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ABSTRACT: 
A long time research on human-computer for interaction (HCI) 
has been restricted to techniques based on the use of monitor, 
keyboard and mouse. Recently this paradigm has changed. 
Techniques such as vision, sound, speech recognition, 
projective displays and location aware devices allow for a much 
richer, multi-modal interaction between man and machine.  
Finger-tracking is usage of bare hand to operate a computer in 
order to make human-computer interaction much more faster 
and easier. Fingertip finding deals with extraction of 
information from hand features and positions. In this method 
we use the position and direction of the fingers in order to get 
the required segmented region of interest.  Finger finding deals 
with extraction of information from hand features and positions. 
In this method we use the position and direction of the fingers 
in order to get the required segmented region of interest. Finger 
pointing systems aim to replace pointing and clicking devices 
like the mouse with the bare hand. 
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I. INTRODUCTION 

            Vision-based hand tracking is an important 
problem in the field of human-computer interaction, 
since hand motions and gestures could potentially be 
used to interact with computers in more natural ways.  A 
number of solutions have been proposed in the current 
literature, but the problem is still far from being solved 
since the hand exhibits significant amounts of 
articulation and self-occlusion that cause difficulties with 
existing algorithms. 

To further exasperate these problems, 
interactive applications require that the hand tracking 
perform in real-time. This project presents the 
implementation and analysis of a real-time stereo vision 
hand tracking system that can be used for interaction 
purposes.  The system uses two low-cost web cameras 
mounted above the work area and facing downward.  In 
real-time, the system can track the 3D position and 2D 
orientation of the thumb and index finger of each hand 
without the use of special markers or gloves, resulting in 
up to 8 degrees of freedom for each hand. 

  The finger tracking system is focused on user-
data interaction, where the user interacts with virtual data, 
by handling through the fingers the volumetric of a 3D 
object that we want to represent. This system was born 
based on the human-computer interaction problem. The 
objective is to allow the communication between them 
and the use of gestures and hand movements to be more 
intuitive, Finger tracking systems have been created. 
These systems track in real time the position in 3D and 
2D of the orientation of the fingers of each marker and 
use the intuitive hand movements and gestures to interact. 
Finger-tracking systems are considered as specialized 
type of hand posture/gesture recognition system. 

The typical Specializations are: 
1) Only the most simple hand postures and recognized. 
2) The hand usually covers a part of the on screen. 
3) The finger positions are being found in real-time 
4) Ideally, the system works with all kinds of 
backgrounds 
5) The system does not restrict the speed of hand 
movements 

 In finger –tracking systems except that the real-
time constraints currently do not allow sophisticated 
approaches such as 3D-model matching or Gabor 
wavelet 

II. RELATED WORK 

Hand tracking is an active area of research in 
the vision community, mainly for the purposes of sign 
language recognition and human-computer interaction.  
One of the original tracking systems to focus on 
articulated hand motion was presented in [Rehg93].  In 
their system, a 27 degree-of-freedom hand could be 
tracked  at 10Hz by extracting point and line features 
from gray scale images.  However, it has difficulty 
tracking in the presence of occlusions and complicated 
backgrounds, and it requires a manual initialization step 
before tracking can begin. 
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 From an interaction perspective, most of the 
hand tracking work to date has focused on 2D interfaces.  
In a finger was tracked across a planar region using low-
cost web cameras in order to manipulate a traditional 
graphical interface without a mouse or keyboard.  
Fingertip detection was accomplished by fitting a conic 
to rounded features, and local tracking of the tip was 
performed using Kalman filtering.  

Similarly, in infrared cameras were used to 
segment skin regions from background pixels in order to 
track two hands for interaction on a 2D tabletop display.  
Their method then used a template matching approach in 
order to recognize a small set of gestures that could be 
interpreted as interface commands.  However, no precise 
fingertip position information was obtained using their 
technique.  

