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Abstract 
Mining frequent log items is an active area in data mining that 
aims at searching interesting relationships between items in 
databases. It can be used to address a wide variety of problems 
such as discovering association rules, sequential patterns, 
correlations and much more. Weblog that analyzes a Web site's 
access log and reports the number of visitors, views, hits, most 
frequently visited pages, and so forth. Mining frequent log items 
from web log data can help to optimize the structure of a web site 
and improve the performance of web servers. Existing methods 
often generate a huge set of potential high utility log items and 
their mining performance is degraded consequently. Two novel 
algorithms as well as a compact data structure for efficiently 
discovering high utility log items are proposed. High utility log 
items are maintained in a tree-based data structure called utility 
pattern tree. Implementing mining process is done through 
Discarding Local Unpromising Items and Decreasing Local Node 
Utility strategies. Experimental results predict that these strategies 
can keep track of previously accessed pages of a user, identify 
needed links to improve the overall performance of a web page, 
and improve the actual design of web pages with only two 
database scans. 
Index Terms 
frequent log items, high utility log items, Web Log file, data 
mining 

1. Introduction  

Data mining is the process of revealing non-trivial, 
previously unknown and potentially useful information 
from large databases. Discovering useful patterns hidden in 
a database plays an essential role in several data mining 
tasks, such as frequent pattern mining, weighted frequent 
pattern mining and high utility pattern mining. Among 
them, frequent pattern mining is a fundamental research 
topic that has been applied to different kinds of databases, 
such as transactional databases  
Streaming databases and time series databases and various 
application domains, such as bioinformatics, Web click-
stream analysis and mobile environments. Web mining is 
used to discover interest patterns which can be applied to 
many real world problems like improving web sites, better 

understanding the visitor’s behavior, product 
recommendation etc. 
Web usage mining is one of the prominent research areas 
due to these following reasons. a) One can keep track of 
previously accessed pages of a user. These pages can be 
used to identify the typical behavior of the user and to 
make prediction about desired pages. Thus personalization 
for a user can be achieved through web usage mining. b) 
Frequent access behavior for the users can be used to 
identify needed links to improve the overall performance of 
future accesses.Prefetching and caching policies can be 
made on the basis of frequently accessed pages to improve 
latency time. c) Common access behaviors of the users can 
be used to improve the actual design of web pages and for 
making other modifications to a Web site. d) Usage 
patterns can be used for business intelligence in order to 
improve sales and advertisement by providing product 
recommendations. 

2. RELATED WORK 

The frequent pattern mining techniques for discovering 
different types of patterns in a Web log. Web mining 
involves a wide range of applications that aims at 
discovering and extracting hidden information in data 
stored on the Web. Another important purpose of Web 
mining is to pro.vide a mechanism to make the data access 
more efficiently and adequately. The third interesting 
approach is to discover the information which can be 
derived from the activities of users, which are stored in log 
files for example for predictive Web caching. Thus, Web 
mining can be categorized into three different classes based 
on which part of the Web is to be mined; these three 
categories are (i) Web content mining, (ii) Web structure 
mining and (iii) Web usage mining. Web content mining is 
the task of discovering useful information available on-line. 
There are different kinds of Web content which can 
provide useful information to users, for example 
multimedia data, structured (i.e. XML documents), semi-
structured (i.e. HTML documents) and unstructured data 
(i.e. plain text). The aim of Web content mining is to 
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provide an efficient mechanism to help the users to find the 
information they seek. Web content mining includes the 
task of organizing and clustering the documents and 
providing search engines for accessing the different 
documents by keywords, categories, contents etc.  
Existing methods often generate a huge set of potential 
high utility item sets and their mining performance is 
degraded consequently. This situation may become worse 
when databases contain many long transactions or low 
thresholds are set. The huge number of potential high 
utility item sets forms a challenging problem to the mining 
performance since the more potential high utility item sets 
the algorithm generates, the higher processing time it 
consumes. To address this issue, we propose two novel 
algorithms as well as a compact data structure for 
efficiently discovering high utility item sets from 
transactional databases. 
Major contributions of this work are summarized as 
follows: 
Two algorithms, named UP-Growth (Utility Pattern 
Growth) and UP-Growth+, and a compact tree structure, 
called UP-Tree (Utility Pattern Tree), for discovering high 
utility item sets and maintaining important information 
related to utility patterns within databases are proposed. 
High utility  
item sets can be generated from UP-Tree efficiently with 
only two scans of original databases. 
2. Several strategies are proposed for facilitating the 
mining processes of UP-Growth and UP-Growth+ by 
maintaining only essential information in UP-Tree. By 
these strategies, overestimated utilities of candidates can be 
well reduced by discarding utilities of the items that cannot 
be high utility or are not involved in the search space. The 
proposed strategies can not only decrease the overestimated 
utilities of potential high utility item sets but also greatly 
reduce the number of candidates. 
3. Different types of both real and synthetic datasets are 
used in a series of experiments to compare the performance 
of the proposed algorithms with the state-of the-art utility 
mining algorithms. Experimental results show that UP-
Growth and UP-Growth+ outperform other algorithms 
substantially in terms of execution time, especially when 
databases contain lots of long transactions or low minimum 
utility thresholds are set. 

