
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

117

Manuscript received January 5, 2014
Manuscript revised January 20, 2014

Cryptography Based On Hash Function BLAKE 32 in VLSI

Gibi Sunny1, C Saranya2
*(Department Of Electronics And Communications ,K S Rangasamy College Of Technology ,India

** (Department Of Electronics And Communications, K S Rangasamy College Of Technology, India

ABSTRACT
An important commodity in the world of Electronic
Communication is information. The protection of authenticity and
integrity of information is necessary to achieve a secure
communication between communicating parties. Electronic
security is becoming increasingly important as the Internet and
other forms of electronic communication become more prevalent.
BLAKE is a hash function selected by NIST as one of the 14
second round candidates for the SHA-3 Competition. In this paper,
a BLAKE 32 is proposed based on the algorithmic specification
and round rescheduling function which indicates a high speed
implementation of BLAKE 32. Again, memory architecture is
designed to reduce the memory usage which was done in Xilinx
Spartan 3 family.
Keywords:
Cryptography, hash functions, MD5, SHA-3, BLAKE

1. Introduction

Cryptography is the practice and study of techniques for
secure communication while third parties are present.The
word cryptography comes from the Greek words κρυπτο
(hidden or secret) and γραφη (writing).It is an art of secret
writing. Cryptography is used to protect e-mail messages,
credit card information, and corporate data. The basic
service provided by cryptography is the ability to send
information between participants that prevents others from
reading it. Cryptography can provide other services, such as
integrity checking and authentication—verifying someone’s
or something’s identity.
 Cryptography achieves security by encoding messages to
make them non-readable. Cyptanalysis is the technique of
decoding messages from a non-readable format to readable
format without knowing that how it was initially converted.
Cryptology is the combination of these two. A message in its
original form is known as plaintext or clear text. The
mangled information is known as cipher text. The two
disciplines in cryptography are encryption and decryption.
The process for producing cipher text from plaintext is
known as encryption. The reverse of encryption is called
decryption. While cryptographers invent clever secret codes,
cryptanalysts attempt to break these codes[13]. There are
three main types of cryptography:-Secret key cryptography
(symmetric key cryptography) where both the sender and

the receiver know the same secret code, called the key.
Public key cryptography (asymmetric encryption) where
uses a pair of keys for encryption and decryption and Hash
Functions.
 Cryptographic hash functions play an important central
role in cryptology. Hash functions are applied to support
digital signatures, data integrity, random number generators.
A cryptographic hash function is a hash function, or an
algorithm that takes an arbitrary block of data and returns a
fixed-size bit string, the (cryptographic) hash value. It
satisfies three major cryptographic properties: pre image
resistance, second pre image resistance and collision
resistance [1]. Due to these properties, hash function has
become an important cryptographic tool which is used to
protect information authenticity and integrity. The
"message," is the data to be encoded and the hash value is
sometimes called the message digest or simply digest. In
general, the input to a hash function is called as a message or
plain text and output is often referred to as message digest,
the hash value, hash code, hash result or simply hash.
 The most common properties [12], or ideal
characteristics, of a hash function for a secure hashing
function H with input message x are as follows:
a) H(x) is relatively easy for any given message x, so that the
implementations of H in both hardware and software can be
efficient.
b) For any given hash digest d, it is computationally
impractical to find a message x such that the hash digest of x
is the same as the hash digest d. This is to ensure that the
hash function is one-way.
c) For any given message x, it is computationally infeasible
to find another message y, such that the message y is not the
same as message x but the hash digest of y and x are the same.
Some sources referred to this as weak collision resistance.
d) It is computationally infeasible to find two different
messages, x and y such that their hash digests are the same.
Some sources referred to this as strong collision resistance.

1.1 Password Protection

 One common place to use cryptographic hash is password
storage. The user will have to initially setup a password that
the computer stores, in some form onto the hard drive. The
next time someone tries to access that account, the stored

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

118

password will be retrieved and compared to the password
entered by the user. This may pose a security problem
because if the password is stored in plaintext in a storage
device such as the hard-drive, someone may remove the
storage device and extract physical data from it to obtain the
password of that user. To prevent this, a cryptographic hash
function may be used. Instead of storing the password
directly into the hard drive, the password can run through a
hash function first, and having the digest to be stored instead.
When an authorized user tries to access that account later,
his or her entry will be hashed and compared to the stored
digest. Due to the deterministic nature of the hash function,
if the user had entered his or her password correctly the
digests will be a match and the user will be granted access to
that account.
 MD5 and SHA are commonly used hash functions. Both
of them adopt the Merkle-Damgard construction [21]. MD5
is a common Merkle-Damgard-based hash function [2] &
[3]. A MD5 block has 512 bits, which can be divided into
sixteen 32-bit words. This configuration is only useful when
the input is parallel in nature.