III. SYSTEM OVERVIEW 

This section describes the implementation 
details of the hand tracking system, which is primarily 
based on the single hand tracker presented in [Segen99].  
The system can extract the 3D position and 2D 
orientation of the index finger for each hand, and when 
present the pose of the thumb as well.  In interactive 
applications a single pointing gesture could then be used 
for selection operations while both the thumb and index 
finger could be used together for pinching gestures in 
order to grasp and manipulate virtual objects.  
A.Background  subtraction 

 The first phase of the tracking system involves 
separating potential hand pixels from non hand pixels. 
Before segmentation occurs, we first convolve all 
captured images with a 5x5 Gaussian filter and then scale 
this filtered image by one half in each dimension in order 
to reduce noisy pixel data.  All subsequent image 
processing operations are then performed on this scaled 
and filtered image. 

Since the stereo cameras are mounted above a 
non-moving workspace, a simple background subtraction 
scheme is used to segment any potential foreground hand 
information from the non-changing background scene.  
At system start up, a pair of background images IB,L and 
IB,R are captured to represent the static workspace from 
each camera view.  Subsequent frames then use the 
appropriate background image to segment out moving 
foreground data.  In other words, for each pixel in frame i, 
we compute the foreground mask image IF (for each 
camera) as:  

 

 Where σB is a fixed threshold to differentiate 
foreground data from background data.   

Note that background subtraction is performed 
in RGB colour space with 8-bits per colour channel.  The 
resulting IF is a binary image with a single 8-bit channel.  

 After some experimentation, a σB value of 8 
was found to provide good results. Figure 1 shows the 
result of background subtraction on an image containing 
a hand. 

 

Fig 1 – Background subtraction: (a) Background image; (b) Captured 
image; (c) Foreground mask; (d) Foreground image 

B.Skin segmentation 

 Although the background subtraction scheme 
described about works fairly well in Segmenting 
foreground data from the non-changing background, it 
will still allow objects such as shirt sleeves, coffee mugs, 
or other desktop items that are placed into the workspace 
to be detected as potential hands.  In order to deal with 
such situations and add some more flexibility to the 
system, a skin pixel detector has been implemented to 
further filter the foreground data.   

As a pre-processing step, for each camera a 
small number of snapshots are taken of various hands 
with a range of different skin-tones and poses.  Then 
using an image editing program each of the captured 
images is manually segmented into a binary mask where 
white pixels represent skin areas and black pixels 
represent non-skin areas.  

This set of captured images and associated skin 
masks is then used as the training set for a histogram-
based skin classifier as described in [Jones99]. Using a 
bin size of 32 for each colour channel, each of the RGB 
pixels in the training set are assigned to either the 3D 
skin histogram Hs or the non-skin histogram Hn. Given 
these histograms we can then compute the probability 
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that a given RGB colour belongs to the skin and non-skin 
classes as follows:   

 

  where s[rgb] is the pixel count in bin rgb of Hs, 
n[rgb] is the pixel count in bin rgb of Hn, and Ts and Tn 
represent the total counts contained in Hs and Hn 
respectively.Therefore, at run-time, we can determine the 
probability that any given rgb pixel is skin or non-skin 
using Bayes rule: 

 

  where P(skin) and  P(¬skin) are our prior 
probabilities for skin and non-skin respectively.  Since 
P(skin) + P(¬skin) = 1, we use where P(skin) and  
P(¬skin) are our prior probabilities for skin and non-skin 
respectively.  Since P(skin) + P(¬skin) = 1, we use 

 

Thus we can further threshold our background 
subtracted image with this skin classifier to only keep 
pixels with a high skin probability: P(skin | rgb) ≥ σ 
where σ s∈[0..1 ]is our threshold value.  After some 
experimentation, a value of 0.6 was found to provide 
good results for σ s.              

The result of our skin classifier is a new binary 
skin mask image IS.  Since not all skin pixels will be 
categorized correctly at all times, we perform a 
morphological closing operation on IS in order to remove 
small noisy holes in the skin pixel areas. 

Figure 2 shows the result of skin detection using 
the background subtracted image in Figure 1d.  

