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Abstract 
The compressive sensing (or compressive sampling, CS) 
theorem states that a sparse signal can be perfectly 
reconstructed even though it is sampled at a rate lower than the 
Nyquist rate. It has gained an increasing interest due to its 
promising results in various applications. There are two popular 
reconstruction methods for CS: basis pursuit (BP) and 
matching pursuit (MP).Introductory papers on CS often 
concentrated either on mathematical fundamentals or 
reconstruction algorithms for CS. Newcomers in this field are 
required to study a number of papers to fully understand the 
idea of CS.  This paper aims to provide both the basic idea of 
CS and how to implement BP and MP, so that newcomers no 
longer need to survey multiple papers to understand CS and can 
readily apply CS for their works.  
Keywords:  
Nyquist rate, basis pursuit, matching pursuit. 

1. Introduction 

Mind Map 

 

Fig.1. Mind Map for Compressive Sensing 
 
Fig.1. represents a mind map which gives the overview of 
the paper. The various categories are represented in 

different shapes and colours for easy identification. The sub 
branches are listed under the main branches. 

1.1   What Compressed Sensing is? 

Compressed sensing (CS) addresses the situation 
in which there is an unknown mathematical object of 
interest that lies in a large ambient space, but because of 
prior information, the information content of the signal is 
less than the dimension of the space. The other key aspect 
of compressed sensing is the idea of incoherent 
measurements. Each measurement of a signal should give 
some global information; when all the measurements are 
combined, the reconstruction algorithm is non-linear. 

However, compressed sensing does not give 
“something for nothing”. In the case of noisy measurements, 
it is always helpful to take more measurements since this 
reduces the effect of the noise, and so under-sampling will 
always perform worse than exact- or over-sampling. 

1.2   What Compressed Sensing is not? 

Because compressed sensing deals with sparsity 
and compressibility, it is related to many other fields, such 
as sparse approximation, classic problems in image and 
signal processing such as denoising and deconvolution, 
dictionary learning, computational harmonic analysis etc. 
The architecture proposed is a pure compressed sensing 
architecture, because fundamental to its operation is the fact 
that measurements are incoherent. 

Perhaps one of the biggest impact of CS is that it 
has spurred research in related fields, with the idea of 
exploiting prior knowledge. Yet the impact on hardware 
devices is much more limited even though compressed 
sensing theory is about 7 years old and is quite well 
understood , there are very few pure compressed sensing 
applications. 
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1.3   How can one compress an image? 

It is quite typical for an image to have a large 
featureless component – for instance, in a landscape; up to 
half of the picture might be taken up by a monochromatic 
sky background. Suppose for instance that we locate a large 
square, say pixels, which are all exactly the 
same colour – e.g. all white.  

Without compression, this square would take 
10,000 bytes to store (using 8-bit grayscale); however, 
instead, one can simply record the dimensions and location 
of the square, and note a single colour with which to paint 
the entire square; this will require only four or five bytes in 
all to record, leading to a massive space saving. 

2. SAMPLING 

Many signals originate continuous-time signals, 
e.g. conventional music or voice. By sampling a continuous-
time signal at isolated, equally-spaced points in time, we 
obtain a sequence of numbers. 

 s[n]=s(n Ts) 
n ∈ {…, -2, -1, 0, 1, 2, …} 
Ts  is the sampling period. 
          

 
In signal processing, sampling is the reduction of 

a continuous signal to a discrete signal. A common example 
is the conversion of a sound wave (a continuous signal) to a 
sequence of samples (a discrete-time signal). 

A sample refers to a value or set of values at a 
point in time and/or space. A sampler is a subsystem or 
operation that extracts samples from a continuous signal. A 
theoretical ideal sampler produces samples equivalent to the 
instantaneous value of the continuous signal at the desired 
points. 

Sampling can be done for functions varying in 
space, time, or any other dimension, and similar results are 
obtained in two or more dimensions. For functions that vary 
with time, let s(t) be a continuous function (or "signal") to 
be sampled, and let sampling be performed by measuring 
the value of the continuous function every T seconds, which 

is called the sampling interval. Thus, the sampled function 
is given by the sequence: 
s (nT),   for integer values of n. 

The sampling frequency or sampling rate fs is 
defined as the number of samples obtained in one second 
(samples per second), thus fs = 1/T. Reconstructing a 
continuous function from samples is done by interpolation 
algorithms. 