1.2 What is SHA?

 SHA stands for Secure Hashing Algorithm. It is a group
of hash functions published by the National Institute of
Standards and Technology as a US Federal Information
Standard. All of the current SHA algorithms are developed
by the NSA [2] [3].
SHA-0: A 160-bit hash function published in 1993. It was
quickly withdrawn due to an undisclosed flaw. It was
replaced by SHA-1.
SHA-1: A 160-bit hash function that is similar to the earlier
MD5 algorithm but more conservative. It is developed by
the National Security Agency to be a part of the Digital
Signature Algorithm [4]. It is the most widely used SHA
algorithm.
SHA-2: A family of two similar hash functions. It comes
with four different sizes for the output, 224, 256, 384, and
512-bit. The 224-bit and 384-bit versions of SHA-2 are
simply the 256-bit and 512-bit versions with truncated
outputs.
SHA-3: This future hashing function is still under
development. The algorithm will be developed by choosing
different algorithms to a public competition. The final
decision is expected to be announced in 2012 [5].
BLAKE is our candidate for SHA-3.The heritage of
BLAKE is threefold [6]:
• BLAKE’s iteration mode is HAIFA, an improved version
of the Merkle-Damgard paradigm proposed by Biham and
Dunkelman. It provides resistance to long-message second
preimage attacks, and explicitly handles hashing with a salt.
• BLAKE’s internal structure is the local wide-pipe, which
we already used with the LAKE hash function. It makes

local collisions impossible in the BLAKE hash functions, a
result that doesn’t rely on any intractability assumption.
• BLAKE’s compression algorithm is a modified version
of Bernstein’s stream cipher ChaCha, whose security has
been intensively analyzed and performance is excellent, and
which is strongly parallelizable.
 The iteration mode HAIFA would significantly provides
randomized hashing and structural resistance to
second-preimage attacks. The LAKE local wide-pipe
structure is a straightforward way to give strong security
guarantees against collision attacks. Finally, the choice of
stream cipher ChaCha comes from our experience in
cryptanalysis of Salsa20 and ChaCha, convinced of their
remarkable combination of simplicity and security.

2. Procedure

2.1 Design Principles

 The BLAKE hash functions were designed to meet all
NIST criteria for SHA-3, including [17]:
• message digests of 224, 256, 384, and 512 bits
• same parameter sizes as SHA-2
• one-pass streaming mode
• maximum message length of at least 2^64 − 1 bits
In addition, we imposed BLAKE to:
• explicitly handle hashing with a salt
• be parallelizable
• allow performance trade-offs
• be suitable for lightweight environments
 BLAKE is a family of four hash functions: BLAKE-224,
BLAKE-256, BLAKE-384, and BLAKE- 512 (see Table 1).
BLAKE has a 32-bit version (BLAKE-256) and a 64-bit one
(BLAKE-512) [7], from which other instances are derived
using different initial values, different padding, and
truncated output.

Table 1. Properties of the BLAKE hash functions (sizes in
bits).

algorithm word message block digest salt
BLAKE-224
BLAKE-256
BLAKE-384
BLAKE-512

32
32
64
64

<2^64
<2^64
<2^128
<2^128

512
512
1024
1024

224
256
384
512

128
128
256
256

 The sizes were chosen as the SHA-2 sizes doubled, since
increases in computing power require increases in hash sizes
to maintain acceptable levels of security (against brute force
or other attacks). The variants also have slight differences in
the size of words processed and maximum message length.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

119

2.1.1 Advantages

2.1.1.1 Design

• simplicity of the algorithm
• interface for hashing with a salt

2.1.1.2 Performance

• fast in both software and hardware
• parallelism and throughput/area trade-off for hardware
implementation
• simple speed/confidence trade-off with the tunable number
of rounds

2.1.1.3 Security

• based on an intensively analyzed component (ChaCha)
• resistant to generic second-pre image attacks
• resistant to side-channel attacks
• resistant to length-extension
2.1.2 Limitations
• message length limited to respectively 264 and 2128 for
BLAKE-256 and BLAKE-512
•Resistance to Joux’s multi collisions similar to that of
SHA-2
• Fixed-points found in less time than for an ideal function.