 

Fig 2 – Skin detection: (a) Skin mask; (b) Foreground skin image 

C.Region Extraction  

Now that the skin regions have been detected, 
we must determine which regions correspond to the left 
and right hands.  It is possible that small noisy regions 
will still be present after background subtraction and skin 
segmentation, but we assume that the regions 
corresponding to the hands will be the largest.   Thus we 
first extract the contours of all the detected skin regions 
in IS using binary image processing operations and 
connected component analysis.  For each region i we 
thus get a set of counter-clockwise perimeter coordinates 
Ci(j) = { (xj, yj) } that trace the outline of each region. 
Let Ni = |Ci| represent the total number of perimeter 
coordinates in the contour i.  We then choose the two 
largest contours A and B to represent the hand contours, 
using  Ni as a measure of contour size.  Additionally, in 
order to avoid processing extremely small contours, Ni 
must be above some threshold σ Nin order for the 
contour i to be considered valid ( σ N= 50 in the current 
implementation).  

We then compute the mean of each of  these 
two largest contours by averaging the perimeter 
coordinates in CA and CB respectively.  This is followed 
by a simple heuristic approach to differentiate between 
the left and right hands by stating that the contour with 
the smaller mean  x coordinate is the left hand, and the 
contour with the larger mean  x coordinate is the right 
hand (assuming the image  x coordinates increase from 
left to right). In the case where only a single large 
contour has been detected, the system sets it to be the 
right hand under the assumption that the user is right-
handed and will be using their dominant hand for one-
handed operations  (this default can be changed for left 
handed users). Figure 3 shows the result of the contour 
extraction on the image from Figure 2 

 

Fig 3 – Hand contours 

D.Feature Extraction  



IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014 
 
86 

Let CL represent the contour for the left hand, 
and CR represent the contour for the right hand as 
computed above.  In order to find the fingertips for the 
thumb and index finger for each hand, we attempt to find 
pixels that represent peaks along the contour perimeters.  

At each pixel  j in a hand contour  i, we compute 
the k-curvature which is the angle between the two 
vectors [Ci(j), Ci(j –  k)] and [Ci(j), Ci(j +  k)], where  k 
is a constant (currently set to 16).  The k-curvature can 
be computed quite easily using a dot product operation 
between the vectors.  The idea here is that contour points 
with a k-curvature close to 0 will represent potential 
peaks or valleys along the perimeter.  We currently use a 
degree threshold θ30 k= for the k-curvature such that 
only points below this angle will be considered further.   

In order to classify the points as either peaks or 
valleys, we convert the vectors into 3D vectors lying in 
the xy-plane and then compute the cross product.  If the 
sign of the  z component of the cross product is positive 
then we label the point as a peak, while a negative cross 
product results in a valley label.  

 Finally, non-maximal suppression is then used 
to find the strongest peaks and valleys along the 
perimeter, since we can expect that a sequential set of 
peaks and valleys will be detected in the neighbourhood 
of the strongest locations .Figure shows the result of peak 
and valley detection on the image in Figure 3.  Note that 
not all valleys were detected, largely as a result of the 
morphological closing operation that was performed 
during skin segmentation, but this will not be a problem 
for gesture recognition as described in the next section. 

 

Fig 4 – Peak and valley detection 

E.Point and Pinch Gesture Recognition  

After the feature extraction phase, we have 2D 
positions for the peaks and valleys along the contours of 
the hand regions.  For interaction purposes  we can now 
recognize pointing gestures an 

Pointing Gesture: 1 peak   

Pinching Gesture: 2 peaks  

For the pointing gesture, we assume that the 
single peak represents the index finger and no other 
finger is present.  For the pinching gesture however, we  
must differentiate between the thumb and index finger 
peaks.   Since the contour perimeter is given in a counter-
clockwise order, we can use a simple heuristic to label 
the peaks as thumb or index finger.  Define cnorm= 

 

Where N represents the number of points along 
the contour perimeter. Let P and Q represent two peaks 
located at positions p and q in the counter-clockwise 
perimeter respectively. Therefore cnorm(p - q) gives us 
the distance between P and Q when traveling in the 
counter-clockwise direction along the contour from Q to 
P.  

