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Abstract 
This chapter presents a tutorial overview of the main clustering 
methods used in Data Mining. The goal is to provide a self-
contained review of the concepts and the similarity underlying 
clustering techniques. The chapter begins by providing measures 
and criteria that are used for determining whether two objects 
are similar or dissimilar. Then the clustering methods are 
presented, divided into:  hierarchical, partitioning, density-based, 
model-based, grid-based, and soft-computing methods. 
Following the methods, the challenges of performing clustering 
in large data sets are discussed. Finally, the chapter presents how 
to determine the number of clusters. 
Keywords: 
Clustering, K-means, Intra-cluster homogeneity, Inter-cluster 
separability, 

1. Introduction 

Clustering and classification are both fundamental tasks in 
Data Mining. Classification is used mostly as a supervised 
learning method, clustering for unsupervised learning 
(some clustering models are for both). The goal of 
clustering is descriptive, that of classification is predictive 
(Veyssieres and Plant, 1998). Since the goal of clustering 
is to discover a new set of categories, the new groups are 
of interest in themselves, and their assessment is intrinsic. 
In classification tasks, however, an important part of the 
assessment is extrinsic, since the groups must reflect some 
reference set of classes. “Understanding 
322 DATA MINING AND KNOWLEDGE DISCOVERY 
HANDBOOK our world requires conceptualizing the 
similarities and differences between the entities that 
compose it” (Tyron and Bailey, 1970). 
Clustering groups data instances into subsets in such a 
manner that similar instances are grouped together, while 
different instances belong to different groups. The 
instances are thereby organized into an efficient 
representation that characterizes the population being 

sampled. Formally, the clustering structure is represented 
as a set of subsets C = C1; : : : ;Ck of S, such that:  
S =Sk 
i=1 
 Ci and Ci \ Cj = ; 
 for i 6= j. 
 Consequently, any instance in S belongs to exactly one 
and only one subset. Clustering of objects is as ancient as 
the human need for describing the salient characteristics 
of men and objects and identifying them with a type. 
Therefore, it embraces various scientific disciplines: from 
mathematics and statistics to biology and genetics, each of 
which uses different terms to describe the topologies 
formed using this analysis. From biological “taxonomies”, 
to medical “syndromes” and genetic “genotypes” to 
anufacturing ”group technology”— the problem is 
identical: forming categories of entities and assigning 
individuals to the proper groups within it. 

2. Distance Measures 

Since clustering is the grouping of similar 
instances/objects, some sort of measure that can determine 
whether two objects are similar or dissimilar is required. 
There are two main type of measures used to estimate this 
relation: distance measures and similarity measures. Many 
clustering methods use distance measures to determine the 
similarity or dissimilarity between any pair of objects. It is 
useful to denote the distance between two instances xi and 
xj as: d(xi,xj). A valid distance measure should be 
symmetric and obtains its minimum value (usually zero) 
in case of identical vectors. The distance measure is called 
a metric distance measure if it also  
satisfies the following properties: 
1. Triangle inequality d(xi,xk) · d(xi,xj) + d(xj ,xk) 
8xi,xj ,xk 2 S. 
2. d(xi,xj)= 0) xi = xj 8xi ,xj 2 S. 
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2.1 Minkowski: Distance Measures for Numeric 
Attributes 

Given two p-dimensional instances, xi = (xi1; xi2; : : : ; 
xip) and xj =(xj1; xj2; : : : ; xjp), 
 The distance between the two data instances can be 
calculated using the Minkowski metric (Han and Kamber, 
2001):d(xi; xj) = (jxi1 ¡ xj1jg + jxi2 ¡ xj2jg + : : : + jxip ¡ 
xjpjg)1=g 
Clustering Methods 323 
The commonly used Euclidean distance between two 
objects is achieved when g = 2. Given g = 1, the sum of 
absolute paraxial distances (Manhattanmetric) is obtained, 
and with g=1 one gets the greatest of the paraxial 
distances (Chebychev metric). The measurement unit used 
can affect the clustering analysis. To avoid the 
dependence on the choice of measurement units, the data 
should be standardized. 
Standardizing measurements attempts to give all variables 
an equal weight. However, if each variable is assigned 
with a weight according to its importance, then the 
weighted distance can be computed as: 
d(xi; xj) = (w1 jxi1 ¡ xj1jg + w2 jxi2 ¡ xj2jg + : : : + wp 
jxip ¡ xjpjg)1=g where wi 2 [0;1) 

