
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

83

Manuscript received January 5, 2014
Manuscript revised January 20, 2014

Finger Tracking In Real Time Human Computer Interaction

T.VIJITHA
IV B.TECH IN C.S.E GOKULA KRISHNA COLLEGE OF ENGINEERING SULLURPETA, SPSR NELLORE (Dt), A.P.

J.PUSHPA KUMARI
ASS0CIATE PROFSSOR IN C.S.E GOKULA KRISHNA COLLEGE OF ENGINEERING SULLURPETA, SPSR

NELLORE (Dt), A.P.

ABSTRACT:
A long time research on human-computer for interaction (HCI)
has been restricted to techniques based on the use of monitor,
keyboard and mouse. Recently this paradigm has changed.
Techniques such as vision, sound, speech recognition,
projective displays and location aware devices allow for a much
richer, multi-modal interaction between man and machine.
Finger-tracking is usage of bare hand to operate a computer in
order to make human-computer interaction much more faster
and easier. Fingertip finding deals with extraction of
information from hand features and positions. In this method
we use the position and direction of the fingers in order to get
the required segmented region of interest. Finger finding deals
with extraction of information from hand features and positions.
In this method we use the position and direction of the fingers
in order to get the required segmented region of interest. Finger
pointing systems aim to replace pointing and clicking devices
like the mouse with the bare hand.
Key words:
Real Time, Finger Tracking

I. INTRODUCTION

 Vision-based hand tracking is an important
problem in the field of human-computer interaction,
since hand motions and gestures could potentially be
used to interact with computers in more natural ways. A
number of solutions have been proposed in the current
literature, but the problem is still far from being solved
since the hand exhibits significant amounts of
articulation and self-occlusion that cause difficulties with
existing algorithms.

To further exasperate these problems,
interactive applications require that the hand tracking
perform in real-time. This project presents the
implementation and analysis of a real-time stereo vision
hand tracking system that can be used for interaction
purposes. The system uses two low-cost web cameras
mounted above the work area and facing downward. In
real-time, the system can track the 3D position and 2D
orientation of the thumb and index finger of each hand
without the use of special markers or gloves, resulting in
up to 8 degrees of freedom for each hand.

 The finger tracking system is focused on user-
data interaction, where the user interacts with virtual data,
by handling through the fingers the volumetric of a 3D
object that we want to represent. This system was born
based on the human-computer interaction problem. The
objective is to allow the communication between them
and the use of gestures and hand movements to be more
intuitive, Finger tracking systems have been created.
These systems track in real time the position in 3D and
2D of the orientation of the fingers of each marker and
use the intuitive hand movements and gestures to interact.
Finger-tracking systems are considered as specialized
type of hand posture/gesture recognition system.

The typical Specializations are:
1) Only the most simple hand postures and recognized.
2) The hand usually covers a part of the on screen.
3) The finger positions are being found in real-time
4) Ideally, the system works with all kinds of
backgrounds
5) The system does not restrict the speed of hand
movements

 In finger –tracking systems except that the real-
time constraints currently do not allow sophisticated
approaches such as 3D-model matching or Gabor
wavelet

II. RELATED WORK

Hand tracking is an active area of research in
the vision community, mainly for the purposes of sign
language recognition and human-computer interaction.
One of the original tracking systems to focus on
articulated hand motion was presented in [Rehg93]. In
their system, a 27 degree-of-freedom hand could be
tracked at 10Hz by extracting point and line features
from gray scale images. However, it has difficulty
tracking in the presence of occlusions and complicated
backgrounds, and it requires a manual initialization step
before tracking can begin.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

84

 From an interaction perspective, most of the
hand tracking work to date has focused on 2D interfaces.
In a finger was tracked across a planar region using low-
cost web cameras in order to manipulate a traditional
graphical interface without a mouse or keyboard.
Fingertip detection was accomplished by fitting a conic
to rounded features, and local tracking of the tip was
performed using Kalman filtering.