2.2 Specification

 The hash function BLAKE-256 operates on 32-bit words
and returns a 32-byte hash value. The hash functions process
of this family, is mainly based on two operations: the
modular adder of 2n, for unsigned integers, and the
bit-by-bit XOR (exclusive OR) on n-bit words [10]. The
size of the hash value will be equal to the block length .In
addition; the right rotation operation of k-bit is used. The
heart of BLAKE is the compression function.

BLAKE-256 starts hashing from the same initial value as
SHA-256.

IV0 = 6A09E667 IV1 = BB67AE85
IV2 = 3C6EF372 IV3 = A54FF53A
IV4 = 510E527F IV5 = 9B05688C
IV6 = 1F83D9AB IV7 = 5BE0CD19

Ten permutations of {0, . . . , 15} are used by all BLAKE
functions, defined in Table 2. The unary operator >>>
denotes rotation of words towards least significant bits.

BLAKE-256 uses 16 constants
c0 = 243F6A88 c1 = 85A308D3
c2 = 13198A2E c3 = 03707344

c4 = A4093822 c5 = 299F31D0
c6 = 082EFA98 c7 = EC4E6C89
c8 = 452821E6 c9 = 38D01377
c10 = BE5466CF c11 = 34E90C6C
c12 = C0AC29B7 c13 = C97C50DD
c14 = 3F84D5B5 c15 = B5470917

Table 2. Permutations of {0. . . 15} used by the BLAKE

σ0

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

14
10
4
8
9

15
13
6
1

12
0
2

11
7
5
3

11
8

12
0
5
2

15
13
10
14
3
6
7
1
9
4

7
9
3
1

13
12
11
14
2
6
5

10
4
0

15
8

9
0
5
7
2
4

10
15
14
1

11
12
6
8
3

13

2

12
6

10
0

11
8
3
4

13
7
5

15
14
1
9

12
5
1

15
14
13
4

10
0
7
6
3
9
2
8

11

13
11
7

14
12
1
3
9
5
0

15
4
8
6
2

10

6

15
14
9

11
3
0
8

12
2

13
7
1
4

10
5

10
2
8
4
7
6
1
5

15
11
9

14
3

12
13
0

2.2.1 Compression Function

 The compression function of BLAKE-256 takes as input
four values:
• a chain value h = h0, . . . , h7
• a message block m = m0, . . . ,m15
• a salt s = s0, . . . , s3
• a counter t = t0, t1
These four inputs represent 30 words where one word is
equal to 32 bit and therefore in total equal to 960 bits. The
output of the function is a new chain value h0 =
hd0……….hd7 of eight words (i.e., 32 bytes = 256
bits)[8]-[11].The compression of h, m, s, t is given as
 Compress (h ,m, s, t).
The compression function performs three main operations
as shown in fig 1

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

120

a) Initialization
b) Round function
c) Finalization

t = counter

 h = chaining values
 s = salt values
 v = internal values
 m = message inputs

Fig 1. Overall flow diagram of BLAKE 32

2.2.1.1 Initialization

 The internal states of BLAKE will first be initialized
using a set of initial values, counter values, and some
constants. This is the first step of the compression function.
A 16-word state v0. . . v15 is initialized such that different
inputs produce different initial states[8] [19] [20]. State is
used as a fundamental word data structure. The state is
represented as a 4×4 matrix. The output vectors v0…v7 is
very easy to be implemented on hardware, since their
integration is a matter of wiring. For the implementation of
v9….v15 a XOR chain is used, between the values of salt
(s0….s3) and the constant c (c0…c7) and are filled as
follows:

will be obtained from the following matrix as shown below:

2.2.1.2 Round Function

 The next step of compression is the round function. The
round function of Blake is based on the ChaCha stream

cipher. It is composed of two layers of G functions in
parallel with four G functions in each layer. A G function
uses modular addition, XOR, and rotational shifts. This
operates for a specified number of rounds [11]. In every
round, the state v is transformed based on certain operations
addition, XOR and right rotation computations, which are
the components of Gi (i=1,…,4) functions. For this purpose
the Gi functions are used. The input message data first goes
through a permutation process and then it is sent to one layer
of G functions along with the stored internal states. Since
one round requires two layers of G functions, each cycle
only completes half a round. The output of the half round
function will be stored inside the internal state registers for
the next half round.
A round is a transformation of the state v that computes
G0(v0 , v4 , v8 , v12) G1(v1 , v5 , v9 , v13) G2(v2 , v6 , v10,
v14) G3(v3 , v7 , v11, v15) parallely because each updates
a distinct column of the state. And G4(v0 , v5 , v10,
v15),G5(v1 , v6 , v11, v12) G6(v2 , v7 , v8 , v13) G7(v3 ,
v4 , v9 , v14) diagonally as shown in fig 2. The sequence
G0….G3 is called a column step [20]. And similarly, the last
four calls G4…G7 are called diagonal step.

Figure 2. G functions in column step and diagonal step

Figure 3. Gi Function

Algorithm for rounding (Figure 3) where, at round r, Gi (p, q,
r, s) sets:-
 p:= p+q+(mσr(2i) xor cσr(2i+1))

 s:=(s xor p)>>> 16

 r:= r + s

 q:=(q xor r)>>> 12

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

121

 p:= p+q+(mσr(2i+1) xor cσr(2i))

 s:=(s xor p)>>> 8

 r:= r + s

 q:=(q xor r)>>> 7

where p,q,r,s are the four internal states used for the round
fnction and m and c are the message input and constants
BLAKE 32 takes 16,12,8,7 rounds during the iteration
process.

2.2.1.3 Finalization Process

When the round sequence is taken over, the new chain
value h = hd0, …, hd7 is produced from the state v, with
inputs of the initial chain value h0, …, h7 and the salt s = s0,
…, s3.The new chaining values are formed by the Xor
operation as shown below.
h0 xor s0 xor v0 xor v8 =hd0
h1 xor s1 xor v1 xor v9 =hd1
h2 xor s2 xor v2 xor v10 =hd2
h3 xor s3 xor v3 xor v11 =hd3
h4 xor s0 xor v4 xor v12 =hd4
h5 xor s1 xor v5 xor v13 =hd5
h6 xor s2 xor v6 xor v14 =hd6
h7 xor s3 xor v7 xor v15 =hd7

2.2.2 Hashing The Message

 When hashing a message, the function starts from an
initial value, and the iterated hash process computes
intermediate hash values that are called chaining values.
Before being processed, a message is first padded so that its
length is a multiple of the block size (512 bits). It is then
processed block per block by the compression function.

2.2.3 Round Rescheduling

 The introduction of the addition with the
message/constant (MC)-pair in the function will lead to an
increase in the propagation delay. The maximum delay is
given by the total delay of four XORs and four modular
adders in the core function. The slightly modified function
inserts an addition with the MC-pair [10] [11]. In modular
adders, rotation is a simple rerouting of the word without
effective propagation delay. The maximum frequency
values of BLAKE architectures are slightly lower than those
obtained for the stream cipher ChaCha. However, with a
rescheduling function, it is possible to recover the original
maximum path of ChaCha decreasing the overall
propagation delay of the core function. Observing the flow
dependencies in it is clear that the addition with the MC-pair
is independent; message word and constant are unrelated to
the state and can be computed in parallel to the other
computations. If in a single call of G, each update of the

state has been conceived to operate sequentially, the
MC-pair addition can be shifted within the computations. It
is thus possible to anticipate it, reducing the critical path.
The rescheduled Gi (p*,q , r, s) computes the algorithm as :-

 p:= p* +q

 s:=(s xor p)>>> r0

 r:= r + s

 q:=(q xor r)>>> r1

 p:= p+q+(mσr(2i+1) xor cσr(2i))

 s:=(s xor p)>>> r2

 r:= r + s

 q:=(q xor r)>>> r3

 p*:= p+(cσr+1(2i+1) xor mσr+1(2i))

Where ri are the rotation indices for BLAKE-32 and
BLAKE-64, and p* corresponds to the modified first
input/output variable after the MC addition [8].