2.2 Distance Measures for Binary Attributes 

The distance measure described in the last section may be 
easily computed for continuous-valued attributes. In the 
case of instances described by categorical, binary, ordinal 
or mixed type attributes, the distance measure should be 
revised. In the case of binary attributes, the distance 
between objects may be calculated based on a 
contingency table. A binary attribute is symmetric if both 
of its states are equally valuable. In that case, using the 
simple matching coefficient can assess dissimilarity 
between two objects: 
d(xi; xj) = r + s  
q + r + s + t 
where q is the number of attributes that equal 1 for both 
objects; t is the number of attributes that equal 0 for both 
objects; and s and r are the number of attributes that are 
unequal for both objects. A binary attribute is asymmetric, 
if its states are not equally important (usually the positive 
outcome is considered more important). In this case, the 
denominator ignores the unimportant negative matches (t). 
This is called the  
Jaccard coefficient: 
d(xi; xj) = r + s 
q + r + s 

2.3 Distance Measures for Nominal Attributes 

When the attributes are nominal, two main approaches 
may be used: 

1. Simple matching: 
d(xi; xj) = p ¡ m p 
 
where p is the total number of attributes andmis the 
number of matches. 
 
324 DATA MINING AND KNOWLEDGE DISCOVERY 
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2. Creating a binary attribute for each state of each 
nominal attribute and computing their dissimilarity as 
described above.  

2.4 Distance Metrics for Ordinal Attributes 

When the attributes are ordinal, the sequence of the 
values is meaningful. 
In such cases, the attributes can be treated as numeric ones 
after mapping their range onto [0,1]. Such mapping may 
be carried out as follows: 
zi;n = ri;n ¡ 1 
Mn ¡ 1 
where zi;n is the standardized value of attribute an of 
object i. ri;n is that value before standardization, andMn is 
the upper limit of the domain of attribute an (assuming the 
lower limit is 1). 

2.5 Distance Metrics for Mixed-Type Attributes 

In the cases where the instances are characterized by 
attributes of mixedtype, one may calculate the distance by 
combining the methods mentioned above. For instance, 
when calculating the distance between instances i and j 
using a metric such as the Euclidean distance, one may 
calculate the difference 
between nominal and binary attributes as 0 or 1 (“match” 
or “mismatch”, respectively), and the difference between 
numeric attributes as the difference between their 
normalized values. The square of each such difference 
will be added to the total distance. Such calculation is 
employed in many clustering 
algorithms presented below. 
 
The dissimilarity d(xi; xj) between two instances, 
containing p attributes of 
mixed types, is defined as: 
d(xi; xj) =Pp 
n=1 
±(n) 
ij d(n) 
ij 
Pp 
n=1 
±(n) 
ij 
where the indicator ±(n) 
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ij =0 if one of the values is missing. The contribution of 
attribute n to the distance between the two objects 
d(n)(xi;xj) is computed according to its type: 
If the attribute is binary or categorical, d(n)(xi; xj) = 0 if 
xin = xjn , 
otherwise d(n)(xi; xj)=1. 
If the attribute is continuous-valued, d(n) 
ij = jxin¡xjnj 
maxh xhn¡minh xhn 
, where h 
runs over all non-missing objects for attribute n. 
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If the attribute is ordinal, the standardized values of the 
attribute are computed first and then, zi;n is treated as 
continuous-valued.  

3. Similarity Functions 

An alternative concept to that of the distance is the 
similarity function s(xi; xj) that compares the two vectors 
xi and xj (Duda et al., 2001). This function should be 
symmetrical (namely s(xi; xj) = s(xj ; xi)) and have a large 
value when xi and xj are somehow “similar” and 
constitute the largest value for identical vectors. A 
similarity function where the target range is [0,1] is called 
a dichotomous similarity function. In fact, the methods 
described in the previous sections for calculating the 
“distances” in the case of binary and nominal attributes 
may be considered as similarity functions, rather than 
distances. 