Similarly, in infrared cameras were used to
segment skin regions from background pixels in order to
track two hands for interaction on a 2D tabletop display.
Their method then used a template matching approach in
order to recognize a small set of gestures that could be
interpreted as interface commands. However, no precise
fingertip position information was obtained using their
technique.

III. SYSTEM OVERVIEW

This section describes the implementation
details of the hand tracking system, which is primarily
based on the single hand tracker presented in [Segen99].
The system can extract the 3D position and 2D
orientation of the index finger for each hand, and when
present the pose of the thumb as well. In interactive
applications a single pointing gesture could then be used
for selection operations while both the thumb and index
finger could be used together for pinching gestures in
order to grasp and manipulate virtual objects.
A.Background subtraction

 The first phase of the tracking system involves
separating potential hand pixels from non hand pixels.
Before segmentation occurs, we first convolve all
captured images with a 5x5 Gaussian filter and then scale
this filtered image by one half in each dimension in order
to reduce noisy pixel data. All subsequent image
processing operations are then performed on this scaled
and filtered image.

Since the stereo cameras are mounted above a
non-moving workspace, a simple background subtraction
scheme is used to segment any potential foreground hand
information from the non-changing background scene.
At system start up, a pair of background images IB,L and
IB,R are captured to represent the static workspace from
each camera view. Subsequent frames then use the
appropriate background image to segment out moving
foreground data. In other words, for each pixel in frame i,
we compute the foreground mask image IF (for each
camera) as:

 Where σB is a fixed threshold to differentiate
foreground data from background data.

Note that background subtraction is performed
in RGB colour space with 8-bits per colour channel. The
resulting IF is a binary image with a single 8-bit channel.

 After some experimentation, a σB value of 8
was found to provide good results. Figure 1 shows the
result of background subtraction on an image containing
a hand.

Fig 1 – Background subtraction: (a) Background image; (b) Captured
image; (c) Foreground mask; (d) Foreground image

B.Skin segmentation

 Although the background subtraction scheme
described about works fairly well in Segmenting
foreground data from the non-changing background, it
will still allow objects such as shirt sleeves, coffee mugs,
or other desktop items that are placed into the workspace
to be detected as potential hands. In order to deal with
such situations and add some more flexibility to the
system, a skin pixel detector has been implemented to
further filter the foreground data.

As a pre-processing step, for each camera a
small number of snapshots are taken of various hands
with a range of different skin-tones and poses. Then
using an image editing program each of the captured
images is manually segmented into a binary mask where
white pixels represent skin areas and black pixels
represent non-skin areas.

This set of captured images and associated skin
masks is then used as the training set for a histogram-
based skin classifier as described in [Jones99]. Using a
bin size of 32 for each colour channel, each of the RGB
pixels in the training set are assigned to either the 3D
skin histogram Hs or the non-skin histogram Hn. Given
these histograms we can then compute the probability

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

85

that a given RGB colour belongs to the skin and non-skin
classes as follows:

 where s[rgb] is the pixel count in bin rgb of Hs,
n[rgb] is the pixel count in bin rgb of Hn, and Ts and Tn
represent the total counts contained in Hs and Hn
respectively.Therefore, at run-time, we can determine the
probability that any given rgb pixel is skin or non-skin
using Bayes rule:

 where P(skin) and P(¬skin) are our prior
probabilities for skin and non-skin respectively. Since
P(skin) + P(¬skin) = 1, we use where P(skin) and
P(¬skin) are our prior probabilities for skin and non-skin
respectively. Since P(skin) + P(¬skin) = 1, we use

Thus we can further threshold our background
subtracted image with this skin classifier to only keep
pixels with a high skin probability: P(skin | rgb) ≥ σ
where σ s∈[0..1]is our threshold value. After some
experimentation, a value of 0.6 was found to provide
good results for σ s.

The result of our skin classifier is a new binary
skin mask image IS. Since not all skin pixels will be
categorized correctly at all times, we perform a
morphological closing operation on IS in order to remove
small noisy holes in the skin pixel areas.

Figure 2 shows the result of skin detection using
the background subtracted image in Figure 1d.