Given the left hand contour with two peaks, we 
know that the distance from the thumb to the index finger 
will be shorter than the distance from the index finger to 
the thumb (in the counter-clockwise order).   

Therefore if cnorm(p - q) < N/2, then P is the 
index finger and Q is the thumb, otherwise Q is the index 
finger and P is the thumb. Similarly, for the right hand 
contour with two peaks, we know that the distance from 
the index finger to the thumb should be less than the 
distance from the thumb to the index finger.Therefore if 
cnorm(p - q) < N/2, then Q is the index finger and P is 
the thumb, otherwise P is the index finger and Q is the 
thumb. Using this technique, we can properly label the 
thumb and index finger in a rotation invariant manner. 

 Figure 5 shows the result of pinch gesture 
recognition on an image.  

 

Fig 5 – Gesture recognition results 

A yellow dot represents the tip of the index 
finger, while a blue dot represents the tip of a thumb. 
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F.2D Pose Estimation 

The previous section described how to 
determine the position of the index finger and thumb.  
For interaction purposes, it would also be useful to 
determine the orientation of the fingers.   

Let P(i) = (xi, yi) represent the i-th point along a 
hand’s contour.  Then P(cnorm(i + k)) denotes a point 
that is k points to the left of P(i) along the perimeter, 
while P(cnorm(i - k)) represents a point to the right.  Let 
if t represent the index of a finger tip (thumb or index 
finger) that we wish to determine the orientation of.  A 
midpoint Q(k) can then be computed as:  

 

Therefore we compute Q(k) for k min<k<k max, 
which gives us a set of midpoints representing the 
support for the axis of the finger.  A linear least squares 
line fitting is then performed using these midpoints, as 
shown in Figure 6.   Let ax + by + c = 0 represent the 
equation for the axis of the finger, where
We would like to minimize the sum of the squared 
residuals:  

 

This can be done as follows:  

1) Compute the centroid (x, y) of the point set:  

 

2) Change coordinates so that new centroid is (0,0):  

 

3) Solve for (a ,b) by minimizing the following quadratic 
form:  

 

This can be solved by computing the SVD of M, where  

 

There for en = (a, b)^T is the second column of 
the V matrix from the SVD.  Then c can be solved by 
computing c = (  x, y) ⋅ n Finally from  n we can compute 
the  θ orientation of the finger, resulting in three 
parameters (x, y ,θ) for each of the detected finger tips in 
the stereo images.  It is worthwhile to mention that while 
a robust M-estimation technique could be used to 
estimate the line, this may not be required since we are 
using midpoints of contour points along the finger.   

Thus outliers will usually only occur if the k 
max value for Q (k) is too large, resulting in midpoints 
from non-finger contour positions.  Therefore by 
controlling k max we can reduce most outliers 
automatically, but this also reduces the number of data 
points for our line support, so a trade off has to be made 
here.  

 

Fig 6 – Least squares line fitting using midpoints 

G.3D Pose Estimation 

Before we can determine the 3D position of the 
fingertips, the intrinsic and extrinsic camera parameters 
must be computed.  As a pre-processing step, a simple 
black and white planar checkerboard pattern is captured 
at four different poses using the stereo cameras.  These 
images are then passed to the Intel Open CV Calibration 
Toolbox in MATLAB where corresponding corner 
features are manually selected in each image. 

The calibration utility then outputs the intrinsic 
camera parameters KL and KR for each camera by 
optimizing across the entire calibration sequence, as well 
as the pose of the checkerboard in each image (the 
extrinsic parameters).  As described in [Trucco99], for 
our stereo camera setup we must determine the rigid 
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transformation R and T between the two cameras in order 
to triangulate the 3D position of image features.  Using 
the left camera as the reference coordinate frame, the 
rigid transformation from the right camera coordinate 
frame to the left camera coordinate frame is computed as:  

 

where RL and TL represent the extrinsic 
parameters of the left camera (rotation and translation of 
the checkerboard) from the first left frame of the 
calibration sequence, and similarly RR and TR represent 
the extrinsic parameters for the right camera using the 
first right frame of the camera calibration sequence. 