3.1 Cosine Measure 

When the angle between the two vectors is a meaningful 
measure of their similarity, the normalized inner product 
may be an appropriate similarity measure:  
s(xi; xj) = xTi 
¢ xj 
kxik ¢ kxjk 

3.2 Pearson Correlation Measure 

The normalized Pearson correlation is defined as: 
s(xi; xj) =(xi ¡ ¹xi)T ¢ (xj ¡ ¹xj) 
kxi ¡ ¹xik ¢ kxj ¡ ¹xjk 
where ¹xi denotes the average feature value of x over all 
dimensions. 

3.3 Extended Jaccard Measure 

The extended Jaccard measure was presented by (Strehl 
and Ghosh, 2000) 
and it is defined as: 
s(xi; xj) = xTi 
¢ xj 

kxik2 + kxjk2 ¡ xTi 
¢ xj 

3.4 Dice Coefficient Measure 

The dice coefficient measure is similar to the extended 
Jaccard measure and 
it is defined as: 
s(xi; xj) =2xTi 
¢ xj 
kxik2 + kxjk2 
326 DATA MINING AND KNOWLEDGE DISCOVERY 
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4. Evaluation Criteria Measures 

Evaluating if a certain clustering is good or not is a 
problematic and controversial issue. In fact Bonner (1964) 
was the first to argue that there is no universal definition 
for what is a good clustering. The evaluation remains 
mostly in the eye of the beholder. Nevertheless, several 
evaluation criteria have been developed in the literature. 
These criteria are usually divided into two categories: 
Internal and External. 

4.1 Internal Quality Criteria 

Internal quality metrics usually measure the compactness 
of the clusters using some similarity measure. It usually 
measures the intra-cluster homogeneity, the inter-cluster 
separability or a combination of these two. It does not use 
any external information beside the data itself. 

4.1.1 Sum of Squared Error (SSE).  

SSE is the simplest and most widely used criterion 
measure for clustering. It is calculated as: 
SSE = XK 
k=1 
X 
8xi2Ck 
kxi ¡ ¹kk2 
where Ck is the set of instances in cluster k; ¹k is the 
vector mean of cluster 
k. The components of ¹k are calculated as: 
¹k;j =1 
Nk 
X 
8xi2Ck 
xi;j 
where Nk = jCkj is the number of instances belonging to 
cluster k. 
Clustering methods that minimize the SSE criterion are 
often called minimum variance partitions, since by simple 
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algebraic manipulation the SSE criterion may be written 
as: 
SSE = 1 2 
XK 
k=1 
Nk ¹ Sk 
where: 
¹ Sk =1 
N2 
k 
X 
xi;xj2Ck 
kxi ¡ xjk2 
(Ck=cluster k) 
The SSE criterion function is suitable for cases in which 
the clusters formcompact clouds that are well separated 
from one another (Duda et al., 2001). 
Clustering Methods 327 

4.1.2 Other Minimum Variance Criteria. 

Additional minimum criteria to SSE may be produced by 
replacing the value of Sk with expressions 
such as:  
¹ Sk =1 
N2 
k 
X 
xi;xj2Ck 
s(xi; xj) 
or: 
¹ Sk = min 
xi;xj2Ck 
s(xi; xj) 
 
user authentication, and the base software environment, 
rather than implementing the platform themselves. 

5. Clustering Methods 

In this section we describe the most well-known 
clustering algorithms. The main reason for having many 
clustering methods is the fact that the notion of “cluster” 
is not precisely defined (Estivill-Castro, 2000). 
Consequently many clustering methods have been 
developed, each of which uses a different induction 
principle. Farley and Raftery (1998) suggest dividing the 
clustering methods into two main groups: hierarchical and 
partitioning methods. Han and Kamber (2001) suggest 
categorizing the methods into additional three main 
categories: density-based methods, model-based 
clustering and gridbased 
methods. An alternative categorization based on the 
induction principle of the various clustering methods is 
presented in (Estivill-Castro, 2000).  

