Comparing Different Estimators for Parameters of Two Gamma Parameters Using Simulation

Mahmod M. Sh. Amrir,

Mathematics Department, Faculty of Sciences and Arts-Alkamil, King Abdulaziz University, Jeddah-Saudi Arabia

Summary

This paper deals with estimating two parameters of Gamma distribution, which are the shape parameter (**p**), and the scale parameter $(\boldsymbol{\theta})$ using the method of moments, maximum likelihood, the scale parameter (θ) which is important in estimation of mean of life to failure distribution, are also estimated using Bayes estimator where $(\boldsymbol{\theta})$ considered random variable have prior distribution $[g_1(\theta)]$ and proposed prior $[g_2(\theta)]$ under squared error loss function. The third proposed estimator is $(\hat{\theta}_{mix})$ which is the mixture of maximum likelihood $(\hat{\theta}_1)$ and $(\hat{\theta}_2)$ which is the first Bayes estimator, the value of proportion (p) which minimize the mean square error of $(\hat{\theta}_{mix})$ is also derived. The comparison has been done through simulation using different sets of initial values and different sample size using mean square error (MSE). All results of comparison explained in tables.

Key words:

Two Parameter Gamma, Gamma (p, 0), $\hat{\theta}_{Bayes 1}$, $\hat{\theta}_{Bayes 2}$, $\hat{\theta}_{MLE}$, $\hat{\theta}_{MOM}$, \hat{p}_{MOM} , \hat{p}_{MLE} , MSE.

1. Introduction

The estimating of unknown parameters in statistical distribution is one of important problems facing constantly those who are interested in applied statistics. This paper consider the problem of estimation the shape and scale parameter of one of the important probability distribution of time to failure, which applied in several areas such as production, health, biology, agriculture, maintenance and others. There are several types of data arise in every day of life, were the data are complete or censored or discrete or continuous. The two parameters (shape & scale), Gamma probability distribution, were studied by [1], [7], [8] and, [12]. This model can be used quite effectively in modeling time to failure, strength and life time data.

Our aim in this paper is to estimate the shape parameter (p^*) which is estimated by moments, and this (p_{MM}) , is considered known and used to find different five estimators of scale parameter (θ) , and the comparison between two estimators has been done using (MSER), all results explained in tables.

2. Definition of Distribution

The distribution of general Gamma is defined as;

$$f_T(t; B, p, \theta) = \frac{B}{\Gamma(p)\theta^{Bp}} t^{Bp-1} exp \left[-\left(\frac{t}{\theta}\right) \right]^{\theta} I_{(0,\infty)}(t) \quad (1)$$

 $0 < t < \infty$ $(\theta, p, B) > 0$

(p, B) are shape parameters, (θ) is scale parameter, when (B = 1) the p.d.f in equation (1) is reduced to the Gamma probability density function, defined by;

$$f_{T}(t; p, \theta) = \frac{1}{\Gamma(p)\theta^{p}} t^{p-1} exp \left[-\left(\frac{1}{\theta}\right)\right] I_{(0,\infty)}(t)$$
(2)
Where;
$$\Gamma(p) = \int_{0}^{\infty} t^{p-1} e^{-t} dt = (p-1)!$$

When (p) is not integer.

$$\Gamma\left(p + \frac{1}{2}\right) = \frac{1.3.5...(2p-1)\sqrt{\pi}}{2^p}$$
(3)

When (p) is positive integer Gamma distribution (2) is known as Erlang distribution, when (p = 1), Gamma reduced to exponential probability distribution;

$$f_T(t) = \frac{1}{\theta} \exp\left[-\left(\frac{t}{\theta}\right)\right] I_{(0,\infty)}(t)$$
(4)

The sum of independent identically distributed exponential random variables with two parameters (n, θ) , when $(\theta = 2, p = \frac{n}{2})$, Gamma distribution reduced to Chi – Square with (n) degree of freedom, i.e;

$$f_T(t) = \frac{t^{\frac{1}{2}-1} e^{-\frac{1}{2}}}{2^{\frac{1}{2}} \Gamma(\frac{n}{2})} I_{(0,\infty)}(t)$$
(5)

The cumulative distribution function (*C.D.F*) for two parameters Gamma can be found;

$$f_T(t; p, \theta) = \int_0^t \frac{1}{\Gamma(p) \, \theta^p} \, u^{p-1} \, e^{-\frac{u}{\theta}} \, du \tag{6}$$

When (p) is positive integer then;

$$f_T(t; p, \theta) = \sum_{j=p}^{\infty} \left[\frac{\left(\frac{t}{\theta}\right)^j \exp\left[-\left(\frac{t}{\theta}\right)\right]}{j!} \right]$$
(7)

Which is called incomplete Gamma function.