Although better results could be obtained by 
optimizing R and T across the entire calibration sequence, 
this simple method of using only the extrinsic data from 
the  first frame of the sequence should be sufficient for 
our purposes.  

With KL, KR, R, and T, we can now triangulate 
the 3D location of corresponding points pL and  pR from 
the left and right  images respectively using the technique 
described .  The basic idea (depicted in Figure 7) is as 
follows:   

1) Compute the 3D ray rL that goes from the centre of 
projection OL of the left camera and passes through pL.  
Therefore  

r = ap (a ∈ℜ) L. 

2) Compute the 3D ray rR that goes from the centre of 
projection OR of the right camera and passes through pR, 
represented in the left camera reference frame using  R 
and T.  Therefore  

 

3) Compute the intersection point P of the two rays as the 
reconstructed 3D point.  Since the rays may not truly 
intersect due to calibration and feature point inaccuracies, 
the 3D point P is computed as the midpoint of the  
smallest connecting line segment that is perpendicular to 
both rays.  If we let  a0 and  b0 represent the endpoints of 
this line segment, then we can solve for a0, b0, and c0 
with the following linear system:  

 

The resulting 3D point will thus be in the coordinate 
frame of the left camera (our chosen reference frame).  

 

Fig 7 – Triangulation with non-intersecting rays 

IV.TYPES OF TRACKING 

There are many options for 
the implementation of finger tracking. A great number of 
theses have been done in this field in order to make a 
global partition as an objective. We could divide this 
technique into finger tracking and interface. Regarding 
the last one, it computes a sequence estimation of the 
image which detects the hand part of the background. 
Regarding the first one, to carry out this tracking, we 
need an intermediate external device, used as a tool for 
execution different instructions. 

A.Tracking with interface 

In this system we use motion capture a tracking 
of the location of the markers and patterns in 3D is 
performed, the system identifies them and labels each 
marker according to the position of the user’s fingers. 
The coordinates in 3D of the labels of these markers are 
produced in real time with other applications. 

i. markers 

Some of the optical systems, like Vicon, are 
able to capture hand motion through markers. In each 
hand we have a marker per each “operative” finger. 
Three high-resolution cameras are responsible for 
capturing each marker and measure its positions. This 
will be only produced when the camera is able to see 
them. The visual markers, usually known as rings or 
bracelets, are used to recognize user gesture in 3D. In 
addition, as the classification indicates, these rings act as 
an interface in 2D. 

a.Occlusion as an interaction method 

The visual occlusion is a very intuitive method 
to provide a more realistic viewpoint of the virtual 
information in three dimensions.  

The interfaces provide more natural 3D 
interaction techniques over base 6. 
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b.Markerfunctionality 

Markers operate through interaction points, which are 
usually already set and we have the knowledge about the 
regions. Because of that, it is not necessary to follow 
each marker all the time; the multi pointers can be treated 
in the same way when there is only one operating pointer.  

To detect such pointers through an interaction, 
we enable ultrasound infrared sensors.         The fact that 
many pointers can be handled as one, problems would be 
solved. In the case when we are exposed to operate under 
difficult conditions like bad illumination, motion blurs, 
malformation of the marker or occlusion. The system 
allows following the object, even though if some markers 
are not visible. Because of the spatial relationships of all 
the markers are known, the positions of the markers that 
are not visible can be computed by using the markers that 
are known. There are several methods for marker 
detection like border marker and estimated marker 
methods. 

The Homer technique includes ray selection 
with direct handling: An object is selected and then its 
position and orientation are handled like if it was 
connected directly to the hand. 