Fig 2 – Skin detection: (a) Skin mask; (b) Foreground skin image

C.Region Extraction

Now that the skin regions have been detected,
we must determine which regions correspond to the left
and right hands. It is possible that small noisy regions
will still be present after background subtraction and skin
segmentation, but we assume that the regions
corresponding to the hands will be the largest. Thus we
first extract the contours of all the detected skin regions
in IS using binary image processing operations and
connected component analysis. For each region i we
thus get a set of counter-clockwise perimeter coordinates
Ci(j) = { (xj, yj) } that trace the outline of each region.
Let Ni = |Ci| represent the total number of perimeter
coordinates in the contour i. We then choose the two
largest contours A and B to represent the hand contours,
using Ni as a measure of contour size. Additionally, in
order to avoid processing extremely small contours, Ni
must be above some threshold σ Nin order for the
contour i to be considered valid (σ N= 50 in the current
implementation).

We then compute the mean of each of these
two largest contours by averaging the perimeter
coordinates in CA and CB respectively. This is followed
by a simple heuristic approach to differentiate between
the left and right hands by stating that the contour with
the smaller mean x coordinate is the left hand, and the
contour with the larger mean x coordinate is the right
hand (assuming the image x coordinates increase from
left to right). In the case where only a single large
contour has been detected, the system sets it to be the
right hand under the assumption that the user is right-
handed and will be using their dominant hand for one-
handed operations (this default can be changed for left
handed users). Figure 3 shows the result of the contour
extraction on the image from Figure 2

Fig 3 – Hand contours

D.Feature Extraction

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

86

Let CL represent the contour for the left hand,
and CR represent the contour for the right hand as
computed above. In order to find the fingertips for the
thumb and index finger for each hand, we attempt to find
pixels that represent peaks along the contour perimeters.

At each pixel j in a hand contour i, we compute
the k-curvature which is the angle between the two
vectors [Ci(j), Ci(j – k)] and [Ci(j), Ci(j + k)], where k
is a constant (currently set to 16). The k-curvature can
be computed quite easily using a dot product operation
between the vectors. The idea here is that contour points
with a k-curvature close to 0 will represent potential
peaks or valleys along the perimeter. We currently use a
degree threshold θ30 k= for the k-curvature such that
only points below this angle will be considered further.

In order to classify the points as either peaks or
valleys, we convert the vectors into 3D vectors lying in
the xy-plane and then compute the cross product. If the
sign of the z component of the cross product is positive
then we label the point as a peak, while a negative cross
product results in a valley label.

 Finally, non-maximal suppression is then used
to find the strongest peaks and valleys along the
perimeter, since we can expect that a sequential set of
peaks and valleys will be detected in the neighbourhood
of the strongest locations .Figure shows the result of peak
and valley detection on the image in Figure 3. Note that
not all valleys were detected, largely as a result of the
morphological closing operation that was performed
during skin segmentation, but this will not be a problem
for gesture recognition as described in the next section.

Fig 4 – Peak and valley detection

E.Point and Pinch Gesture Recognition

After the feature extraction phase, we have 2D
positions for the peaks and valleys along the contours of
the hand regions. For interaction purposes we can now
recognize pointing gestures an

Pointing Gesture: 1 peak

Pinching Gesture: 2 peaks

For the pointing gesture, we assume that the
single peak represents the index finger and no other
finger is present. For the pinching gesture however, we
must differentiate between the thumb and index finger
peaks. Since the contour perimeter is given in a counter-
clockwise order, we can use a simple heuristic to label
the peaks as thumb or index finger. Define cnorm=

Where N represents the number of points along
the contour perimeter. Let P and Q represent two peaks
located at positions p and q in the counter-clockwise
perimeter respectively. Therefore cnorm(p - q) gives us
the distance between P and Q when traveling in the
counter-clockwise direction along the contour from Q to
P.

Given the left hand contour with two peaks, we
know that the distance from the thumb to the index finger
will be shorter than the distance from the index finger to
the thumb (in the counter-clockwise order).