The r^{th} moments about origin for two parameters ($\theta_{r}p$) is found to be;

$$\mu_r' = E(t^r) = \frac{\theta^r \Gamma(p+r)}{\Gamma(p)} \tag{8}$$

Therefore, the mean of distribution Gamma (θ, p) is; $E(T) = p\theta$

Manuscript received December 5, 2013

Manuscript revised December 20, 2013

 $v(T) = p\theta^{2}$ While the moment generating function (m.g.f); $M_{T}(S) = E(e^{ST}) = (1 - \theta S)^{-p}$ Finally, the reliability function is; $R(t) = pr(T \ge t) = \sum_{i=0}^{p-1} \left[\frac{\left(\frac{t}{\theta}\right)^{j} exp\left[-\left(\frac{t}{\theta}\right)\right]}{j!} \right]$

3. Methods of Parameter estimation for two parameters Gamma

We will explain some classical methods and some Bayesian methods to estimate the shape parameter (p) and the scale parameter (θ) .

3.1 Methods of Moments (MM)

This method depends on equating sample moments; $m_j = \frac{\sum_{i=1}^{n} t_i^j}{n}$ With population moment (M_j) ; $M_j(\underline{\theta}) = E(T^j)$ Then solving equation $(m_i = M_j)$ to obtain the moment

estimator, for Gamma (two parameters) we have;

$$m_{1} = \frac{\sum_{i=1}^{n} t_{i}}{n} = \bar{t}$$

$$m_{2} = \frac{\sum_{i=1}^{n} t_{i}}{n} \text{ and};$$

$$M_{1}(t) = E(T) = p\theta$$

$$M_{2}(t) = E(T^{2}) = \theta^{2}p(p+1)$$
since $m_{1} = M_{1}$

$$\bar{t} = \hat{p}\hat{\theta}$$
(10)
and
$$m_{2} = M_{2}$$

$$\frac{\sum_{i=1}^{n} t_i^2}{n} = \hat{\theta}^2 \hat{p} (\hat{p} + 1)$$
(11)

From (10) and (11), we obtain the moment estimator of the shape parameter (p) as;

$$\hat{p}_{MM} = \frac{(\bar{t})^2}{s^2}$$

$$S^2 = \frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n-1} \quad (\text{sample variance}) \quad (12)$$
And

$$\hat{\theta}_{MM} = \frac{s_t^2}{t} \tag{13}$$

3.2 Maximum Likelihood method (ML)

The (MLE) estimators has many properties like sufficient, consistent and invariant property, the estimated value at which the log of likelihood function is at its maximum value. First let $(t_1, t_2, ..., t_n)$ be a random sample size (n) taken from distribution with **p.d.f** [f(t; θ)], then the likelihood function (L) is;

$$L = f(t_1, \theta). f(t_2, \theta) \dots f(t_n, \theta) = \prod_{i=1}^n f(t_i, \theta)$$
(14)

For the two, parameters Gamma distribution (2), (L) is defined by;

$$\underbrace{\underline{\theta}}(t_1, t_2, \dots, t_n; p, \theta) = \frac{1}{[\Gamma(p)]^n(\theta^{np})} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right] \prod_{i=1}^n t_i^{p-1} \quad (15)$$

-**7710**

Taking logarithm

$$\ln L = -n \ln[\Gamma(p)] - np \ln \theta - \left(\frac{L_{i=1} \iota_i}{\theta}\right) + (p + 1)\sum_{i=1}^n \ln t_i$$

(16) Then:

$$\frac{\partial \ln L}{\partial p} = -\frac{n\hat{p}}{\hat{\theta}} + \frac{n\tilde{t}}{\hat{\theta}^2} = 0$$
(17)
$$\frac{\partial \ln L}{\partial p} = -n\frac{d}{dp} [\ln \Gamma(\hat{p})] - n \ln(\hat{\theta}) + \sum_{i=1}^{n} \ln(t_i) = 0$$
(18)

Since;

$$\widehat{\theta}_{MLE} = \left(\frac{\overline{t}}{\widehat{p}_{MLE}}\right) \tag{19}$$

$$\frac{a}{dp} \left[\ln\Gamma(\hat{p}) \right] - n \ln(\hat{p}) = \frac{1}{n} \sum_{i=1}^{l} \ln(t_i) - \ln(\bar{t})$$

$$\psi(\hat{p}) - \ln(\hat{p}) = \ln\left[\frac{(t_{1i}t_{2im}t_{2im}\bar{t}_{1i})\bar{n}}{\bar{t}}\right]$$
(20)

$$\begin{split} \psi(\hat{p}) &= \frac{\Gamma'(\hat{p})}{\Gamma(\hat{p})} \quad \text{called Digamma function.} \\ \psi(\hat{p}) &- \ln(\hat{p}) = Ln \ (R) \end{split}$$

 \mathbf{R} = Ration of geometric sample mean to the arithmetic sample mean.