3. Organizing log files 

The Log Files are collected from the data catalogs. The 
patterns are generated as per the logic such as each user is 
initialized with their own id.The quantities which 
determine the number of times user accessed the websites. 
For each log, the profit table is initialized. However the 
transaction utility (TU) hereby called as log utility (LU) is 
estimated by multiplying the quantity and log Profit value. 

 
Given a finite set of items I = {i1, i2, …, im}, each item ip 
has a unit profit pr(ip). An item set X is a set of k distinct 
items {i1, i2, …, ik}, where ij�I, k is the length of X. An 
item set with length k is called a k-item  

TABLE 1.AN EXAMPLE DATABASE 

 

TABLE 2.PROFIT TABLE 

 
 
For example, in Tables 1 and 2, u({A}, T1) = 5×1 = 5; 
u({AD},T1) = u({A},T1) + u({D},T1) = 5+2 = 7; u({AD}) 
=u({AD},T1) + u({AD},T3) + u({AD},T6) = 7+22+7 = 36. 
 If min_util is set to 30, {AD} is a high utility item set. 

3.1Transaction-weighted Downward Closure 

Compute the minimum weighted utility. Compute the 
Transaction utility of a transaction Td.Compute the 
Transaction-weighted utility of an item set X is the sum of 
the transaction utilities of all the transactions containing X, 
which is denoted as TWU(X).Estimate the high transaction 
weighted utility item set  . It is the one which is not less 
than min_util.Evaluate the Transaction Weighted 
Downward Closure by downward closure property which 
can be done by applying the transaction weighted utility 
 

 
              Fig. 1. An IHUP-Tree when min_util = 40. 

 
To efficiently generate HTWUIs in phase I and avoid 
scanning database too many times, Ahmed et al. [3] 
proposed a tree-based algorithm, named IHUP. A tree-
based structure called IHUP-Tree is used to maintain the 
information about item sets and their utilities. Each node of 
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an IHUP-Tree consists of an item name, a TWU value and 
a support count. IHUP algorithm has three steps: (1) 
construction of IHUP-Tree, (2) generation of HTWUIs and 
(3) identification of high utility item sets. In step 1, items in 
transactions are rearranged in a fixed order such as 
lexicographic order, support descending order or TWU 
descending order. Then the rearranged transactions are 
inserted into an IHUP-Tree. Fig. 1 shows the global 
IHUPTree 
for the database in Table 1, in which items are arranged in 
the descending order of TWU. For each node in Fig. 1, the 
first number beside item name is its TWU and the second 
one is its support count. In step 2, HTWUIs are generated 
from the IHUP-Tree by applying FP-Growth [14]. Thus, 
HTWUIs in phase I can be found without generating any 
candidate for HTWUIs. In step 3, high utility item sets and 
their utilities are identified from the set of HTWUIs by 
scanning the original database once..            

