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ABSTRACT 
An important commodity in the world of Electronic 
Communication is information. The protection of authenticity and 
integrity of information is necessary to achieve a secure 
communication between communicating parties. Electronic 
security is becoming increasingly important as the Internet and 
other forms of electronic communication become more prevalent. 
BLAKE is a hash function selected by NIST as one of the 14 
second round candidates for the SHA-3 Competition. In this paper, 
a BLAKE 32 is proposed based on the algorithmic specification 
and round rescheduling function which indicates a high speed 
implementation of BLAKE 32. Again, memory architecture is 
designed to reduce the memory usage which was done in Xilinx 
Spartan 3 family. 
Keywords:  
Cryptography, hash functions, MD5, SHA-3, BLAKE   

1. Introduction 

Cryptography is the practice and study of techniques for 
secure communication while third parties are present.The 
word cryptography comes from the Greek words κρυπτο 
(hidden or secret)  and  γραφη (writing).It is an art of secret 
writing. Cryptography is used to protect e-mail messages, 
credit card information, and corporate data. The basic 
service provided by cryptography is the ability to send 
information between participants that prevents others from 
reading it. Cryptography can provide other services, such as 
integrity checking and authentication—verifying someone’s 
or something’s identity. 
 Cryptography achieves security by encoding messages to 
make them non-readable. Cyptanalysis is the technique of 
decoding messages from a non-readable format to readable 
format without knowing that how it was initially converted. 
Cryptology is the combination of these two. A message in its 
original form is known as plaintext or clear text. The 
mangled information is known as cipher text. The two 
disciplines in cryptography are encryption and decryption. 
The process for producing cipher text from plaintext is 
known as encryption. The reverse of encryption is called 
decryption. While cryptographers invent clever secret codes, 
cryptanalysts attempt to break these codes[13]. There are 
three main types of cryptography:-Secret key cryptography 
(symmetric key cryptography) where both the sender and 

the receiver know the same secret code, called the key. 
Public key cryptography (asymmetric encryption) where 
uses a pair of keys for encryption and decryption and Hash 
Functions. 
 Cryptographic hash functions play an important central 
role in cryptology. Hash functions are applied to support 
digital signatures, data integrity, random number generators. 
A cryptographic hash function is a hash function, or an  
algorithm that takes an arbitrary block of data and returns a 
fixed-size bit string, the (cryptographic) hash value. It 
satisfies three major cryptographic properties: pre image 
resistance, second pre image resistance and collision 
resistance [1]. Due to these properties, hash function has 
become an important cryptographic tool which is used to 
protect information authenticity and integrity. The 
"message," is the  data to be encoded  and the hash value is 
sometimes called the message digest or simply digest. In 
general, the input to a hash function is called as a message or 
plain text and output is often referred to as message digest, 
the hash value, hash code, hash result or simply hash. 
 The most common properties [12], or ideal 
characteristics, of a hash function for a secure hashing 
function H with input message x are as follows:  
a) H(x) is relatively easy for any given message x, so that the 
implementations of H in both hardware and software can be 
efficient.  
b) For any given hash digest d, it is computationally 
impractical to find a message x such that the hash digest of x 
is the same as the hash digest d. This is to ensure that the 
hash function is one-way.  
c) For any given message x, it is computationally infeasible 
to find another message y, such that the message y is not the 
same as message x but the hash digest of y and x are the same. 
Some sources referred to this as weak collision resistance.  
d)  It is computationally infeasible to find two different 
messages, x and y such that their hash digests are the same. 
Some sources referred to this as strong collision resistance. 

1.1 Password Protection 

 One common place to use cryptographic hash is password 
storage. The user will have to initially setup a password that 
the computer stores, in some form onto the hard drive. The 
next time someone tries to access that account, the stored 
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password will be retrieved and compared to the password 
entered by the user.  This may pose a security problem 
because if the password is stored in plaintext in a storage 
device such as the hard-drive, someone may remove the 
storage device and extract physical data from it to obtain the 
password of that user. To prevent this, a cryptographic hash 
function may be used. Instead of storing the password 
directly into the hard drive, the password can run through a 
hash function first, and having the digest to be stored instead. 
When an authorized user tries to access that account later, 
his or her entry will be hashed and compared to the stored 
digest. Due to the deterministic nature of the hash function, 
if the user had entered his or her password correctly the 
digests will be a match and the user will be granted  access to 
that account. 
  MD5 and SHA are commonly used hash functions. Both 
of them adopt the Merkle-Damgard construction [21]. MD5 
is a common Merkle-Damgard-based hash function [2] & 
[3]. A MD5 block has 512 bits, which can be divided into 
sixteen 32-bit words. This configuration is only useful when 
the input is parallel in nature. 