When (\hat{p}) obtained from (20) then $(\hat{\theta}_{MLE})$ is easy obtained from (19). The $(\hat{p}_{MLE}, \hat{\theta}_{MLE})$ make, $\left|\frac{\partial^2 \ln L}{\partial p^2}\right|$ and $\left|\frac{\partial^2 \ln L}{\partial \theta^2}\right| < 0$

3.3 Bayesian Estimator

In (1761), Thomas Bayes published a research in which the parameter (θ) considered random variable and have prior information represented by a probability density function **p.d.** $f[\pi(\theta)]$, and the question here is how to use this prior information to obtain the estimator of parameter (θ), this depend on finding the posterior distribution $[\pi(\theta|\mathbf{x})]$, and then finding the Bayes estimator ($\hat{\theta}$) from minimizing the expected loss $[L(\hat{\theta}, \theta)]$, i.e the point estimator of parameter (θ) which minimize expected loss found from;

$$\min_{\theta} E[L(\hat{\theta}, \theta)] = \min_{\theta} \int L(\hat{\theta}, \theta) f(\theta|t) d\theta$$
(21)

Using p.d.f of two parameters Gamma (p,θ);

$$f_T(t; p, \theta) = \frac{1}{\Gamma(p) \, \theta^p} t^{p-1} e^{-\frac{t}{\theta}} \qquad t > 0$$

Then

$$L(t_1, t_2, \dots, t_n; p, \theta) = \frac{1}{[\Gamma(p)]^n (\theta^{np})} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right] \prod_{i=1}^n t_i^{p-1} \quad (22)$$

Let prior of
$$(\theta)$$
 is;
 $g_1(\theta) = \frac{k}{\theta^c} \quad k(constant) \quad \theta > 0 \quad c \in \mathbb{R}^+$
 $h(\theta|t) = \frac{\frac{k}{\theta^c} \frac{1}{[r(p)]^n(\theta^{np}]} \prod_{i=1}^n t_i^{p-1} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right]}{\int_{\frac{k}{\theta^c}} \frac{1}{[r(p)]^n(\theta^{np}]} \prod_{i=1}^n t_i^{p-1} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right] d\theta} \quad (23)$
 $h(\theta|t) = \frac{\frac{1}{(\theta^{np+c})} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right]}{\int_{\frac{1}{(\theta^{np+c})}} \exp\left[-\left(\frac{\sum_{i=1}^n t_i}{\theta}\right)\right] d\theta} \quad d\theta = -\frac{\sum_{i=1}^n t_i}{y^2} dy$

Therefore

$$h(\theta|\underline{t}) = \frac{\left(\frac{\sum_{i=1}^{n} t_i}{\theta}\right)^{c+np} \exp\left[-\left(\frac{\sum_{i=1}^{n} t_i}{\theta}\right)\right]}{\sum_{i=1}^{n} t_i \ \Gamma(c+np-1)}$$
(24)

Under modified risk function; R = Modified Risk = E(loss function) $R = E[\theta^{r}(\hat{\theta} - \theta)^{2}]$ From $\frac{\partial R}{\partial \hat{\theta}} = 0 \Longrightarrow$ $\hat{\theta}E(\theta^{r}) - E(\theta^{r+1}) = 0$ $\hat{\theta}_{Bayes} = \frac{\varepsilon(\theta^{r+1})}{\varepsilon(\theta^{r})} = \frac{\sum_{i=1}^{n} t_{i}}{(c+np-r-2)}$ (25) Modified
(25)

This estimator $\begin{pmatrix} \vartheta \\ Modified \end{pmatrix}$ is the first Bayes estimator of (ϑ) depend on the known constant (c, r, p) also we can use (p) to find $\begin{pmatrix} \vartheta \\ Modified \end{pmatrix}$.

The Bayes estimators for (θ) in this research are of two kind, the first one depend on $[g_1(\theta)]$ which represented in (25), the second Bayes formula for (θ) depend on second proposed $[g_2(\theta)]$;

$$g_2(\theta) = \frac{k^r}{\Gamma(r)\,\theta^{r+1}} e^{-\frac{k}{\theta}} \qquad k, r > 0 \tag{26}$$

From (22) and (26) we proved that the second formula for posterior distribution is;

$$h_{2}(\theta|t) = \frac{y^{r+np+L_{\theta}-y}}{(k+\sum_{i=1}^{n}t_{i})\Gamma(r+np)}$$

$$y = \frac{k+\sum_{i=1}^{n}t_{i}}{\theta}$$
Under squared error loss function;
$$L(\hat{\theta},\theta) = (\hat{\theta}-\theta)^{2}$$

$$Risk = E[L(\hat{\theta},\theta)] = \frac{\partial R}{\partial \hat{\theta}} = 2\hat{\theta} - 2E(\theta) + 0$$

$$\Rightarrow \frac{\hat{\theta}}{2 \text{ proposed}} = E[\theta|h_{2}(t)] = \frac{(k+\sum_{i=1}^{n}t_{i})\Gamma(r+np-1)}{\Gamma(r+np)}$$

