelihood method (ML) 

   The (MLE) estimators has many properties like sufficient, 
consistent and invariant property, the estimated value at 
which the log of likelihood function is at its maximum 
value. First let ( ) be a random sample size ( ) 
taken from distribution with , then the 
likelihood function ( ) is; 

 
For the two, parameters Gamma distribution (2), (L) is 
defined by; 

 
Taking logarithm 

      (16) 
Then; 
                                             (17) 

 
Since; 
                                                        (19) 
Putting equation (19) in (18), we get; 

 

                             (20) 

    called Digamma function. 

  
  Ration of geometric sample mean to the arithmetic 
sample mean. 
When ( ) obtained from (20) then ( ) is easy obtained 
from (19). The ( ) make, 
  

3.3 Bayesian Estimator  

     In (1761), Thomas Bayes published a research in which 
the parameter ( ) considered random variable and have 
prior information represented by a probability density 
function , and the question here is how to use 
this prior information to obtain the estimator of parameter 
( ), this depend on finding the posterior distribution 
[ ], and then finding the Bayes estimator ( ) from 
minimizing the expected loss [ ], i.e the point 
estimator of parameter ( ) which minimize expected loss 
found from; 

 
Using  of two parameters Gamma ( ); 
  
Then  
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Let prior of ( ) is; 
  

       (23) 

  

let  
Therefore  

                       (24) 

Under modified risk function; 
  
  
From  
  

                            (25) 

This estimator ( ) is the first Bayes estimator of ( ) 
depend on the known constant ( ) also we can use ( ) 
to find ( ). 
  The Bayes estimators for ( ) in this research are of two 
kind, the first one depend on [ ] which represented in 
(25), the second Bayes formula for ( ) depend on second 
proposed [ ]; 

                    (26) 
From (22) and (26) we proved that the second formula for 
posterior distribution is; 

  

  
Under squared error loss function; 
  
  

  
      After we find moments estimator and maximum 
likelihood and two Bayes estimator for ( ), (scale 
parameter), we work to find another proposed estimator of 
( ) which is a mixture estimator, which is a mixture 
combination of ( ) (maximum likelihood estimator), and 
( ) a first Bayes estimator. 
  

Where ( ) is constant found from minimizing the value of 
mean square error (MSE) as follows; 
  
                   
                  
                  
 

 

 

 
 

 
Therefore; 
  

This is the value of ( ) which is ( ) 
that minimize the mean square error of mixture distribution. 

4. Simulation 

The comparison between estimators has been done through 
simulation procedure using ( ), 
( ), the values of constants and 
parameters initial values determination are as follows; 
 

Model 1 2 3 4 5 6 7 8 

 0.5 1 1.5 3 

 3 2 3 2 3 2 3 2 
First generate random number from two parameter Gamma 
which represent the individual time to failure from; 
  

 random variable  [ ], then; 

 
The comparison was done using mean square error (MSE); 

  
The results explained in tables below. 
 
Table (1): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 
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Table (2): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 
Table (3): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
 

Table (4): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 
 
Table (5): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
Table (6): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 
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Table (7): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
Table (8): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
Table (9): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 

Table (10): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
Table (11): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 

 

 
 
Table (12): Estimated values of ( ) by different methods 
and due to different sample size with initial values 
( ). 
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Table (13): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (14): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (15): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 

Table (16): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 

Table (17): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (18): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 
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Table (19): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (20): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (21): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 

Table (22): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (23): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 

 

 
 
Table (24): Values of mean square error (MSE) for ( ) by 
different methods and due to different sample size with 
initial values 
( ). 
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Conclusion  

1- For sample size ( ) the best 
estimator is the mix one, since it gives smallest mean 
square error, as indicated for all combination of 
initial values of parameters. 

2- The mixed estimator represent a linear combination 
from maximum likelihood one, and Bayes estimator, 
the value of mixing parameter ( ) is derived from 
maximizing the mean square error. 

3- For ( ), the best estimator of scale parameter 
( ), is mix, the ( ), moment estimator, Bayes II, 
and Bayes I. 

4- For sample size ( ), also the best estimator of 
( ) is mixed, then maximum likelihood estimator, 
then moment estimator, Bayes II and Bayes I. 

5- The estimator of scale and shape parameters are 
important especially, when the researcher want to 
estimate the mean time to failure of the studied 
distribution (Gamma) to find the variance, and to 
construct confidence limits for the parameters. 
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