1.2 What is SHA?  

 SHA stands for Secure Hashing Algorithm. It is a group 
of hash functions published by the National Institute of 
Standards and Technology as a US Federal Information 
Standard. All of the current SHA algorithms are developed 
by the NSA [2] [3]. 
SHA-0: A 160-bit hash function published in 1993. It was 
quickly withdrawn due to an undisclosed flaw. It was 
replaced by SHA-1.  
SHA-1: A 160-bit hash function that is similar to the earlier  
MD5 algorithm but more conservative. It is developed by 
the National Security Agency to be a part of the Digital 
Signature Algorithm [4]. It is the most widely used SHA 
algorithm.  
SHA-2: A family of two similar hash functions. It comes 
with four different sizes for the output, 224, 256, 384, and 
512-bit. The 224-bit and 384-bit versions of SHA-2 are 
simply the 256-bit and 512-bit versions with truncated 
outputs.  
SHA-3: This future hashing function is still under 
development. The algorithm will be developed by choosing 
different algorithms to a public competition. The final 
decision is expected to be announced in 2012 [5]. 
BLAKE is our candidate for SHA-3.The heritage of 
BLAKE is threefold [6]: 
• BLAKE’s iteration mode is HAIFA, an improved version 
of the Merkle-Damgard paradigm proposed by Biham and 
Dunkelman. It provides resistance to long-message second 
preimage attacks, and explicitly handles hashing with a salt. 
• BLAKE’s internal structure is the local wide-pipe, which 
we already used with the LAKE hash function. It makes 

local collisions impossible in the BLAKE hash functions, a 
result that doesn’t rely on any intractability assumption. 
• BLAKE’s compression algorithm is a modified version 
of Bernstein’s stream cipher ChaCha, whose security has 
been intensively analyzed and performance is excellent, and 
which is strongly parallelizable.  
 The iteration mode HAIFA would significantly provides 
randomized hashing and structural resistance to 
second-preimage attacks. The LAKE local wide-pipe 
structure is a straightforward way to give strong security 
guarantees against collision attacks. Finally, the choice of 
stream cipher ChaCha comes from our experience in 
cryptanalysis of Salsa20 and ChaCha, convinced of their 
remarkable combination of simplicity and security. 

2. Procedure 

2.1 Design Principles 

 The BLAKE hash functions were designed to meet all 
NIST criteria for SHA-3, including [17]: 
• message digests of 224, 256, 384, and 512 bits 
• same  parameter sizes as SHA-2 
• one-pass streaming mode 
• maximum message length of at least 2^64 − 1 bits 
In addition, we imposed BLAKE to: 
• explicitly handle hashing with a salt 
• be parallelizable 
• allow performance trade-offs 
• be suitable for lightweight environments 
 BLAKE is a family of four hash functions: BLAKE-224, 
BLAKE-256, BLAKE-384, and BLAKE- 512 (see Table 1). 
BLAKE has a 32-bit version (BLAKE-256) and a 64-bit one 
(BLAKE-512) [7], from which other instances are derived 
using different initial values, different padding, and 
truncated output. 
 

Table 1. Properties of the BLAKE hash functions (sizes in 
bits). 

algorithm word message block digest salt 
BLAKE-224  
BLAKE-256  
BLAKE-384  
BLAKE-512  

32 
32 
64 
64 

<2^64 
<2^64 
<2^128 
<2^128 

512 
512 
1024 
1024 

224 
256 
384 
512 

128 
128 
256 
256 

 
 The sizes were chosen as the SHA-2 sizes doubled, since 
increases in computing power require increases in hash sizes 
to maintain acceptable levels of security (against brute force 
or other attacks). The variants also have slight differences in 
the size of words processed and maximum message length. 
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2.1.1 Advantages 

2.1.1.1 Design 

• simplicity of the algorithm 
• interface for hashing with a salt 

2.1.1.2 Performance 

• fast in both software and hardware 
• parallelism and throughput/area trade-off for hardware 
implementation 
• simple speed/confidence trade-off with the tunable number 
of rounds 

2.1.1.3 Security 

• based on an intensively analyzed component (ChaCha) 
• resistant to generic second-pre image attacks 
• resistant to side-channel attacks 
• resistant to length-extension 
2.1.2 Limitations 
• message length limited to respectively 264 and 2128 for   
BLAKE-256 and BLAKE-512 
•Resistance to Joux’s multi collisions similar to that of 
SHA-2 
• Fixed-points found in less time than for an ideal function. 