Therefore if cnorm(p - q) < N/2, then P is the
index finger and Q is the thumb, otherwise Q is the index
finger and P is the thumb. Similarly, for the right hand
contour with two peaks, we know that the distance from
the index finger to the thumb should be less than the
distance from the thumb to the index finger.Therefore if
cnorm(p - q) < N/2, then Q is the index finger and P is
the thumb, otherwise P is the index finger and Q is the
thumb. Using this technique, we can properly label the
thumb and index finger in a rotation invariant manner.

 Figure 5 shows the result of pinch gesture
recognition on an image.

Fig 5 – Gesture recognition results

A yellow dot represents the tip of the index
finger, while a blue dot represents the tip of a thumb.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

87

F.2D Pose Estimation

The previous section described how to
determine the position of the index finger and thumb.
For interaction purposes, it would also be useful to
determine the orientation of the fingers.

Let P(i) = (xi, yi) represent the i-th point along a
hand’s contour. Then P(cnorm(i + k)) denotes a point
that is k points to the left of P(i) along the perimeter,
while P(cnorm(i - k)) represents a point to the right. Let
if t represent the index of a finger tip (thumb or index
finger) that we wish to determine the orientation of. A
midpoint Q(k) can then be computed as:

Therefore we compute Q(k) for k min<k<k max,
which gives us a set of midpoints representing the
support for the axis of the finger. A linear least squares
line fitting is then performed using these midpoints, as
shown in Figure 6. Let ax + by + c = 0 represent the
equation for the axis of the finger, where
We would like to minimize the sum of the squared
residuals:

This can be done as follows:

1) Compute the centroid (x, y) of the point set:

2) Change coordinates so that new centroid is (0,0):

3) Solve for (a ,b) by minimizing the following quadratic
form:

This can be solved by computing the SVD of M, where

There for en = (a, b)^T is the second column of
the V matrix from the SVD. Then c can be solved by
computing c = (x, y) ⋅ n Finally from n we can compute
the θ orientation of the finger, resulting in three
parameters (x, y ,θ) for each of the detected finger tips in
the stereo images. It is worthwhile to mention that while
a robust M-estimation technique could be used to
estimate the line, this may not be required since we are
using midpoints of contour points along the finger.

Thus outliers will usually only occur if the k
max value for Q (k) is too large, resulting in midpoints
from non-finger contour positions. Therefore by
controlling k max we can reduce most outliers
automatically, but this also reduces the number of data
points for our line support, so a trade off has to be made
here.

Fig 6 – Least squares line fitting using midpoints

G.3D Pose Estimation

Before we can determine the 3D position of the
fingertips, the intrinsic and extrinsic camera parameters
must be computed. As a pre-processing step, a simple
black and white planar checkerboard pattern is captured
at four different poses using the stereo cameras. These
images are then passed to the Intel Open CV Calibration
Toolbox in MATLAB where corresponding corner
features are manually selected in each image.

The calibration utility then outputs the intrinsic
camera parameters KL and KR for each camera by
optimizing across the entire calibration sequence, as well
as the pose of the checkerboard in each image (the
extrinsic parameters). As described in [Trucco99], for
our stereo camera setup we must determine the rigid

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

88

transformation R and T between the two cameras in order
to triangulate the 3D position of image features. Using
the left camera as the reference coordinate frame, the
rigid transformation from the right camera coordinate
frame to the left camera coordinate frame is computed as:

where RL and TL represent the extrinsic
parameters of the left camera (rotation and translation of
the checkerboard) from the first left frame of the
calibration sequence, and similarly RR and TR represent
the extrinsic parameters for the right camera using the
first right frame of the camera calibration sequence.

Although better results could be obtained by
optimizing R and T across the entire calibration sequence,
this simple method of using only the extrinsic data from
the first frame of the sequence should be sufficient for
our purposes.

With KL, KR, R, and T, we can now triangulate
the 3D location of corresponding points pL and pR from
the left and right images respectively using the technique
described . The basic idea (depicted in Figure 7) is as
follows:

1) Compute the 3D ray rL that goes from the centre of
projection OL of the left camera and passes through pL.
Therefore

r = ap (a ∈ℜ) L.