The Conner technique presents a set of 
3D widgets that permit an indirect interaction with 
the virtual objects through a virtual widget that acts as an 
intermediary. 

ii. Articulated hand tracking 

This is an interesting technique from the point 
of view that is more simple and less expensive, because it 
only needs one camera. This simplicity acts with less 
precision than the previous technique. It provides a new 
base for new interactions in the modeling, the control of 
the animation and the added realism. It uses a glove 
composed of a set of colors which are assigned according 
to the position of the fingers. This color test is limited to 
the vision system of the computers and based on the 
capture function and the position of the color, the 
position of the hand is known. 

B.Tracking Without Interface  

          In terms of visual perception, the legs and hands 
can be modelled as articulated mechanisms, system of 
rigid bodies that are connected between them to 
articulations with one or more degrees of freedom. This 
model can be applied to a more reduced scale to describe 
hand motion and based on a wide scale to describe a 
complete body motion. A certain finger motion, for 
example, can be recognized from its usual angles and it 

does not depend on the position of the hand in relation to 
the camera. 

Many tracking systems are based on a model 
focused on a problem of sequence estimation, where a 
sequence of images is given and a model of changing, we 
estimate the 3D configuration for each photo. All the 
possible hand configurations are represented 
by vectors on a state space, which codes the position of 
the hand and the angles of the finger’s joint. Each hand 
configuration generates a set of images through the 
detection of the borders of the occlusion of the finger’s 
joint.  

The estimation of each image is calculated by 
finding the state vector that better fits to the measured 
characteristics. The finger joints have the added 21 states 
more than the rigid body movement of the palms; this 
means that the cost computational of the estimation is 
increased. The technique consists of label each finger 
joint links is modeled as a cylinder. We do the axes at 
each joint and bisector of this axis is the projection of the 
joint. Hence we use 3 DOF, because there are only 3 
degrees of movement. 

In this case, it is the same as in the 
previous typology as there is a wide variety of 
deployment thesis on this subject. Therefore the steps 
and treatment technique are different depending on the 
purpose and needs of the person who will use this 
technique. Anyway, we can say that a very general way 
and in most systems, you should carry out the following 
steps: 

i.Background subtraction: the idea is to   convolve all the 
images that are captured with a Gauss filter of 5x5, and 
then these are scaled to reduce noisy pixel data. 

ii.Segmentation: a binary mask application is used to 
represent with a white color, the pixels that belong to the 
hand and to apply the black color to the foreground skin 
image. 

iii.Region extraction: left and right hand detection based 
on a comparison between them. 

iv.Characteristic extraction: location of the fingertips and 
to detect if it is a peak or a valley. To classify the point, 
peaks or valleys, these are transformed to 3D vectors, 
usually named pseudo vectors in the xy-plane, and then 
to compute the cross product. If the sign of the z 
component of the cross product is positive, we consider 
that the point is a peak, and in the case that the result of 
the cross product is negative, it will be a valley. 



IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014 
 
90 

Point and pinch gesture recognition: taking into account 
the points of reference that are visible (fingertips) a 
certain gesture is associated. 

v.Pose estimation: a procedure which consists on identify 
the position of the hands through the use of algorithms 
that compute the distances between positions. 

C.Other Tracking Techniques 

It is also possible to perform active tracking of 
fingers. The Smart Laser Scanner is a marker-less finger 
tracking system using a modified laser scanner/projector 
developed a the University of Tokyo in 2003-2004. It is 
capable of acquiring three dimensional coordinates in 
real time without the need of any image processing at all 
(essentially, it is a rangefinder scanner that instead of 
continuously scanning over the full field of view, 
restricts its scanning area to a very narrow window 
precisely the size of the target). Gesture recognition has 
been demonstrated with this system. The sampling rate 
can be very high (500Hz), enabling smooth trajectories to 
be acquired without the need of filtering (such as Kalman) 

IV. RESULTS 

In this section we describe the accuracy and 
performance of the hand tracking software.  The system 
was implemented in C++ under Microsoft Visual Studio, 
using the Open CV and IPL libraries for image 
processing operations and OpenGL for display purposes.  
The system was tested on a Pentium 4 processor running 
at 2 GHz.  The images were captured using a pair of 
Dragon Fly cameras with FireWire connections, 
providing us with 640x480 24-bit images and a capture 
rate of 30Hz.   As mentioned earlier, the intrinsic and 
extrinsic camera parameters were computed using the 
Open CV Calibration Toolbox in MATLAB, and the 
rigid transformation from the right camera frame to the 
left camera frame was also computed using MATLAB.  
Overall, the system can track the hands and fingertips at 
about 15Hz, which is quite good for interactive 
applications.  