2.2 Specification 

 The hash function BLAKE-256 operates on 32-bit words 
and returns a 32-byte hash value. The hash functions process 
of this family, is mainly based on two operations: the 
modular adder of 2n, for unsigned integers, and the 
bit-by-bit XOR (exclusive OR) on n-bit words [10]. The 
size of the hash value  will be equal to the block length .In 
addition; the right rotation operation of k-bit is used. The 
heart of BLAKE is the compression function. 
 
BLAKE-256 starts hashing from the same initial value as 
SHA-256. 
 
IV0  = 6A09E667   IV1  = BB67AE85 
IV2  = 3C6EF372    IV3  = A54FF53A 
IV4  = 510E527F    IV5  = 9B05688C 
IV6  = 1F83D9AB    IV7  = 5BE0CD19 
 
Ten permutations of {0, . . . , 15} are used by all BLAKE 
functions, defined in Table 2. The unary operator >>> 
denotes rotation of words towards least significant bits. 
 
BLAKE-256 uses 16 constants 
c0   = 243F6A88   c1  = 85A308D3 
c2   = 13198A2E   c3  = 03707344 

c4   = A4093822   c5  = 299F31D0 
c6   = 082EFA98   c7  = EC4E6C89 
c8   = 452821E6   c9  = 38D01377 
c10  = BE5466CF   c11  = 34E90C6C 
c12  = C0AC29B7   c13  = C97C50DD 
c14  = 3F84D5B5      c15  = B5470917 
 

Table 2. Permutations of {0. . . 15} used by the BLAKE 
 

σ0 
 

σ1 
 

σ2 
 

σ3 
 

σ4 
 

σ5 
 

σ6 
 

σ7 
 

σ8 
 

σ9 
 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

 
14 
10 
4 
8 
9 

15 
13 
6 
1 

12 
0 
2 

11 
7 
5 
3 

 
11 
8 

12 
0 
5 
2 

15 
13 
10 
14 
3 
6 
7 
1 
9 
4 

 
7 
9 
3 
1 

13 
12 
11 
14 
2 
6 
5 

10 
4 
0 

15 
8 

 
9 
0 
5 
7 
2 
4 

10 
15 
14 
1 

11 
12 
6 
8 
3 

13 

 
2 

12 
6 

10 
0 

11 
8 
3 
4 

13 
7 
5 

15 
14 
1 
9 

 
12 
5 
1 

15 
14 
13 
4 

10 
0 
7 
6 
3 
9 
2 
8 

11 

 
13 
11 
7 

14 
12 
1 
3 
9 
5 
0 

15 
4 
8 
6 
2 

10 

 
6 

15 
14 
9 

11 
3 
0 
8 

12 
2 

13 
7 
1 
4 

10 
5 

 
10 
2 
8 
4 
7 
6 
1 
5 

15 
11 
9 

14 
3 

12 
13 
0 

2.2.1 Compression Function 

 The compression function of BLAKE-256 takes as input 
four values: 
• a chain value h = h0, . . . , h7 
• a message block m = m0, . . . ,m15 
• a salt s = s0, . . . , s3 
• a counter t = t0, t1 
These four inputs represent 30 words where one word is 
equal to 32 bit and therefore in total equal to 960 bits. The 
output of the function is a new chain value h0 = 
hd0……….hd7 of eight words (i.e., 32 bytes = 256 
bits)[8]-[11].The compression of h, m, s, t is given as 
                      Compress (h ,m, s, t). 
The compression function performs three main operations 
as shown in fig 1 
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a) Initialization 
b) Round function 
c) Finalization 

 
t       =   counter 

       h      =   chaining values 
       s      =    salt values 
       v      =    internal values 
       m     =    message inputs 