  

 

 

3. Shannon’s Sampling Theorem 

A band-limited signal with maximum frequency B 
can be accurately reconstructed from its uniformly spaced 
digital samples if the rate of sampling exceeds 2B (called 
Nyquist rate).Independently discovered by Shannon, 
Whitaker, Kotelnikov and Nyquist. 

Shannon/Nyquist Sampling Theorem states that 
the signals must be sampled more than twice the signal 
bandwidth. It might end up with a huge number of samples 
which is needed to compress. 

 
 

 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Continuous_signal
http://en.wikipedia.org/wiki/Discrete_signal
http://en.wikipedia.org/wiki/Sound_wave
http://en.wikipedia.org/wiki/Continuous_signal
http://en.wikipedia.org/wiki/Sampling_interval
http://en.wikipedia.org/wiki/Sampling_frequency
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i. What happens if fs = 2B? 

The solution is: Consider a sinusoid sin(2πBt) 
Use a sampling period of Ts = 1/ fs = 1/2B. 
Sketch: sinusoid with zeros at t = 0,         1/2B, 1/B 

… 
 

ii. What happens if fs < 2B? 
The solution is: Mixing of data may occur that 
may lead to “aliasing”.  

3.1   Limitations of Shannon’s Sampling Theorem 

i. The samples need to be uniformly spaced. 
ii. The sampling rate needs to be very high if the 

original signal contains higher frequencies  
iii. Does not account for several nice properties of 

naturally occurring signals (except for band-
limitedness). 

4. Aliasing 

 A precondition of the sampling theorem is that the 
signal be band limited. However, in practice, no time-
limited signal can be band limited. Since signals of interest 
are almost always time-limited (e.g., at most spanning the 
lifetime of the sampling device in question), it follows that 
they are not band limited. Sampling an analog signal with 
maximum frequency B at a rate less than or equal to 2B 
causes an artifact called aliasing.                       
               

 
Fig: Effect of Aliasing 

5. COMPRESSIVE SENSING 

Signal/image compression algorithms like MPEG, 
JPEG, and JPEG-2000 etc. typically measure large amounts 
of data. The data is then converted to a transform domain 
where a majority of the transform coefficients turn out to 
have near-zero magnitude and are discarded. 

Split image into small non-overlapping blocks of 
equal size and then apply DCT on blocks found to be sparse.  

 

5.1   Why Compressive Sensing? 

Much (as in more than 1000 times) fewer 
measurements need to be made. It may dramatically 
improve acquisition speed for MRI, range images, hyper-
spectral data. It is potential to dramatically improve video-
camera frame rates without sacrificing spatial resolution. 

5.2   Traditional signal processing 

To record images, let us think of an image as a 
rectangular array, e.g. a 1024 x 2048 array of pixels can 
take up a lot of disk space on the camera and also take a 
non-trivial amount of time (and energy) to transfer.  

So, it is common practice to get the camera 
to compress the image, from an initial large size (e.g. 2MB) 
to a much smaller size (e.g. 200KB, which is 10% of the 
size). After data acquisition, consider the DCT coefficients 
that are zero which are discarded before quantization. 

 

 

http://en.wikipedia.org/wiki/Aliasing
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5.3   Signal processing using CS 

Using Sampling theorem, the theorem is 
commonly called the Nyquist sampling theorem. In essence, 
the theorem shows that a band limited analog signal can be 
perfectly reconstructed from an infinite sequence of samples 
if the sampling rate exceeds 2B samples per second. 

The theorem also leads to a formula for 
reconstruction of the original signal. The field 
of compressed sensing provides a stricter sampling 
condition when the underlying signal is known to be sparse. 

5.4   How to reconstruct x(t) from x(n)? 

The solution to this is “Interpolation”. The optimal 
reconstruction for band-limited signals from their digital 
samples proceeds using the sinc interpolant. 

 

 

6. WAVELET COEFFICIENTS 

 

7. BASIS PURSUIT 

Chen and Donoho have suggested a method of 
decomposition based on true global optimization which is 
atleast theoretically feasible, due to recent advances in 
linear programming. Among the many possible solutions to 
Φα=s or Φx =b, they pick one whose coefficients have 
minimum l1   norm. 

 

 

8. MATCHING PURSUIT 

Matching pursuit involves finding the "best 
matching" projections of multidimensional data onto an 
over-complete dictionary. Mallat and Zhang have proposed 
this greedy algorithm that builds up a sequence of sparse 
approximations. 