After we find moments estimator and maximum likelihood and two Bayes estimator for (θ) , (scale parameter), we work to find another proposed estimator of (θ) which is a mixture estimator, which is a mixture combination of $(\hat{\theta}_1)$ (maximum likelihood estimator), and $(\hat{\theta}_2)$ a first Bayes estimator. $\hat{\theta}_{mix} = \alpha \hat{\theta}_1 + (1 - \alpha) \hat{\theta}_2$ Where (a) is constant found from minimizing the value of mean square error (MSE) as follows;

$$\begin{aligned} \hat{\theta}_{m\,ix} &-\theta = \alpha \hat{\theta}_1 + (1-\alpha) \hat{\theta}_2 - \theta \\ &= \alpha \hat{\theta}_1 + \hat{\theta}_2 - \alpha \hat{\theta}_2 - \theta \\ &= \alpha (\hat{\theta}_1 - \hat{\theta}_2) + \alpha (\hat{\theta}_2 - \theta) \\ &= \alpha [(\hat{\theta}_1 - \theta) - (\hat{\theta}_2 - \theta)] + (\hat{\theta}_2 - \theta) \end{aligned}$$

$$\begin{aligned} (\hat{\theta}_{m\,ix} - \theta)^2 &= \alpha^2 (\hat{\theta}_1 - \theta)^2 - 2\alpha (\hat{\theta}_1 - \theta) (\hat{\theta}_2 - \theta) + \\ \alpha^2 (\hat{\theta}_2 - \theta)^2 \end{aligned}$$

$$\begin{aligned} + 2\alpha [(\hat{\theta}_1 - \theta) - (\hat{\theta}_2 - \theta)] (\hat{\theta}_2 - \theta) + (\hat{\theta}_2 - \theta)^2 \\ MSE(\hat{\theta}_{m\,ix}) &= \alpha^2 MSE(\hat{\theta}_1) - 2\alpha^2 E(\hat{\theta}_1 - \theta) (\hat{\theta}_2 - \theta) + \alpha^2 MSE(\hat{\theta}_2) + 2 \\ &+ MSE(\hat{\theta}_2) \end{aligned}$$

$$\frac{\delta m \Sigma E(\theta_{m} \log \theta)}{\theta_{p}} = 2\alpha^{*}MSE(\hat{\theta}_{1}) - 4\alpha^{*}E(\hat{\theta}_{1} - \theta)(\hat{\theta}_{2} - \theta) + 2\alpha^{*}MSE(\hat{\theta}_{2}) + 2E(\hat{\theta}_{1} - \theta)(\hat{\theta}_{2} - \theta) - 2MSE(\hat{\theta}_{2})$$

Therefore;

 $a^* = \frac{MSE(\hat{\theta}_2) - E(\hat{\theta}_1 - \theta)(\hat{\theta}_2 - \theta)}{MSE(\hat{\theta}_1) + MSE(\hat{\theta}_2) - 2E(\hat{\theta}_1 - \theta)(\hat{\theta}_2 - \theta)}$

This is the value of (α) which is $(\alpha^* proportion mix)$ that minimize the mean square error of mixture distribution.

4. Simulation

The comparison between estimators has been done through simulation procedure using (n = 10, 25, 35, 50, 75), (R = 1000 replicate), the values of constants and parameters initial values determination are as follows;

Model	1	2	3	4	5	6	7	8
θ	0.	.5	1	1	1	.5		3
p	3	2	3	2	3	2	3	2

First generate random number from two parameter Gamma which represent the individual time to failure from;

$$t_i = -\frac{1}{\theta} \ln u_i \quad i = 1, 2, ..., n$$

 u_i random variable $[u_i \sim Uniform (0,1)]$, then;
 $T = \sum_{i=1}^n t_i \sim Gamma$

The comparison was done using mean square error (MSE); $MSE = \frac{\sum_{i=1}^{R} (\hat{\theta}_i - \theta)^2}{R}$

The results explained in tables below.

<u>Table (1)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 1, r = 3, k = 2, \alpha^* = 0.3, R = 1000$).

n	MM	ML
10	0.48727507	0.47727506
25	0.48744018	0.47744016
35	0.4873323	0.47733235
50	0.50003395	0.50002245
75	0.48857532	0.47857523
Bayes I	Bayes II	Mix
0.56393278	0.47040903	0.47120168
0.51552131	0.4817430	0.48088175
0.50706823	0.48255494	0.48263105
0.50284653	0.48580311	0.48583174
0.50076009	0.48559315	0.48561926

<u>Table (2)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 1, r = 1, k = 2, \alpha^* = 0.3, R = 1000$).

n	MM	ML
10	0.50001773	0.50001221
25	0.48811528	0.47811527
35	0.50055871	0.50033831
50	0.50007429	0.50005211
75	0.50063730	0.50023231
Bayes I	Bayes II	Mix
0.52680471	0.47415259	0.47385587
0.51178967	0.48241813	0.48254798
0.50039043	0.48589143	0.48484542
0.50784692	0.48783347	0.48585526
0.50668113	0.48865516	0.48561903

<u>Table (3)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 1, r = 1, k = 4, \alpha^* = 0.3, R = 1000$).