5.1 Hierarchical Methods 

These methods construct the clusters by recursively 
partitioning the instances in either a top-down or bottom-
up fashion. These methods can be subdivided as following: 
Agglomerative hierarchical clustering—Each object 
initially represents a cluster of its own. Then clusters are 
successively merged until the desired cluster structure is 
obtained. 
Clustering Methods 331 
Divisive hierarchical clustering — All objects initially 
belong to one cluster. Then the cluster is divided into sub-
clusters, which are successively divided into their own 
sub-clusters. This process continues until 
the desired cluster structure is obtained. The result of the 
hierarchical methods is a dendrogram, representing the 
nested grouping of objects and similarity levels at which 
groupings change. A clustering 
of the data objects is obtained by cutting the dendrogram 
at the desired similarity level. The merging or division of 
clusters is performed according to some similarity 
measure, chosen so as to optimize some criterion (such as 
a sum of squares). The hierarchical clustering methods 
could be further divided according to the manner that the 
similarity measure is calculated (Jain et al., 1999): 
Single-link clustering (also called the connectedness, the 
minimum method or the nearest neighbor method) — 
methods that consider the distance between two clusters to 
be equal to the shortest distance from any member of one 
cluster to any member of the other cluster. If the data 
consist of similarities, the similarity between a pair of 
clusters is considered to be equal to the greatest similarity 
from any member of one cluster to any member of the 
other cluster (Sneath and Sokal, 1973).  
Complete-link clustering (also called the diameter, the 
maximum method or the furthest neighbor method) - 
methods that consider the distance between two clusters to 
be equal to the longest distance from any member of one 
cluster to any member of the other cluster (King, 1967). 
Average-link clustering (also called minimum variance 
method) – methods that consider the distance between two 
clusters to be equal to the average distance from any 
member of one cluster to any member of the other cluster. 
Such clustering algorithms may be found in (Ward, 1963) 
and (Murtagh, 1984). 
The disadvantages of the single-link clustering and the 
average-link clustering can be summarized as follows 
(Guha et al., 1998): Single-link clustering has a drawback 
known as the “chaining effect“: A 
few points that form a bridge between two clusters cause 
the single-link clustering to unify these two clusters into 
one. Average-link clustering may cause elongated clusters 
to split and for portions 
of neighboring elongated clusters to merge. The complete-
link clustering methods usually produce more compact 
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clusters and more useful hierarchies than the single-link 
clustering methods, yet the 332 DATA MINING AND 
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methods are more versatile. Generally, hierarchical 
methods are characterized with the following strengths: 
Versatility — The single-link methods, for example, 
maintain good performance on data sets containing non-
isotropic clusters, including well separated, chain-like and 
concentric clusters. Multiple partitions — hierarchical 
methods produce not one partition, but multiple nested 
partitions, which allow different users to choose different 
partitions, according to the desired similarity level. The 
hierarchical partition is presented using the dendrogram. 
The main disadvantages of the hierarchical methods are: 
Inability to scale well—The time complexity of 
hierarchical algorithms is at least O(m2) (where m is the 
total number of instances), which is non-linear with the 
number of objects. Clustering a large number of 
objects using a hierarchical algorithm is also characterized 
by huge I/O costs. Hierarchical methods can never undo 
what was done previously. Namely there is no back-
tracking capability. 

5.2 Partitioning Methods 

Partitioning methods relocate instances by moving them 
from one cluster to another, starting from an initial 
partitioning. Such methods typically require that the 
number of clusters will be pre-set by the user. To achieve 
global optimality in partitioned-based clustering, an 
exhaustive enumeration process of 
all possible partitions is required. Because this is not 
feasible, certain greedy heuristics are used in the form of 
iterative optimization. Namely, a relocation method 
iteratively relocates points between the k clusters. The 
following subsections present various types of partitioning 
methods.  