9. SPARSE MATRIX 

A sparse matrix is a matrix populated primarily 
with zeros (Stoer & Bulirsch 2002, p. 619) as elements of 
the table. The term itself was coined by Harry M. 
Markowitz. If the majority of elements differ from zero, 
then it is common to refer to the matrix as a dense matrix. 

Conceptually, sparsity corresponds to systems which are 
loosely coupled. Consider a line of balls connected by 
springs from one to the next; this is a sparse system. By 
contrast, if the same line of balls had springs connecting 
each ball to all other balls, the system would be represented 
by a dense matrix. The concept of sparsity is useful in 
combinatorics and application areas such as network theory, 
which have a low density of significant data or connections. 

Huge sparse matrices often appear in science or 
engineering when solving partial differential equations. 

9.1   Example of sparse matrix 
  [ 11 22  0  0  0  0  0 ] 
  [  0 33 44  0  0  0  0 ] 
  [  0  0 55 66 77  0  0 ] 
  [  0  0  0  0  0 88  0 ] 
  [  0  0  0  0  0  0 99 ] 

 The above sparse matrix contains only 9 nonzero elements 
of the 35, with 26 of those elements as zero. 

 

http://en.wikipedia.org/wiki/Bandlimited
http://en.wikipedia.org/wiki/Analog_signal
http://en.wikipedia.org/wiki/Compressed_sensing
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Sparse_matrix#CITEREFStoerBulirsch2002
http://en.wikipedia.org/wiki/Harry_M._Markowitz
http://en.wikipedia.org/wiki/Harry_M._Markowitz
http://en.wikipedia.org/wiki/Combinatorics
http://en.wikipedia.org/wiki/Network_theory
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Partial_differential_equation
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10. APPLICATIONS 

 10.1   Analog to Digital Conversion 

This is a fundamental aspect of Wireless 
Communications. 
E.g. CDMA in which voice message of 4096 hertz standard 
frequency that spreads over radio spectrum can span 
thousands of hertz. 
Here if the signal is still sparse, so detect or recover signal 
more rapidly than Shannon’s theorem. 

10.2    Image restoration and image inpainting:  

Image restoration is the operation of taking a 
corrupted/ noisy image and estimating the clean original 
image. Image inpainting is the process of recover missing 
pixels of given image.  

10.3     Magnetic Resonance Imaging (MRI): 

 MRI is a medical imaging technique used in 
radiology to visualize detailed internal structures. In MRI, 
samples are collected directly in Fourier frequency domain 
(k-space) of object. The scan time in MRI is proportional to 
the number of Fourier coefficients. Using compressive 
sensing technique, we can reduce the number of samples 
and scan time. Real MR images are known to be sparse in 
discrete cosine transform (DCT) and wavelet transform.  
Some other applications include 

i. Analogue to digital Conversion 
ii. Single-pixel imaging 

iii. Data compression 
iv. Astronomical signal 
v. Geophysical data analysis  

vi. Compressive radar imaging.  
vii. Data Acquisition   

viii. Data Compression 
ix. Image and Video Compression   

10.4    Progress Chart 

i. February28,2010–Research Reading on 
compressive sensing and information gathering. 

ii. March20,2010–complete research reading and 
jpeg simulation part. 

iii. April10,2010–completecompressive sensing 
coding. 

iv. April20,2010–Final touch and 
documentation report. 

11. CONCLUSION 

Compressive sensing established itself by now as a 
new sampling theory which exhibits fundamental and 
intriguing connections with several mathematical fields, 
such as probability, geometry of Banach spaces, harmonic 
analysis, theory of computability and information-based 
complexity. The link to convex optimization and the 
development of very efficient and robust numerical methods 
make compressive sensing a concept useful for a broad 
spectrum of natural science and engineering applications, in 
particular, in signal and image processing and acquisition.  
Moreover, new challenges are now emerging in numerical 
analysis and simulation where high- dimensional problems 
(e.g., stochastic partial differential equations in finance and 
electron structure calculations in chemistry and 
biochemistry) became the frontier. In this context, besides 
other forms of efficient approximation, such as sparse grid 
and tensor product methods, compressive sensing is a 
promising concept which is likely to cope with the “curse of 
dimensionality”. 

 In particular, further systematic developments of 
adaptivity in the presence of different scales, randomized 
algorithms, an increasing role for combinatorial aspects of 
the underlying algorithms, are examples of possible future 
developments, which are inspired by the successful history 
of compressive sensing. 
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