n		ММ	ML
10	0.4	48851066	0.47851065
25	0.	50111918	0.50011917
35	0.	50055871	0.50022872
50	0.	50061172	0.50021171
75	0.4	48758388	0.47758386
Bayes	Ι	Bayes II	Mix
0.52418	899	0.47164483	0.47239741
0.504873	587	0.48442221	0.48354235
0.500390	043	0.48589143	0.48484542
0.500434	427	0.48559643	0.48526433
0.50359	142	0.48460219	0.48563417

<u>Table (4)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 2, r = 3, k = 2, \alpha^* = 0.5, R = 1000$).

n		MM	ML
10	0.	48766591	0.47766592
25	0.	50063202	0.50051251
35	0.	48875731	0.47875734
50	0.	48464994	0.47464993
75	0.	50015526	0.50012222
Bayes	Ι	Bayes II	Mix
0.543073	24	0.48741282	0.45649929
0.511637	52	0.50062465	0.47770001
0.503350	46	0.48873941	0.48041605
0.504765	25	0.48461312	0.47812242
0.500267	18	0.50015619	0.48425932

<u>Table (5)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 3, r = 3, k = 2, \alpha^* = 0.5, R = 1000$).

n		ММ	ML
10	0.	50040577	0.50010572
25	0.4	48746566	0.47746565
35	0.4	48828381	0.47828383
50	0.48802789		0.47802787
75	0.4	48691267	0.47691265
Bayes	Ι	Bayes II	Mix
0.54622	863	0.5239183	0.45831791
0.50823	507	0.50082833	0.4745185
0.50370	795	0.50787739	0.48004894
0.50821	427	0.50482697	0.48256051
0.50596	563	0.50278223	0.48205487

<u>Table (6)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 3, r = 3, k = 4, \alpha^* = 0.5, R = 1000$).

n		ММ	ML
10	0.4	48376403	0.47376401
25	0.4	49910481	0.48910482
35	0.:	50173269	0.50073268
50	0.:	50015519	0.50012213
75	0.4	48802579	0.47802573
Bayes	I	Bayes II	Mix
0.53873	781	0.51787266	0.45284128
0.50823	507	0.51084251	0.47611508
0.50662	188	0.52071712	0.48334494
0.50037	468	0.50587097	0.48268275
0.50709	622	0.50558431	0.48205497

0 - 1,p	— J,	. – 1	Lyr — Jyn — 291	a = 0.5, n = 1000).
n			ММ	ML
10		0.	88602166	0.87602167
25		0	.9022393	0.9012373
35		0.	90304772	0.90104771
50		0.	90057643	0.90044145
75		0.	90004685	0.90003382
Ba	Bayes I		Bayes II	Mix
1.022	1.02287115		0.86824593	0.85611774
0.953	0.95312602		0.89855558	0.88035457
0.928	0.92885159		0.88827732	0.88451896
0.914	0.91435249		0.88633894	0.88368278
0.91	1000	9	0.88617735	0.8838048

<u>Table (7)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 1, r = 3, k = 2, \alpha^* = 0.3, R = 1000$).

<u>Table (8)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 2, r = 3, k = 2, a^* = 0.3, R = 1000$).

n		ММ	ML
10	0.9	90121553	0.90111523
25	0.9	90022504	0.90012501
35	0.9	90023377	0.90013373
50	0.	88790587	0.87790583
75	0.	88665873	0.87665872
Bayes	Ι	Bayes II	Mix
1.00157	281	0.90507632	0.83492081
0.9268	49	0.90462791	0.86594971
0.91684	359	0.90408415	0.87341416
0.90625	089	0.9004789	0.87607817
0.90297	89	0.90002558	0.87609804

<u>Table (9)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 2, r = 3, k = 4, a^* = 0.5, R = 1000$).

-			
n		MM	ML
10	0.	90144074	0.90044072
25	0	.8857564	0.8757562
35	0.	90066357	0.90022352
50	0.	90335815	0.90115812
75	0.	90336968	0.90116958
Bayes	Ι	Bayes II	Mix
1.001611	193	0.94059271	0.83403819
0.923121	125	0.90461463	0.86246403
0.917296	532	0.90424366	0.87391414
0.911916	548	0.90471528	0.88155738
0.910814	458	0.90187638	0.88282886

<u>Table (10)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 2, r = 2, k = 4, a^* = 0.5, R = 1000$).

n		MM	ML
10	0.	8829025	0.8729022
25	0.	8857564	0.8757563
35	0.9	90093136	0.90074134
50	0.90135844		0.90035842
75	0.9	90018126	0.90012122
Bayes	Ι	Bayes II	Mix
0.98322		0.93059562	0.82703359
0.92312	125	0.90461463	0.86246403
0.927480	059	0.90885625	0.87047473
0.910912	299	0.90091527	0.88055632
0.907207	783	0.90377635	0.88122884

<u>Table (11)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 1, r = 2, k = 4, a^* = 0.5, R = 1000$).