Fig 1. Overall flow diagram of BLAKE 32 

2.2.1.1 Initialization 

 The internal states of BLAKE will first be initialized 
using a set of initial values, counter values, and some 
constants. This is the first step of the compression function. 
A 16-word state v0. . . v15 is initialized such that different 
inputs produce different initial states[8] [19] [20]. State is 
used as a fundamental word data structure. The state is 
represented as a 4×4 matrix. The output vectors v0…v7 is 
very easy to be implemented on hardware, since their 
integration is a matter of wiring. For the implementation of 
v9….v15 a XOR chain is used, between the values of salt 
(s0….s3) and the constant c (c0…c7) and are filled as 
follows: 

 
will be obtained from the following matrix as shown below: 

 

2.2.1.2 Round Function 

 The next step of compression is the round function. The 
round function of Blake is based on the ChaCha stream 

cipher. It is composed of two layers of G functions in 
parallel with four G functions in each layer. A G function 
uses modular addition, XOR, and rotational shifts. This 
operates for a specified number of rounds [11]. In every 
round, the state v is transformed based on certain operations 
addition, XOR and right rotation computations, which are 
the components of Gi (i=1,…,4) functions. For this purpose 
the Gi functions are used. The input message data first goes 
through a permutation process and then it is sent to one layer 
of G functions along with the stored internal states. Since 
one round requires two layers of G functions, each cycle 
only completes half a round. The output of the half round 
function will be stored inside the internal state registers for 
the next half round. 
A round is a transformation of the state v that computes 
G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10, 
v14) G3(v3 , v7 , v11, v15)  parallely because each updates 
a distinct column of the state. And  G4(v0 , v5 , v10, 
v15),G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 , 
v4 , v9 , v14) diagonally as shown in fig 2. The sequence 
G0….G3 is called a column step [20]. And similarly, the last 
four calls G4…G7 are called diagonal step. 

 
Figure 2. G functions in column step and diagonal step 

 

 
Figure 3. Gi Function 

Algorithm for rounding (Figure 3) where, at round r, Gi (p, q, 
r, s) sets:- 
  p:= p+q+(mσr(2i) xor cσr(2i+1) ) 

 s:=(s xor p)>>> 16 

 r:= r + s 

 q:=(q xor r)>>> 12 
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 p:= p+q+(mσr(2i+1) xor cσr(2i) ) 

 s:=(s xor p)>>> 8 

 r:= r + s 

 q:=(q xor r)>>> 7 

where p,q,r,s are the four internal states used for the round 
fnction and m and c are the message input and constants 
BLAKE 32 takes 16,12,8,7 rounds during the iteration 
process. 

2.2.1.3  Finalization  Process 

When the round sequence is taken over, the new chain 
value h = hd0, …, hd7 is produced from the state v, with 
inputs of the initial chain value h0, …, h7 and the salt s = s0, 
…, s3.The new chaining values are formed by the Xor 
operation as shown  below. 
h0 xor s0 xor v0 xor v8      =hd0 
h1 xor s1 xor v1 xor v9      =hd1 
h2 xor s2 xor v2 xor v10    =hd2 
h3 xor s3 xor v3 xor v11    =hd3 
h4 xor s0 xor v4 xor v12    =hd4 
h5 xor s1 xor v5 xor v13    =hd5 
h6 xor s2 xor v6 xor v14    =hd6 
h7 xor s3 xor v7 xor v15    =hd7 

2.2.2 Hashing The Message 

 When hashing a message, the function starts from an 
initial value, and the iterated hash process computes 
intermediate hash values that are called chaining values. 
Before being processed, a message is first padded so that its 
length is a multiple of the block size (512 bits). It is then 
processed block per block by the compression function. 

2.2.3 Round Rescheduling 

 The introduction of the addition with the 
message/constant (MC)-pair in the function will lead to an 
increase in the propagation delay. The maximum delay is 
given by the total delay of four XORs and four modular 
adders in the core function. The slightly modified function 
inserts an addition with the MC-pair [10] [11]. In modular 
adders, rotation is a simple rerouting of the word without 
effective propagation delay. The maximum frequency 
values of BLAKE architectures are slightly lower than those 
obtained for the stream cipher ChaCha. However, with a 
rescheduling function, it is possible to recover the original 
maximum path of ChaCha decreasing the overall 
propagation delay of the core function. Observing the flow 
dependencies in it is clear that the addition with the MC-pair 
is independent; message word and constant are unrelated to 
the state and can be computed in parallel to the other 
computations. If in a single call of G, each update of the 

state has been conceived to operate sequentially, the 
MC-pair addition can be shifted within the computations. It 
is thus possible to anticipate it, reducing the critical path. 
The rescheduled Gi (p*,q , r, s) computes the algorithm as :- 
 
 p:= p* +q 

 s:=(s xor p)>>> r0 

 r:= r + s 

 q:=(q xor r)>>> r1 

 p:= p+q+(mσr(2i+1) xor cσr(2i) ) 

 s:=(s xor p)>>> r2 

 r:= r + s 

 q:=(q xor r)>>> r3 

 p*:= p+(cσr+1(2i+1) xor mσr+1(2i) ) 