2.2.4 Memory Architecture

 The VLSI implementation of BLAKE-32 needs memory
to store 16 words of internal state and eight words of
chaining value, plus additional registers to store the salt
(four words), the counter (two words), and the message
block (16 words), i.e., in total 1472 bits of memory. The
counter is used during four clock cycles and needs thus to be
stored. The memory units are the main contribution in terms
of area and energy consumption. It is thus necessary to
design special-purpose register elements, to decrease [8] the
global resource requirements of the hash core.BLAKE-32
semi-custom memories was introduced based on
clock-gated latch arrays, able to store at most one new word
per cycle. Depending on the word number of the target value
that is to be stored, these memories replaces the standard
flip-flop cells by latch cells. The latches are organized in
32-bit banks and each bank stores a single word and is
triggered by a dedicated gated clock.
 A four-word latch array (Figure 4) is used to store the salt
value. In the address decoder, the different one-hot enable
signals are activated, depending on the write address [11].
An input flip-flop bank is added to prevent timing loops
inside the logic, caused by the transparent behavior of
latches. This bank is driven by a gated clock generated with
the write enable signal, while the outputs of the flip-flops are
connected to the inputs of all latch banks. When a write
enable occurs, the input word is first stored inside the
flip-flop bank and is passed to the activated latch bank.The
codes are designed for each block in VHDL and simulated
in Xilinx using Spartan 3 FPGA family.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

122

Figure 4. Memory architecture

Table 3.Synthesis Result For Algorithm specification Of

BLAKE 32

DELAY 62.826 ns
GATE COUNT 40,434

MEMORY USAGE 460332 kbytes

 The synthesis result for the BLAKE 32 with the round
function is specified in the Table 3. The input given is of 32
bit. The table gives the delay, gate count and memory usage.

Table 4. Synthesis Result For High Speed Implementation

Of BLAKE 32

DELAY 53.298ns
GATE COUNT 29,396

MEMORY USAGE 398444 kbytes
The synthesis result for the BLAKE 32 with the round
rescheduling is specified in the Table 4. This indicates
smaller delay than the round function which gives more
speed than the previous.

Table 5. Synthesis Result For Compact architecture Of

BLAKE 32

DELAY 40.648ns

GATE COUNT 13,390
MEMORY USAGE 170916 kbytes

 The synthesis result for the BLAKE 32 with a memory
architecture is specified in the Table 5. This stores the salt
values which reduces the area and also increases the speed
further.

3. Conclusion and future work

Research in cryptographic hash function has recently
witnessed an unprecedented spike of interest. Around 50-60
hash functions were available in 1993, followed by at least
30-40 others developed, in addition to the 64 SHA-3
submissions in 2007. The cryptographic hash standard
SHA-3 should be suitable and flexible for a wide range of
applications, featuring at the same time an optimal security
strength. A complete hardware characterization of the
BLAKE candidate, using G functions to generate
fully-autonomous high-speed and compact implementations.
A round rescheduling technique and a special-purpose
memory design are also proposed. The wide spectrum of
achieved performances paves the way for the application of
the BLAKE function to various hardware implementations.
 The future study can be the reduction of area further by
removing the message block memory and the salt support
and compare for BLAKE (28, 32, 48 and 64). For the first
case, we can suppose the presence of an external tamper
resistant memory that stores the secret message and for the
second case we omit an added functionality of the BLAKE
algorithm.

References
[1] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar,

D. A. OsvikB, and B. de Weger, “MD5 considered harmful
today. Creating a rogue CA certificate,” presented at the 25th
Chaos Commun. Congr., Berlin, Germany, 2008.

[2] C. D. Cannière and C. Rechberger, “Finding SHA-1
characteristics: General results and applications,” in
Advances in Cryptology—ASIACRYPT 2006, ser. Lecture
Notes in Computer Science. Berlin, Germany: Springer, 2006,
vol. 4284, pp. 1–20.

[3] D. J. Bernstein, “CubeHash Specication (2.b.1), submission
to NIST,” 2008. [Online].
Available: http://cubehash.cr.yp.to/

[4] D. J. Bernstein, “ChaCha, a Variant of Salsa20,” 2007.
[Online]. Available: http://cr.yp.to/chacha.html

[5] G. Bertoni, J. Daemen, M. Peeters, and G.Van Assche,
“Keccak sponge function family, submission to NIST,” 2008.
[Online]. Available: http:// keccak.noekeon.org/

[6] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W Phan,
“SHA-3 Proposal BLAKE, submission to NIST,” 2008.