3.2 Utility Pattern-Tree 

To facilitate the mining performance and avoid scanning 
original database repeatedly, we use a compact tree 
structure, named UP-Tree (Utility Pattern Tree), to 
maintain the information of transactions and high utility 
item sets. Two strategies are applied to minimize the 
overestimated utilities stored in the nodes of global UP-
Tree. In following subsections, the elements of UP-Tree are 
first defined. Next, the two strategies are introduced. 
Finally, how to construct an UP-Tree with the two 
strategies is illustrated in detail by a running example. 

3.2.1 The Elements in UP-Tree 

In a UP-Tree, each node N consists of N.name, 
N.count,N.nu, N.parent, N.hlink and a set of child nodes. 
N.name is the node’s item name. N.count is the node’s 
support count.N.nu is the node’s node utility, i.e., 
overestimated utility of the node. N.parent records the 
parent node of N. N.hlink is a node link which points to a 
node whose item name is the same as N.name.A table 
named header table is employed to facilitate the traversal of 
UP-Tree. In header table, each entry records an item name, 
an overestimated utility, and a link. The link points to the 
last occurrence of the node which has the same item as the 
entry in the UP-Tree. By following the links in header table 
and the nodes in UP-Tree, the nodes having the same name 
can be traversed efficiently. In following subsections, two 
strategies for decreasing the overestimated utility of each 
item during the construction of a global UP-Tree are 
introduced. 

3.2.2 Strategy DGU: Discarding Global Unpromising 
Items during Constructing a Global UP-Tree 

The construction of a global UP-Tree can be performed 
with two scans of the original database. In the first scan,TU 
of each transaction is computed. At the same time,TWU of 
each single item is also accumulated. By TWDC property, 
an item and its supersets are unpromising to be high utility 
item sets if its TWU is less than the minimum utility 
threshold. Such an item is called an unpromising item. 
Definition 8 gives a formal definition of what are 
unpromising items and promising items. 

3.2.3Constructing a global UP-Tree by Applying 
DGU and DGN 

Recall that the construction of a global UP-Tree is 
performed with two database scans. In the first scan, each 
Transaction’s TU is computed; at the same time, each 1-
Item’s TWU is also accumulated. Thus we can get 
promising items and unpromising items. After getting all 
promising items, DGU is applied. The transactions are 
reorganized by pruning the unpromising items and sorting 
the remaining promising items in a fixed order. Any 
ordering Can be used such as the lexicographic, support or 
TWU Order. Each transaction after the above 
reorganization is Called a reorganized transaction. In the 
following paragraphs, we use the TWU descending order to 
explain the whole process since it is mentioned that the 
performance of this order. 
 

 

 
 
Then a function Insert_Reorganized_Transaction is called 
to apply DGN during constructing a global UP-Tree. Its 
subroutine is shown in Fig. 2. When a reorganized 
transaction 
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tj’ = {i1, i2, …, in}) is inserted into a global UP-Tree, 
Insert_Reorganized_Transaction(N, ix) is called, where N 
is a node in UP-Tree and ix is an item in tj’(ix�tj’, 1 � x � 
n). First, (NR, i1) is taken as input, where NR is the root 
node of UP-Tree. The node for i1,1 Ni , is found or created 
under NR and its support is updated in Line 1. 