Where ri are the rotation indices for BLAKE-32 and 
BLAKE-64, and  p* corresponds to the modified first 
input/output variable after the MC addition [8]. 

2.2.4 Memory Architecture 

 The VLSI implementation of BLAKE-32 needs memory 
to store 16 words of internal state and eight words of 
chaining value, plus additional registers to store the salt 
(four words), the counter (two words), and the message 
block (16 words), i.e., in total 1472 bits of memory. The 
counter is used during four clock cycles and needs thus to be 
stored. The memory units are the main contribution in terms 
of area and energy consumption. It is thus necessary to 
design special-purpose register elements, to decrease [8] the 
global resource requirements of the hash core.BLAKE-32 
semi-custom memories was introduced based on 
clock-gated latch arrays, able to store at most one new word 
per cycle. Depending on the word number of the target value 
that is to be stored, these memories  replaces the standard 
flip-flop cells by latch cells. The latches are organized in 
32-bit banks and each bank stores a single word and is 
triggered by a dedicated gated clock. 
 A four-word latch array (Figure 4) is used to store the salt 
value. In the address decoder, the different one-hot enable 
signals are activated, depending on the write address [11]. 
An input flip-flop bank is added to prevent timing loops 
inside the logic, caused by the transparent behavior of 
latches. This bank  is driven by a gated clock generated with 
the write enable signal, while the outputs of the flip-flops are 
connected to the inputs of all latch banks. When a write 
enable occurs, the input word is first stored inside the 
flip-flop bank and is passed to the activated latch bank.The 
codes are designed for each block in VHDL and simulated 
in Xilinx using Spartan 3 FPGA family. 
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Figure 4. Memory architecture 

 

Table 3.Synthesis Result For Algorithm specification Of 

BLAKE 32 

DELAY 62.826 ns 
GATE COUNT 40,434 

MEMORY USAGE 460332 kbytes 
 
 The synthesis result for the BLAKE 32 with the round 
function is specified in the Table 3. The input given is of 32 
bit. The table gives the delay, gate count and memory usage. 
 

Table 4. Synthesis Result For High Speed Implementation 

Of BLAKE 32 

DELAY 53.298ns 
GATE COUNT 29,396 

MEMORY USAGE 398444 kbytes 
The synthesis result for the BLAKE 32 with the round 
rescheduling is specified in the Table 4. This indicates 
smaller delay than the round function which gives more 
speed than the previous. 
 

Table 5. Synthesis Result  For Compact architecture Of 

BLAKE 32 

DELAY 40.648ns 

GATE COUNT 13,390 
MEMORY USAGE 170916 kbytes 

 
 The synthesis result for the BLAKE 32 with a memory 
architecture  is specified in the Table 5. This stores the salt 
values which reduces the area and also increases the speed 
further. 

3. Conclusion and future work 

Research in cryptographic hash function has recently 
witnessed an unprecedented spike of interest. Around 50-60 
hash functions were available in 1993, followed by at least 
30-40 others developed, in addition to the 64 SHA-3 
submissions in 2007. The cryptographic hash standard 
SHA-3 should be suitable and flexible for a wide range of 
applications, featuring at the same time an optimal security 
strength. A complete hardware characterization of the 
BLAKE candidate, using G functions to generate 
fully-autonomous high-speed and compact implementations. 
A round rescheduling technique and a special-purpose 
memory design are also proposed. The wide spectrum of 
achieved performances paves the way for the application of 
the BLAKE function to various hardware implementations. 
 The future study can be the reduction of area further by 
removing the message block memory and the salt support 
and compare for BLAKE (28, 32, 48 and 64). For the first 
case, we can suppose the presence of an external tamper 
resistant memory that stores the secret message and for the 
second case we omit an added functionality of the BLAKE 
algorithm. 
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