[7] J. Kelsey and B. Schneier, “Second preimages on n-bit hash
functions for much less than � work,” in EUROCRYPT, ser.
Lecture Notes in Computer Science, R. Cramer, Ed. New
York: Springer, 2005, vol. 3494, pp. 474–490.

[8] Luca Henzen, student member, IEEE, Jean-Philippe
Aumasson, Willi Meier, and Raphael C.-W. Phan, member,
IEEE,”VLSI Characterization of The Cryptographic Hash
Function-BLAKE” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, no. 10, october 2011.

[9] L. Henzen, F. Carbognani, N. Felber, and W. Fichtner,
“VLSI hardware evaluation of the stream ciphers Salsa20 and
ChaCha, and the compression function Rumba,” in Proc.

http://cubehash.cr.yp.to/

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

123

IEEE Int. Conf. Signals, Circuits Syst. (SCS), Nov. 2008, pp.
1–5.

[10] L. Lu, M. O’Neill, and E. Swartzlander, “Hardware
evaluation of SHA-3 hash function candidate ECHO,”
presented at the Claude Shannon Workshop Coding
Cryptography, Cork, Ireland, 2009.

[11] M. Bernet, L. Henzen, H. Kaeslin, N. Felber, and W. Fichtner,
“Hardware implementations of the SHA-3 candidates Shabal
and CubeHash,” in Proc. IEEE Midw. Symp. Circuits Syst.
(MWSCAS), Cancun, Mexico, Aug. 2009, pp. 515–518.

[12] M. Stevens, A. Lenstra, and B. de Weger, “Chosen-prefix
collisions for MD5 and colliding X.509 certificates for
different identities,” in Advances in
Cryptology—EUROCRYPT 2007, ser. Lecture Notes in
Computer Science. Berlin, Germany: Springer, 2007, vol.
4515, pp. 1–22.

[13] M. Tehranipoor and C. Wang , Introduction to Hardware
Security and Trust, Springer Science+Business Media, LLC
2012,” Zhijie Shi, ChujiaoMa, Jordan Cote, and Bing
Wang,” Hardware Implementation of Hash Functions” DOI
10.1007/978-1-4419-8080-9 2.

[14] NIST, Gaithersburg, MD, “Announcing the secure hash
standard,” FIPS 180-2, 2002.

[15] NIST, Gaithersburg, MD, “SP 800-106, randomized hashing
digital signatures,” 2007.

[16] O. Küçük, “The Hash Function Hamsi, submission to
NIST,”2008.[Online].Available:http://homes.esat.kuleuven.
be/~okucuk/hamsi/

[17] Proceedings of IEEE Computer Society Annual Symposium
on VLSI (IEEE ISVLSI'10), “BLAKE HASH Function
Family on FPGA: From the Fastest to the Smallest”,
Kefalonia, Greece, July 5-7, 2010.

[18] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel,
C. Rechberger, M. Schläffer, and S. S. Thomsen, “Grøstl—A
SHA-3 Candidate Submission to NIST,” 2008. [Online].
Available: http://www.groestl.Info

[19] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M.
Schmidt, and A. Szekely, “High-speed hardware
implementations of BLAKE, Blue Midnight Wish,
CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa,
Shabal, SHAvite-3, SIMD, and Skein,” Cryptology ePrint
Archive, Rep. 2009/510, 2009, .

[20] S. Tillich, M. Feldhofer, W. Issovits, T. Kern, H. Kureck, M.
Mühlberghuber, G. Neubauer, A. Reiter, A. Köfler, and M.
Mayrhofer, “Compact hardware implementations of the
SHA-3 candidates ARIRANG, BLAKE, Grøstl, and Skein,”
Cryptology ePrint Archive: , Rep. 2009/349, 2009.

[21] X. Wang and H. Yu, “How to break MD5 and other hash
functions,” in Advances in Cryptology—EUROCRYPT
2005, ser. Lecture Notes in Computer Science. Berlin,
Germany: Springer, 2005, vol. 3494, pp. 19–35.

	a) Initialization
	b) Round function
	c) Finalization