5.2.1 Error Minimization Algorithms.  

These algorithms, which tend to work well with isolated 
and compact clusters, are the most intuitive and frequently 
used methods. The basic idea is to find a clustering 
structure that minimizes a certain error criterion which 
measures the “distance” of each instance to its 
representative value. The most well-known criterion is the 
Sum of Squared Error (SSE), which measures the total 
squared Euclidian distance of instances to their 
representative values. SSE may be globally optimized by 
exhaustively enumerating all partitions, which is very 
time-consuming, or by giving an approximate solution 
(not necessarily leading to a global minimum) using 
heuristics. The latter option is the most common 
alternative. Clustering Methods 333 
The simplest and most commonly used algorithm, 
employing a squared error criterion is the K-means 

algorithm. This algorithm partitions the data into K 
clusters (C1;C2; : : : ;CK), represented by their centers or 
means. The center of each cluster is calculated as the 
mean of all the instances belonging to 
that cluster. Figure 15.1 presents the pseudo-code of the 
K-means algorithm. The algorithm 
starts with an initial set of cluster centers, chosen at 
random or according to some heuristic procedure. In each 
iteration, each instance is assigned to its nearest cluster 
center according to the Euclidean distance between the 
two. Then the cluster centers are re-calculated. The center 
of each cluster is calculated as the mean of all the 
instances belonging to that cluster:  
¹k =1 
Nk 
XNk 
q=1 
xq 
where Nk is the number of instances belonging to cluster k 
and ¹k is the mean of the cluster k. 
A number of convergence conditions are possible. For 
example, the search may stop when the partitioning error 
is not reduced by the relocation of the centers. This 
indicates that the present partition is locally optimal. 
Other stopping criteria can be used also such as exceeding 
a pre-defined number of iterations.  
 
Input: S (instance set), K (number of cluster) 
Output: clusters 
1: Initialize K cluster centers. 
2: while termination condition is not satisfied do 
3: Assign instances to the closest cluster center. 
4: Update cluster centers based on the assignment. 
5: end while 
Figure 15.1. K-means Algorithm. 
The K-means algorithm may be viewed as a gradient-
decent procedure,which begins with an initial set of K 
cluster-centers and iteratively updates it so as to decrease 
the error function. 
A rigorous proof of the finite convergence of the K-means 
type algorithms is given in (Selim and Ismail, 1984). The 
complexity of T iterations of the K-means algorithm 
performed on a sample size of m instances, each 
characterized by N attributes, is: O(T ¤ K ¤ m ¤ N). This 
linear complexity is one of the reasons for the popularity 
of the K- means algorithms. Even if the number of 
instances is substantially large (which often is the case 
nowadays), this algorithm is computationally attractive. 
Thus, the K-means algorithm has an advantage in 
comparison to other clustering . 
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Related Work 

5.4.1 Decision Trees.  

In decision trees, the data is represented by a hierarchical 
tree, where each leaf refers to a concept and contains a 
probabilistic Clustering Methods 337 description of that 
concept. Several algorithms produce classification trees 
for representing the unlabelled data. The most well-known 
algorithms are: COBWEB—This algorithm assumes that 
all attributes are independent (an often too naive 
assumption). Its aim is to achieve high predictability of 
nominal variable values, given a cluster. This algorithm is 
not suitable for clustering large database data (Fisher, 
1987). CLASSIT, an extension of COBWEB for 
continuous-valued data, unfortunately has similar 
problems as the COBWEB algorithm. 

5.6 Soft-computing Methods 

Section 5.4.2 described the usage of neural networks in 
clustering tasks. This section further discusses the 
important usefulness of other soft-computing methods in 
clustering tasks. 

5.6.1 Fuzzy Clustering.  

Traditional clustering approaches generate partitions; in a 
partition, each instance belongs to one and only one 
cluster. Hence, the clusters in a hard clustering are 
disjointed. Fuzzy clustering (see 338 DATA MINING 
AND KNOWLEDGE DISCOVERY HANDBOOK for 
instance (Hoppner, 2005)) extends this notion and 
suggests a soft clustering schema. In this case, each 
pattern is associated with every cluster using some sort of 
membership function, namely, each cluster is a fuzzy set 
of all the patterns. Larger membership values indicate 
higher confidence in the assignment of the pattern to the 
cluster. A hard clustering can be obtained from a fuzzy 
partition by using a threshold of the membership value. 
The most popular fuzzy clustering algorithm is the fuzzy 
c-means (FCM) algorithm. Even though it is better than 
the hard K-means algorithm at avoiding local minima, 
FCM can still converge to local minima of the squared 
error criterion. The design of membership functions is the 
most important problem in fuzzy clustering; different 
choices include those based on similarity decomposition 
and centroids of clusters. A generalization of the FCM 
algorithm has been proposed through a family of objective 
functions. A fuzzy c-shell algorithm and an adaptive 
variant for detecting circular and elliptical boundaries 
have been presented.   