2) Compute the 3D ray rR that goes from the centre of
projection OR of the right camera and passes through pR,
represented in the left camera reference frame using R
and T. Therefore

3) Compute the intersection point P of the two rays as the
reconstructed 3D point. Since the rays may not truly
intersect due to calibration and feature point inaccuracies,
the 3D point P is computed as the midpoint of the
smallest connecting line segment that is perpendicular to
both rays. If we let a0 and b0 represent the endpoints of
this line segment, then we can solve for a0, b0, and c0
with the following linear system:

The resulting 3D point will thus be in the coordinate
frame of the left camera (our chosen reference frame).

Fig 7 – Triangulation with non-intersecting rays

IV.TYPES OF TRACKING

There are many options for
the implementation of finger tracking. A great number of
theses have been done in this field in order to make a
global partition as an objective. We could divide this
technique into finger tracking and interface. Regarding
the last one, it computes a sequence estimation of the
image which detects the hand part of the background.
Regarding the first one, to carry out this tracking, we
need an intermediate external device, used as a tool for
execution different instructions.

A.Tracking with interface

In this system we use motion capture a tracking
of the location of the markers and patterns in 3D is
performed, the system identifies them and labels each
marker according to the position of the user’s fingers.
The coordinates in 3D of the labels of these markers are
produced in real time with other applications.

i. markers

Some of the optical systems, like Vicon, are
able to capture hand motion through markers. In each
hand we have a marker per each “operative” finger.
Three high-resolution cameras are responsible for
capturing each marker and measure its positions. This
will be only produced when the camera is able to see
them. The visual markers, usually known as rings or
bracelets, are used to recognize user gesture in 3D. In
addition, as the classification indicates, these rings act as
an interface in 2D.

a.Occlusion as an interaction method

The visual occlusion is a very intuitive method
to provide a more realistic viewpoint of the virtual
information in three dimensions.

The interfaces provide more natural 3D
interaction techniques over base 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

89

b.Markerfunctionality

Markers operate through interaction points, which are
usually already set and we have the knowledge about the
regions. Because of that, it is not necessary to follow
each marker all the time; the multi pointers can be treated
in the same way when there is only one operating pointer.

To detect such pointers through an interaction,
we enable ultrasound infrared sensors. The fact that
many pointers can be handled as one, problems would be
solved. In the case when we are exposed to operate under
difficult conditions like bad illumination, motion blurs,
malformation of the marker or occlusion. The system
allows following the object, even though if some markers
are not visible. Because of the spatial relationships of all
the markers are known, the positions of the markers that
are not visible can be computed by using the markers that
are known. There are several methods for marker
detection like border marker and estimated marker
methods.

The Homer technique includes ray selection
with direct handling: An object is selected and then its
position and orientation are handled like if it was
connected directly to the hand.

The Conner technique presents a set of
3D widgets that permit an indirect interaction with
the virtual objects through a virtual widget that acts as an
intermediary.

ii. Articulated hand tracking

This is an interesting technique from the point
of view that is more simple and less expensive, because it
only needs one camera. This simplicity acts with less
precision than the previous technique. It provides a new
base for new interactions in the modeling, the control of
the animation and the added realism. It uses a glove
composed of a set of colors which are assigned according
to the position of the fingers. This color test is limited to
the vision system of the computers and based on the
capture function and the position of the color, the
position of the hand is known.

B.Tracking Without Interface

 In terms of visual perception, the legs and hands
can be modelled as articulated mechanisms, system of
rigid bodies that are connected between them to
articulations with one or more degrees of freedom. This
model can be applied to a more reduced scale to describe
hand motion and based on a wide scale to describe a
complete body motion. A certain finger motion, for
example, can be recognized from its usual angles and it

does not depend on the position of the hand in relation to
the camera.

Many tracking systems are based on a model
focused on a problem of sequence estimation, where a
sequence of images is given and a model of changing, we
estimate the 3D configuration for each photo. All the
possible hand configurations are represented
by vectors on a state space, which codes the position of
the hand and the angles of the finger’s joint. Each hand
configuration generates a set of images through the
detection of the borders of the occlusion of the finger’s
joint.