A.Peak and Valley Detection Performance  

Since the gesture recognition system relies on 
the location of fingertip peaks, it is worthwhile to first 
examine the peak and valley detection performance.  

The following image shows the detection of all 
five fingertips of the hand.  Peak detection works fairly 
well, but as can be seen the valley detection is somewhat 
sensitive to the separation of the fingertips.  This is 
largely due to the morphological closing operation that is 
performed to fill in noisy skin pixels.  While the current 

set of gestures do not rely on valley detection, it is 
worthwhile to consider improvements in this area if we 
wish to leverage the valley information in the future.  

False negatives for peak detection tend to occur 
frequently for the thumb, largely as a result of our k-
curvature constant.  Since the thumb is shorter than most 
other fingers, it is sensitive to large values for this 
constant.  However, decreasing the k-curvature would 
increase the false positive rate for the peak detector, so 
the current value of 16 provides reasonable overall 
performance.  False negatives can also occur as a result 
of our choice of θ k, which defines the angle threshold 
for valid peaks and valleys.  Increasing this value would 
allow more peaks and valleys to be detected, but would 
also increase the false positive rate.  

 

Fig 8 – False negative for thumb detection 

False positives for both peaks and valleys can 
occur in areas where the skin segmentation has failed. 
Figure 9 shows an image where the skin classifier has 
failed to find all the skin pixels due to a hand appearing 
in a shadowed area.  As a result, the peak detector has 
labeled a sharp contour point  as a valid fingertip.  A 
possible remedy to this situation would be a larger 
training set for our skin histogram in  order to account for 
more skin tones and illumination conditions. 

 

Fig 9 – False positive peak detection 

Finally, although our peak and valley detection 
is rotation invariant it is still sensitive to changes in scale.  
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The following image shows what happens when a hand is 
moved too close to the camera:   

 

Fig 10-Scale sensitivity(the fingertip peak fails to be detected close to 
the camera) 

Again, this is a result of our k-curvature 
constant; for successful detection of hands close to the 
camera, it would be wise to increase this value.  
Nevertheless, a fixed k-curvature value provides a 
reasonable range in which the fingertips can still be 
detected.An interesting future enhancement would be to 
dynamically modify the k curvature value based on the 
distance of the hand from the camera, thereby allowing a 
form of scale invariance.  

B.Gesture Recognition Performance  

Recognition of the pointing gesture works fairly 
well for both the left and right hands with the default 
threshold values. Figure 11 shows an example of the 
recognition of the pointing gesture with both hands 
present in the image.  

 

Fig 11-Successful recognition of the pointing gesture for each 
hand(yellow dot is tip of index finger) 

The pinching gesture is slightly more difficult to 
recognize since the shortness of the thumb is sensitive to 
our choice of the k-curvature constant.  Nevertheless, in 
most cases the gesture is detected successfully, as 
depicted in the following image:  

 

Fig 12- Successful recognition  of the pinching gesture(yellow is tip of 
index finger,blue is thumb tip) 

Due to the simple heuristic approach for our 
gesture recognition, it is quite easy to fool the system.  
For example, showing any single finger will cause that 
fingertip to be labelled as the index finger.  The 
following image shows such a situation:  

 

Fig 13-Any single fingertip is interpreted as the index finger. 

The right index finger is correct,but in the left 
hand the thumb is being interpreted as the index finger.   

Similarly, any two-finger gesture will result in 
one finger being labeled as the index finger and the other 
the thumb.  The criteria used for the labeling will depend 
on the distance between the fingers along the hand 
contour.  The following image shows such a situation: 
For interaction purposes we assume that the cameras will 
be viewing the top of the hands.   