5.6.2 Evolutionary Approaches for Clustering.  

Evolutionary techniques are stochastic general purpose 
methods for solving optimization problems. Since 
clustering problem can be defined as an optimization 
problem, evolutionary approaches may be appropriate 
here. The idea is to use evolutionary operators and a 
population of clustering structures to converge into a 
globally optimal clustering. Candidate clustering are 
encoded as chromosomes. The most commonly used 
evolutionary operators are: selection, recombination, and 
mutation. A fitness function evaluated on a chromosome 
determines a chromosome’s likelihood of surviving into 
the next generation. The most frequently used 
evolutionary technique in clustering problems is genetic 
algorithms (GAs). Figure 15.2 presents a high-level 
pseudo-code of a typical GA for clustering. A fitness 
value is associated with each clusters structure. A higher 
fitness value indicates a better cluster structure. A suitable 
fitness function is the inverse of the squared error value. 
Cluster structures with a small squared error will have a 
larger fitness value.  

Implementation of Data Framework  

6. Clustering Large Data Sets 

There are several applications where it is necessary to 
cluster a large collection of patterns. The definition of 
‘large’ is vague. In document retrieval, millions of 
instances with a dimensionality of more than 100 have to 
be clustered to achieve data abstraction. A majority of the 
approaches and algorithms proposed 
in the literature cannot handle such large data sets. 
Approaches based on genetic algorithms, tabu search and 
simulated annealing are optimization techniques and are 
restricted to reasonably small data sets. Implementations 
of conceptual clustering optimize some criterion functions 
and are typically computationally expensive. The 
convergent K-means algorithm and its ANN equivalent, 
the Kohonen 
net, have been used to cluster large data sets. The reasons 
behind the popularity 
of the K-means algorithm are: 
1. Its time complexity is O(mkl), where m is the number 
of instances; k is the number of clusters; and l is the 
number of iterations taken by the algorithm to converge. 
Typically, k and l are fixed in advance and so the 
algorithm has linear time complexity in the size of the 
data set. 
2. Its space complexity is O(k+m). It requires additional 
space to store the data matrix. It is possible to store the 
data matrix in a secondary memory and access each 
pattern based on need. However, this scheme requires a 
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huge access time because of the iterative nature of the 
algorithm. As a 
consequence, processing time increases enormously. 
3. It is order-independent. For a given initial seed set of 
cluster centers, it generates the same partition of the data 
irrespective of the order in which the patterns are 
presented to the algorithm. 
However, the K-means algorithm is sensitive to initial 
seed selection and even in the best case, it can produce 
only hyperspherical clusters. Hierarchical algorithms are 
more versatile. But they have the following disadvantages: 
Clustering Methods 343 
1. The time complexity of hierarchical agglomerative 
algorithms is O(m2¤ logm). 
2. The space complexity of agglomerative algorithms is 
O(m2). This is because a similarity matrix of size m2 has 
to be stored. It is possible to compute the entries of this 
matrix based on need instead of storing them. 
A possible solution to the problem of clustering large data 
sets while only marginally sacrificing the versatility of 
clusters is to implement more efficient variants of 
clustering algorithms. A hybrid approach was used, where 
a set of reference points is chosen as in the K-means 
algorithm, and each of the 
remaining data points is assigned to one or more reference 
points or clusters. Minimal spanning trees (MST) are 
separately obtained for each group of points. These MSTs 
are merged to form an approximate global MST. This 
approach computes only similarities between a fraction of 
all possible pairs of points. It was shown that the number 
of similarities computed for 10,000 instances using this 
approach is the same as the total number of pairs of points 
in a collection of 2,000 points. Bentley and Friedman 
(1978) presents an algorithm  that can compute an 
approximate MST in O(mlogm) time. A scheme to 
generate an approximate dendrogram incrementally in 
O(n log n) time was presented. CLARANS (Clustering 
Large Applications based on RANdom Search) have been 
developed by Ng and Han (1994). This method identifies 
candidate cluster centroids by using repeated random 
samples of the original data. Because 
of the use of random sampling, the time complexity is O(n) 
for a pattern set of n elements. 
The BIRCH algorithm (Balanced Iterative Reducing and 
Clustering) stores summary information about candidate 
clusters in a dynamic tree data structure. This tree 
hierarchically organizes the clusters represented at the leaf 
nodes. The tree can be rebuilt when a threshold specifying 
cluster size is updated 
manually, or when memory constraints force a change in 
this threshold. 
 