The estimation of each image is calculated by
finding the state vector that better fits to the measured
characteristics. The finger joints have the added 21 states
more than the rigid body movement of the palms; this
means that the cost computational of the estimation is
increased. The technique consists of label each finger
joint links is modeled as a cylinder. We do the axes at
each joint and bisector of this axis is the projection of the
joint. Hence we use 3 DOF, because there are only 3
degrees of movement.

In this case, it is the same as in the
previous typology as there is a wide variety of
deployment thesis on this subject. Therefore the steps
and treatment technique are different depending on the
purpose and needs of the person who will use this
technique. Anyway, we can say that a very general way
and in most systems, you should carry out the following
steps:

i.Background subtraction: the idea is to convolve all the
images that are captured with a Gauss filter of 5x5, and
then these are scaled to reduce noisy pixel data.

ii.Segmentation: a binary mask application is used to
represent with a white color, the pixels that belong to the
hand and to apply the black color to the foreground skin
image.

iii.Region extraction: left and right hand detection based
on a comparison between them.

iv.Characteristic extraction: location of the fingertips and
to detect if it is a peak or a valley. To classify the point,
peaks or valleys, these are transformed to 3D vectors,
usually named pseudo vectors in the xy-plane, and then
to compute the cross product. If the sign of the z
component of the cross product is positive, we consider
that the point is a peak, and in the case that the result of
the cross product is negative, it will be a valley.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

90

Point and pinch gesture recognition: taking into account
the points of reference that are visible (fingertips) a
certain gesture is associated.

v.Pose estimation: a procedure which consists on identify
the position of the hands through the use of algorithms
that compute the distances between positions.

C.Other Tracking Techniques

It is also possible to perform active tracking of
fingers. The Smart Laser Scanner is a marker-less finger
tracking system using a modified laser scanner/projector
developed a the University of Tokyo in 2003-2004. It is
capable of acquiring three dimensional coordinates in
real time without the need of any image processing at all
(essentially, it is a rangefinder scanner that instead of
continuously scanning over the full field of view,
restricts its scanning area to a very narrow window
precisely the size of the target). Gesture recognition has
been demonstrated with this system. The sampling rate
can be very high (500Hz), enabling smooth trajectories to
be acquired without the need of filtering (such as Kalman)

IV. RESULTS

In this section we describe the accuracy and
performance of the hand tracking software. The system
was implemented in C++ under Microsoft Visual Studio,
using the Open CV and IPL libraries for image
processing operations and OpenGL for display purposes.
The system was tested on a Pentium 4 processor running
at 2 GHz. The images were captured using a pair of
Dragon Fly cameras with FireWire connections,
providing us with 640x480 24-bit images and a capture
rate of 30Hz. As mentioned earlier, the intrinsic and
extrinsic camera parameters were computed using the
Open CV Calibration Toolbox in MATLAB, and the
rigid transformation from the right camera frame to the
left camera frame was also computed using MATLAB.
Overall, the system can track the hands and fingertips at
about 15Hz, which is quite good for interactive
applications.

A.Peak and Valley Detection Performance

Since the gesture recognition system relies on
the location of fingertip peaks, it is worthwhile to first
examine the peak and valley detection performance.

The following image shows the detection of all
five fingertips of the hand. Peak detection works fairly
well, but as can be seen the valley detection is somewhat
sensitive to the separation of the fingertips. This is
largely due to the morphological closing operation that is
performed to fill in noisy skin pixels. While the current

set of gestures do not rely on valley detection, it is
worthwhile to consider improvements in this area if we
wish to leverage the valley information in the future.

False negatives for peak detection tend to occur
frequently for the thumb, largely as a result of our k-
curvature constant. Since the thumb is shorter than most
other fingers, it is sensitive to large values for this
constant. However, decreasing the k-curvature would
increase the false positive rate for the peak detector, so
the current value of 16 provides reasonable overall
performance. False negatives can also occur as a result
of our choice of θ k, which defines the angle threshold
for valid peaks and valleys. Increasing this value would
allow more peaks and valleys to be detected, but would
also increase the false positive rate.