As a result, showing the palms of the hands 
instead of the tops will cause a similar misclassification 
of the fingertips as when we cross the hands over.  

Another misclassification problem occurs when 
two hands appear close together in the captured images.  
This results in a single large region being segmented by 
the background subtraction and skin detection phases.  
Therefore the contour detector interprets the two hands 
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as a single hand and thus the fingers are labeled as a right 
hand.   

The following image shows what happens when 
the left and right hands are crossed over: Two hands 
interpreted as a single right hand in the stereo images.  
Notice that one finger is labeled as the thumb (blue), the 
other the index finger (yellow).  

C. 3D Position Measurement Accuracy  

Since it is difficult to measure any ground truth 
for the 3D position of fingertips, we instead measure the 
accuracy of the 3D reconstruction by moving the 
pointing gesture through a set of motions.  For each pair 
of stereo frames, the reconstructed 3D fingertip position 
is dumped to a log file.  We then plot these 3D positions 
in MATLAB and qualitatively assess our position 
accuracy. The first motion consists of moving the finger 
tip in a figure-eight motion in the xy-plane so that we can 
analyze the accuracy of the  x and  y position 
reconstruction.  Figure 17 shows the 3D plot of the 
figure-eight motion.  As can be seen, the  x and  y 
positions have been reconstructed quite accurately, with 
some occasional noise due to incorrect correspondences 
as the hand is first brought into the scene.  Interestingly, 
the figure-eight motion was drawn against a flat wall that 
was approximately 150 cm from the left camera mounted 
on a tripod.  As expected, according to the 2D XZ plot 
the majority of the 3D points are also at the  z = 150 cm 
position. FIGURE 14– 3D plot of figure-eight motion in 
xy-plane (blue diamond represents camera origin)  

 
Fig 14-3D plot of figure-eight motion in xy-plane (blue diamond 

represents camera origin) 

2D plots of figure-eight motion in xy-plane The 
second motion involves moving the finger tip in a 
circular motion in the xz-plane, in order to see how 
accurately the z position (depth) is reconstructed.  

VI. FUTURE WORK AND CONCLUSION 

While the system works fairly well for the 
simple pointing and pinching gestures, there is still room 
for improvement.  Currently the system assumes a static 
background, but it would be desirable to use this hand 
tracking system in an augmented reality setting where a 
user, wearing a head-mount display, could interact with 
virtual 3D objects in the real world.  In other words, the 
cameras would be attached to the head-mount display 
and viewpoint could thus be controlled by natural head 
motions, resulting in a changing background scene.   

If the skin pixel detector could be made more 
robust, it would be possible to completely discard the 
background subtraction phase and use the current system 
in such an augmented reality setting.  However, a more 
sophisticated hand segmentation system would still be 
required in order to differentiate between other objects 
with skin-coloured pixels, such as faces.  

Finally, the current implementation only uses 
the 2D finger axis from either the left or right image as a 
measure of finger orientation.  While this is sufficient for 
2D interactions, it would be desirable to determine the 
3D axis of the finger in order to detect finger orientations 
in the  z (depth) direction as well.  It turns out that this 
could be accomplished quite easily by computing two 
planes that pass through the finger from each camera.  In 
other words, the first plane would pass through the centre 
of projection of the left camera and through  the 2D 
image line for the finger in the left image.   

This project presented a vision-based hand 
tracking system that does not require any special markers 
or gloves and can operate in real-time on a commodity 
PC with low-cost cameras.  Specifically, the system can 
track  the tip positions of  the thumb and index finger for 
each hand, assuming that a calibrated pair of cameras is 
viewing the hands from above with the palms facing 
downward.  The motivation for this hand tracker was a 
desktop-based two-handed interaction system in which a 
user can select and manipulate 3D geometry in real-time 
using natural hand motions.  The algorithmic details for 
the hand tracker were presented, followed by a 
discussion of the performance and accuracy of the 
system, as well as a discussion of how the system could 
be improved in the future 
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