L
98462
21965
22482
36922
44052
Mix
350124
074308
704744
755431
122873

<u>Table (12)</u>: Estimated values of (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 1, r = 1, k = 2, a^* = 0.5, R = 1000$).

n		ММ	ML
10	1.	.4878845	1.4778842
25	1.:	50861944	1.50761942
35	1.4	48175475	1.47175472
50	1.4	48436924	1.47436922
75	1.:	50144405	1.50044402
Bayes	Ι	Bayes II	Mix
1.60321	203	1.4712535	1.44030125
1.54129	221	1.5020143	1.47974307
1.51412	687	1.51498787	1.47204745
1.50503	341	1.48191512	1.47655432
1.51089	634	1.50016582	1.48022876

<u>Table (13)</u>: Values of mean square error (MSE) for (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 1, r = 3, k = 2, a^* = 0.3, R = 1000$).

(🖸	b = 0.5, p = 5, c = 1, r = 5, k = 2, a = 0.5, k = 1000								
			MM	ML					
	10	0	0.0072761	0.0052762					
	25	0	0.0020188	0.0010182					
	35	0.001138		0.0010024					
	50	0	.00053395	0.00023391					
	75	0	.00037532	0.00027531					
Ι	Bayes	Ι	Bayes II	Mix					
Ι	0.005629	94	0.0075255	0.0070647					
	0.003069	92	0.0020849	0.0020034					
	0.001668	23	0.0010778	0.00103105					
	0.000846	53	0.00060311	0.00053174					
	0.000560	09	0.00049315	0.00041926					

<u>Table (14)</u>: Values of mean square error (MSE) for (θ) by different methods and due to different sample size with initial values ($\theta = 0.5, p = 3, c = 1, r = 1, k = 2, a^* = 0.3, R = 1000$).

	- v.a.p - a.c -	1,7 - 1,8 - 2,6	= 0.3, n = 100
	n	MM	ML
	10	0.00071771	0.00031772
	25	0.00211527	0.00111523
	35	0.50055871	0.50044872
	50	0.00067428	0.00027423
	75	0.00033731	0.00023732
	Bayes I	Bayes II	Mix
Τ	0.00180472	0.00715258	0.00785586
	0.00278965	0.48241813	0.48254798
	0.50039043	0.48589143	0.0014541
Τ	0.00074691	0.00063346	0.00055525
	0.00031114	0.00035516	0.00014222

Table (15): Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

$(\theta=0.5, p=3, c=1, r=1, k=4, \alpha^*=0.3, R=1000).$									
	n		MM		ML				
	10	0.	00751065		0.00651065				
	25	0.	00211917		0.00111917				
	35	0.	00155871		0.00145872				
	50	0.	00061172		0.00041173				
	75	0.0	00058388		0.00048384				
Τ	Bayes	Ι	Bayes II		Mix				
T	0.001188	394	0.00764482	2	0.00739742				
T	0.002875	585	0.00242223	;	0.00254234				
Т	0.001390)43	0.00189143						
T	0.000434	27	0.00059643			7			
Ī	0.000591	.42	0.00060219)	0.00063417				

Table (16):Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

$(\theta = 0.5, p = 3, c = 2, r = 3, k = 2, a^* = 0.5, R = 1000)$									
		n		MM		ML			
		10	0	.00866591		0.00766592			
		25	0	.00263202		0.00163251			
		35	0	.00175731		0.00125733			
		50	0	.00064994		0.00054992			
		75	0	.00015526		0.00012225	L		
Ι		Bayes I		Bayes II		Mix			
Ι		0.0030732	4	0.00841282 0.00262465		0.00849929			
Ι		0.0036375	2			0.00270001			
Ι		0.00135046 0.00076525		0.00173941	0.00141605				
I				0.00061312		0.00012242			
Ī		0.0002671	8	0.00015619)	0.00025932			

Table (17): Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

$(\theta=0.5, p=3, c=3, r=3, k=2, \alpha^*=0.5, R=1000).$									
		n		MM		ML			
		10	0	.00840577		0.00740576			
		25	0	.00246566		0.00146562			
		35	0	.00128381		0.00118382			
		50	0	0.00042789		0.00022782			
		75	0	0.00031267		0.00021262			
		Bayes I	[Bayes II		Mix			
		0.0122286	53	0.00991835 0.00282833		0.00831791 0.00245185			
		0.0028350)7						
		0.00170795		0.00187739		0.00104894			
		0.00051427		0.00042697		0.00046051			
]		0.0004656	53	0.00038223	3	0.00035487			

Table (18): Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

(<i>θ</i> = 0.5, p =	: 3, c = 3, r	$r = 3, k = 4, \alpha^*$	= 0.5, R = 1000).
-----------------------	---------------	--------------------------	-------------------

-				
n		MM	Μ	L
10	0	0.00776403	0.0067	6402
25	0	0.00210481	0.0011	.0482
35	0	0.00173269	0.0015	3265
50	0	0.00015519	0.0001	4514
75	0	0.00052579	0.0004	2574
Bayes I		Bayes II		Mix
0.0128378	1	0.00887266	0.0	0784128
0.0032350	7	0.00284251	0.0	0211508
0.0019218	8	0.00271712	0.0	0134494
0.0003746	8	0.00087097	0.0	0168275
0.0007962	2	0.00068431	0.0	0054974
0.0007902	-	0.00000.51	0.0	0001071