Fig 8 – False negative for thumb detection

False positives for both peaks and valleys can
occur in areas where the skin segmentation has failed.
Figure 9 shows an image where the skin classifier has
failed to find all the skin pixels due to a hand appearing
in a shadowed area. As a result, the peak detector has
labeled a sharp contour point as a valid fingertip. A
possible remedy to this situation would be a larger
training set for our skin histogram in order to account for
more skin tones and illumination conditions.

Fig 9 – False positive peak detection

Finally, although our peak and valley detection
is rotation invariant it is still sensitive to changes in scale.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

91

The following image shows what happens when a hand is
moved too close to the camera:

Fig 10-Scale sensitivity(the fingertip peak fails to be detected close to
the camera)

Again, this is a result of our k-curvature
constant; for successful detection of hands close to the
camera, it would be wise to increase this value.
Nevertheless, a fixed k-curvature value provides a
reasonable range in which the fingertips can still be
detected.An interesting future enhancement would be to
dynamically modify the k curvature value based on the
distance of the hand from the camera, thereby allowing a
form of scale invariance.

B.Gesture Recognition Performance

Recognition of the pointing gesture works fairly
well for both the left and right hands with the default
threshold values. Figure 11 shows an example of the
recognition of the pointing gesture with both hands
present in the image.

Fig 11-Successful recognition of the pointing gesture for each
hand(yellow dot is tip of index finger)

The pinching gesture is slightly more difficult to
recognize since the shortness of the thumb is sensitive to
our choice of the k-curvature constant. Nevertheless, in
most cases the gesture is detected successfully, as
depicted in the following image:

Fig 12- Successful recognition of the pinching gesture(yellow is tip of
index finger,blue is thumb tip)

Due to the simple heuristic approach for our
gesture recognition, it is quite easy to fool the system.
For example, showing any single finger will cause that
fingertip to be labelled as the index finger. The
following image shows such a situation:

Fig 13-Any single fingertip is interpreted as the index finger.

The right index finger is correct,but in the left
hand the thumb is being interpreted as the index finger.

Similarly, any two-finger gesture will result in
one finger being labeled as the index finger and the other
the thumb. The criteria used for the labeling will depend
on the distance between the fingers along the hand
contour. The following image shows such a situation:
For interaction purposes we assume that the cameras will
be viewing the top of the hands.

As a result, showing the palms of the hands
instead of the tops will cause a similar misclassification
of the fingertips as when we cross the hands over.

Another misclassification problem occurs when
two hands appear close together in the captured images.
This results in a single large region being segmented by
the background subtraction and skin detection phases.
Therefore the contour detector interprets the two hands

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

92

as a single hand and thus the fingers are labeled as a right
hand.

The following image shows what happens when
the left and right hands are crossed over: Two hands
interpreted as a single right hand in the stereo images.
Notice that one finger is labeled as the thumb (blue), the
other the index finger (yellow).

C. 3D Position Measurement Accuracy

Since it is difficult to measure any ground truth
for the 3D position of fingertips, we instead measure the
accuracy of the 3D reconstruction by moving the
pointing gesture through a set of motions. For each pair
of stereo frames, the reconstructed 3D fingertip position
is dumped to a log file. We then plot these 3D positions
in MATLAB and qualitatively assess our position
accuracy. The first motion consists of moving the finger
tip in a figure-eight motion in the xy-plane so that we can
analyze the accuracy of the x and y position
reconstruction. Figure 17 shows the 3D plot of the
figure-eight motion. As can be seen, the x and y
positions have been reconstructed quite accurately, with
some occasional noise due to incorrect correspondences
as the hand is first brought into the scene. Interestingly,
the figure-eight motion was drawn against a flat wall that
was approximately 150 cm from the left camera mounted
on a tripod. As expected, according to the 2D XZ plot
the majority of the 3D points are also at the z = 150 cm
position. FIGURE 14– 3D plot of figure-eight motion in
xy-plane (blue diamond represents camera origin)

Fig 14-3D plot of figure-eight motion in xy-plane (blue diamond

represents camera origin)

2D plots of figure-eight motion in xy-plane The
second motion involves moving the finger tip in a
circular motion in the xz-plane, in order to see how
accurately the z position (depth) is reconstructed.