Input: S (instances set), K (number of clusters), 
Threshold (for assigning 
an instance to a cluster) 

Output: clusters 
1: Clusters Ã ; 
2: for all xi 2 S do 
3: As F = false 
4: for all Cluster 2 Clusters do 
5: if kxi ¡ centroid(Cluster)k < threshold then 
6: Update centroid(Cluster) 
7: ins counter(Cluster) + + 
8: As F = true 
9: Exit loop 
10: end if 
11: end for 
12: if not(As F) then 
13: centroid(newCluster) = xi 
14: ins counter(newCluster) = 1 
15: Clusters Ã Clusters [ newCluster 
16: end if 
17: end for 
. 
Figure shows that as the number of file transfers between 
the desktop and the cloud increases, the percentage of 
total power consumed in the transfer process increases. 
Says the report, “For a private cloud storage security 
service, at a download rates above one download per hour, 
servers consume 35%, storage consumes less than 7%, 
and the remaining 58% of total power is consumed in 
transport. These results suggest that transport dominates 
total power consumption at high usage levels for public 
and private cloud storage security services. The energy 
consumed in transporting data between users and the 
cloud is therefore an important consideration when 
designing an energy efficient cloud storage security 
service. Energy consumption in servers is also an 
important consideration at high usage levels. The 
percentage of total power consumed in servers is greater 
in private cloud computing than that in public cloud 
computing. In both public and private cloud storage 
security services, the energy consumption of storage 
hardware is a small percentage of total power 
consumption at medium and high usage levels. The 
proposed scheme is more suitable for the privacy-
preserving of mass users. 
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The data is to be encrypted and compressed in multi-
server. In encryption and compression the data that has to 
stored in a cloud can not be stored in a text format due to 
security reasons so it must be transformed into an 
encrypted format. The data also has to be compressed for 
secure transmission. 

Conclusion 

Finally, we investigated the problem of data security in 
cloud data storage, which is essentially a distributed 
storage system. To ensure the correctness of users’ data in 
cloud data storage, we proposed an effective and flexible 
distributed scheme with explicit dynamic data support, 
including block update, delete, and append. We rely on 
erasure-correcting code in the file distribution preparation 
to provide redundancy parity vectors and guarantee the 
data dependability. By utilizing the homomorphic token 
with distributed verification of erasure coded data, our 
scheme achieves the integration of storage correctness 
insurance and data error localization, i.e., whenever data 
corruption has been detected during the storage 
correctness verification across the distributed servers, we 
can almost guarantee the simultaneous identification of 
the misbehaving server(s). Security design from the 
ground-up that promotes digitally signing each 
component-to-component call to allow the authorisation 
of all content executed by the user. When the data owner 
redefines a certain set of attributes for the purpose of user 
revocation, he also generates corresponding proxy re-
encryption keys and sends them to Cloud Servers. Cloud 
Servers, given these proxy re-encryption keys, can update 
user secret key components and re-encrypt data files 
accordingly without knowing the underlying plaintexts of 

data files.  When submitting their location information to 
the cloud, a blind user (and, in fact, any other user) could 
have security concerns that a malicious party could use 
this information to locate the user and harm or exploit the 
user for his own benefit. 
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