<u>Table (19)</u>: Values of mean square error (MSE) for (∂) by different methods and due to different sample size with initial values

$(\theta=1,p=3,c=1,r=3,k=2,\alpha^*=0.3,R=1000).$								
	n		MM		ML			
	10	0	.01602166	(0.01402164			
	25	0	.01063932	(0.01043934			
	35	0	.00704772	(0.00504774			
	50	0	.00457643	(0.00255142			
	75	0	.00304685	(0.00104682			
	Bayes I		Bayes II		Mix			
(0.0428711	15	0.01824593	3	0.01611774			
(0.0131260)2	0.01065558	8	0.01045457			
(0.01015159 0.00535249		0.00727732	2	0.00651896			
			0.00433894	4	0.00468278			
	0.004000	9	0.0041773	5	0.0038048			

<u>Table (20)</u>: Values of mean square error (MSE) for (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 2, r = 3, k = 2, a^* = 0.3, R = 1000$)

$y = 1, p = 3, c = 2, r = 3, k = 2, a^{2} = 0.3, k = 1000$).								
	n		MM		ML			
	10	0	0.01121553	(0.01021552			
	25	0	0.00122504	(0.00022502			
	35	0	.00123377	(0.00023372			
	50	0	0.00490587	(0.00290582			
	75	0	0.00365873	(0.00265872			
	Bayes I		Bayes II		Mix			
0	.0315728	1	0.01507632	2	0.01492081			
0	.0042684	9	0.01462791	1	0.01594971			
0	.0046843	5	0.0020841	5	0.00141416			
0	.0042508	9	0.0044789		0.00407817			
0).0039789)	0.00302558	3	0.00309804			

Table (21): Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

$(\theta = 1, p = 3, c = 2, r = 3, k = 4, \alpha^* = 0.5, R = 1000).$									
		n		MM		ML			
		10	0	.02144074	0	0.01144072			
		25	0	.00157564	0	0.00127562			
		35	0	.00663576	0	0.00463572			
		50	0	.00435815	0	0.00235812			
		75	0	.00336968	0	0.00136962			
٦		Bayes I		Bayes II		Mix			
	(0.0316119	93	0.02059271		0.01403819	•		
	(0.0031212	25	0.00261463	3	0.00146403			
	0.00729632 0.00591648		0.0062436	5	0.00691414				
			0.0047152	8	0.00455738				
	(0.0048145	8	0.0038763	8	0.00382886)		

Table (22): Values of mean square error (MSE) for (θ) by different methods and due to different sample size with initial values ($\theta = 1, p = 3, c = 2, r = 2, k = 4, a^* = 0.5, R = 1000$)

- 1	1, p - 3, c	s — 4	$L_{1}T = Z_{1}K = 4$	<u>a</u>	= 0.5, K = 1000)).
	n		MM		ML	
	10	(0.0129025		0.0119022	
	25	(0.0103564		0.0101562	
	35	0	.00693136	(0.00484132	
	50	0	.00435844	(0.00235842	
	75	0	.00318126	(0.00118123	
	Bayes I		Bayes II		Mix	
().0316119	3	0.02059271	l	0.01403819	
(0.0031212	.5	0.00261463	3	0.00146403	
0	0.0072963	2	0.00624366	5	0.00691414	
().0059164	8	0.00471528	3	0.00455738	
(0.0048145	8	0.00387638	3	0.00382886	

Table (23): Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

 $(\theta = 1, p = 3, c = 1, r = 2, k = 4, a^* = 0.5, R = 1000).$

	n		ММ		ML		
	10	0	.0629025		0.0529022		
	25	0	0.0203564		0.0103562		
	35	0	.01693136	0	0.01584132		
	50	0	.00335844	0	0.00235842		
	75	0	.00218126	0	0.00118123		
Τ	Bayes I		Bayes II		Mix		
(0.0316119	93	0.0205927	1	0.01403819		
(0.0031212	25	0.0026146	3	0.00146403 0.00691414		
(0.0072963	32	0.0062436	6			
(0.005 916 4	18	0.00471528		0.00455738		
(0.0048145	58	0.0038763	8	0.00382886		

Table (24):Values of mean square error (MSE) for ($\boldsymbol{\theta}$) bydifferent methods and due to different sample size withinitialvalues

(8	=1,	= מ	3, c :	= 1,	r =	1, k	= 2	l, α°	=	0.5,1	R =	1000).
----	-----	-----	--------	------	-----	------	-----	-------	---	-------	-----	------	----

		-						
		n		MM		ML		
		10	0	.0629024	0.0529022			
		25	0	0.0203562		0.0103563		
		35	0	.01393131	0	0.01184132		
		50	0	.01335845	0.01135842			
		75	0	.01218127	0	0.01118122		
٦		Bayes I		Bayes II		Mix		
1	0.0823226			0.0685956	0.06703357			
	0.02212124			0.0216146	0.02046401			
0.01348059			59	0.01215625		0.01047473		
	(0.0137129	99	0.0130152	7	0.01305632		
	(0.0132078	33	0.0127763	5	0.01222884		
-								