VI. FUTURE WORK AND CONCLUSION

While the system works fairly well for the
simple pointing and pinching gestures, there is still room
for improvement. Currently the system assumes a static
background, but it would be desirable to use this hand
tracking system in an augmented reality setting where a
user, wearing a head-mount display, could interact with
virtual 3D objects in the real world. In other words, the
cameras would be attached to the head-mount display
and viewpoint could thus be controlled by natural head
motions, resulting in a changing background scene.

If the skin pixel detector could be made more
robust, it would be possible to completely discard the
background subtraction phase and use the current system
in such an augmented reality setting. However, a more
sophisticated hand segmentation system would still be
required in order to differentiate between other objects
with skin-coloured pixels, such as faces.

Finally, the current implementation only uses
the 2D finger axis from either the left or right image as a
measure of finger orientation. While this is sufficient for
2D interactions, it would be desirable to determine the
3D axis of the finger in order to detect finger orientations
in the z (depth) direction as well. It turns out that this
could be accomplished quite easily by computing two
planes that pass through the finger from each camera. In
other words, the first plane would pass through the centre
of projection of the left camera and through the 2D
image line for the finger in the left image.

This project presented a vision-based hand
tracking system that does not require any special markers
or gloves and can operate in real-time on a commodity
PC with low-cost cameras. Specifically, the system can
track the tip positions of the thumb and index finger for
each hand, assuming that a calibrated pair of cameras is
viewing the hands from above with the palms facing
downward. The motivation for this hand tracker was a
desktop-based two-handed interaction system in which a
user can select and manipulate 3D geometry in real-time
using natural hand motions. The algorithmic details for
the hand tracker were presented, followed by a
discussion of the performance and accuracy of the
system, as well as a discussion of how the system could
be improved in the future

References
[1] [Jones99] M. Jones, J. Rehg. Statistical color models

with application to skin detection. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 1999. Vol. 1, pp. 274-280.

[2] [Rehg93] J. Rehg, T. Kanade. DigitEyes: Vision-Based
Human Hand-Tracking. School of Computer Science
Technical Report CMU-CS-93-220, Carnegie Mellon
University, December 1993.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

93

[3] [Sato00] Y. Sato, Y. Kobayashi, H. Koike. Fast tracking of
hands and fingertips in infrared images for augmented
desk interface. In Proceedings of IEEE International
Conference on Automatic Face and Gesture Recognition
(FG), 2000. pp. 462-467.

[4] [Segen99] J. Segen, S. Kumar. Shadow gestures: 3D hand
pose estimation using a single camera. In Proceedings of
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 1999. Vol. 1, pp. 479-485.

[5] [Trucco98] E. Trucco, A. Verri. Introductory Techniques
for 3D Computer Vision. Prentice-Hall, 1998.

[6] [Zhang01] Z. Zhang, Y. Wu, Y. Shan, S. Shafer. Visual
panel: Virtual mouse keyboard and 3d controller with an
ordinary piece of paper.

T.Vijitha is pursuing her B.Tech degree in C.S.E from Gokula
Krishna College of engineering. She is from Bheemavaram,
SPSR Nellore (Dt). She has an aggregate of 60% in B.Tech.
She has completed her intermediate in A.P.S.W.R College with
70.9% and SSC in Z.P.G.H School with 71.2%.She has
conducted a national level symposium at her college .

J.Pushpa Kumari has completed her B.Tech in Computer
Science and Engineering from Sri Kalahasthi Institute of
Technology in the year 2002 and M.Tech in Information
Technology from School of IT,JNTU hyderabad in the year
2010. She is presently working as a Associate Professor in
Gokula Krishna College of Engineering. She is having an
overall teaching experience of 8 and half years.