Conclusion

- 1- For sample size (n = 25, 35, 50, 75) the best estimator is the mix one, since it gives smallest mean square error, as indicated for all combination of initial values of parameters.
- 2- The mixed estimator represent a linear combination from maximum likelihood one, and Bayes estimator, the value of mixing parameter (**p**) is derived from maximizing the mean square error.
- For (n = 10), the best estimator of scale parameter
 (θ), is mix, the (θ̂_{MLE}), moment estimator, Bayes II, and Bayes I.
- 4- For sample size (n = 25), also the best estimator of (9) is mixed, then maximum likelihood estimator, then moment estimator. Bayes II and Bayes I.
- 5- The estimator of scale and shape parameters are important especially, when the researcher want to estimate the mean time to failure of the studied distribution (Gamma) to find the variance, and to construct confidence limits for the parameters.

References

- Iman Makhdoom, (2011), "Minimax estimation of the parameter of the generalized exponential distribution", International journal of academic research, Vol. 3, No. 2, Part II.
- Bakar, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., Murphy, J. and Sorenson, K. (2002)." Gidebook to Decision – Making Methods ", WSRC-IM-2002-00002, Department of Energy, USA.
- [3] Bather, J. (2000). "Decision Theory". Chichester: John Wiley & Sons, Inc.
- [4] Bucar, T., Nagode, M. and Fajdiga, M., (2004) "Reliability approximation using finite Weibull mixture distributions", *Reliability Engineering & System Safety*, Vol. 84, No. 3, pp.241-251.
- [5] Cheng K. Lee Miin-Jye Wen, (2009)" A Multivariate Weibull Distribution "Pak.j.stat.oper.res. Vol.V No.2, pp55-66.
- [6] Choudhury, A. (2005). "A Simple Derivation of Moments of the Exponentiated Weibull Distribution". *Metrika* 62 (1): 17–22.
- [7] C. T. Lin, S. J. S. Wu, N. Balakrishnan, (2004), "Interval estimation of parameters of log-gamma distribution based on progressively censored data" [CiTO] Communications in Statistics-Theory and Methods, Vol. 33, No. 11-12. (2004), pp. 2595-2626.
- [8] Diane, I. G. & Lonnie, C. V. (1981), "A simulation study of estimators for the 2 – parameter Weibull distribution", IEEE Transection of Reliability, Vol. R. 30, No.1.
- [9] G. McLachlan, D. Peel. (2000), "Finite Mixture Models". John Wiley & Sons,.

- [10] Jiang, S. and Kececioglu, D., (1992), "Maximum likelihood estimates, from censored data, for mixed-Weibull distributions", *IEEE Transactions on Reliability*, Vol. 41, Issue 2, pp.248-255.
- [11] Kundu D. & Gupta R. D. (2005), "Bayesian estimation for the generalized Exponential Distribution" Metrica, Vol. 61. 219 – 308.
- [12] Kundu D. & Gupta R. D. (2008), "Generalized Exponential Distribution" Bayesian Estimations Computational statistical Data Analysis, Vol.52, No. 4, pp. 1873 – 1883.
- [13] Lawless, J. F. 92003), "Statistical models and Methods for life time Data", Jhon Weily & Sons, Inc. NewJersy.
- [14] L. Pace, A. Salvan, L. Ventura, (2006),"Likelihood-based discrimination between separate scale and regression models" [CiTO] *Journal of Statistical Planning and Inference*, Vol. 136, No. 10. (Oct 2006), pp. 3539-3553.
- [15] M. Aslam, C.-H, Jun and M. Ahmad (2009). A group sampling plan based on truncated life tests for gamma distributed items, *Pakistan Journal of Statistics*, 25, 333-340.
- [16] Nadarajah, S.; Gupta, A.K. (2005). "On the Moments of the Exponentiated Weibull Distribution". *Communications in Statistics: Theory and Methods* 34 (2): 253–256.
- [17] Nassar, M.M.; Eissa, F.H. (2003). "On the exponentiated Weibull distribution". *Commun Stat Theory Meth* 32: 1317– 1336.
- [18] Pal, M.; Ali, M.M.; Woo, J. (2006). "Exponentiated Weibull distribution". *Statistica* 66 (2): 139–147.
- [19] Rohatgi, V. K. (1979), "An Introduction to probability theory and mathematical statistics" Jhon Weily & Sons, Inc. NewJersy.
- [20] Roy M. K., Podder C. K. and Bhuiyan K. J. (2002), "Minimax Estimator of the Scale Parameter of the Weibull Distribution for quadratic and MLINEX loss function", Jahangirnagar University Journal of Science, 25, 277 – 285.
- [21] Sinha, S. K. & Kale, B. K. (1979), "life testing and reliability estimation", Weily eastern Ltd.
- [22] Titterington, D.M., Smith, A.F.M. and Makov, U.E., "Statistical Analysis of Finite Mixture Distributions", *John Wiley & Sons*, (1985).