TABLE 3. REORGANIZED TRANSACTIONS AND THEIR                  
RTUS 

 
 
Then DGN is applied in Line 2 by discarding the utilities of 
descendant nodes under 1 Ni , i.e.,2 Ni to N . in Finally in 
Line 3, (1 Ni , i2) is taken as input recursively. An example 
is given to explain how to apply the two strategies during 
the construction of a global UP-Tree. Consider the 
transaction database in Table 1 and the profit table in Table 
2. Suppose min_util is 50. In the first scan of database, TUs 
of all transactions and TWUs of distinct items are 
computed. Five promising items, i.e.,{A}:93, {B}:92, 
{C}:99, {D}:96 and {E}:107, are sorted in the header table 
by the descending order of TWU, that is, {E},{C}, {D}, 
{A} and {B}. Then the transactions are reorganized by 
sorting promising items and subtracting utilities of 
unpromising items from their TUs. The reorganized 
transactions and their RTUs are shown in Table 3. 
Comparing Table 3 and Table 1, the RTUs of T2, T3 and 
T5 in Table 3 are less than the TUs in Table 1 since the 
utilitiesof {F}, {G} and {H} have been removed by 
DGU.After a transaction has been reorganized, it is inserted 
into the global UP-Tree. When T1’ = {(C,10)(D,1)(A,1)} is 
inserted, the first node NC is created with NC.item = 
{C}and NC.count = 1. NC.nu is increased by RTU(T1’) 
minus the utilities of the rest items that are behind {C} in 
T1’, that is, NC.nu = RTU(T1’) – (u({D},T1’) + 
u({A},T1’)) = 17–(2+5) =10. Note that it can also be 
calculated as the sum of utilities of the items that are before 
item {D} in T1’, i.e., NC.nu= u({C},T1’) = 10. The second 
node ND is created with ND.item = {D}, ND.count = 1 and 
ND.nu = RTU(T1’) –u({A},T1’) = 17–5 = 12. The third 
node NA is created with NA.item = {A}, NA.count = 1 and 
NA.nu = RTU(T1’) = 17.After inserting all reorganized 
transactions by the same way, the global UP-Tree shown in 
Fig. 3 is constructed.Comparing with the IHUP-Tree in Fig. 
1, node utilities of the nodes in UP-Tree are less than those 

in IHUP-Tree since the node utilities are effectively 
decreased by the two strategies DGU and DGN. 

3.2 Utility Pattern-Growth 

After constructing a global UP-Tree, a basic method for 

 
Fig. 3. A UP-Tree by applying strategies DGU and DGN. 

TABLE 4. MINIMUM ITEM UTILITY TABLE 

 
generating PHUIs is to mine UP-Tree by FP-Growth 
[14].However too many candidates will be generated. Thus, 
we propose an algorithm UP-Growth (Utility Pattern 
Growth) by pushing two more strategies into the 
framework of FP-Growth. By the strategies, overestimated 
utilities of item sets can be decreased and thus the number 
of PHUIs can be further reduced. In following subsections, 
we first propose the two strategies and then describe the 
process of UP-Growth in detail by an example. 

3.2.1 Strategy DLU: Discarding Local Unpromising 
Items during Constructing a Local UP-Tree 

The common method for generating patterns in tree based 
algorithms [3, 14] contains three steps: (1) Generate 
conditional pattern bases by tracing the paths in the original 
tree, (2) construct conditional trees (also called local trees 
in this paper) by the information in conditional pattern 
bases and (3) mine patterns from the conditional trees. 
However, strategies DGU and DGN can not be applied 
into conditional UP-Trees since actual utilities of items in 
different transactions are not maintained in a global UP 
Tree. We cannot know actual utilities of unpromising items 
that need to be discarded in conditional pattern bases unless 
an additional database scan is performed. To overcome this 
problem, a naïve solution is to maintain items’ actual 
utilities in each transaction into each node of global UP-
Tree. However, this is impractical since it needs lots of 
memory space. In view of this, we propose two strategies, 
named DLU and DLN, that are applied in the first two 
mining steps and introduced in this and next subsections, 
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respectively. For the two strategies, we maintain a 
minimum item utility table to keep minimum item utilities 
for all global promising items in the database. 
For example, pu(<ADC>,{B}-CPB), which is the path 
utility of the leftist path in Figure 3 in {B}-CPB, is defined 
as NB.nu, i.e., 10, in that path. By Definitions 9 and 
10,assume that there is a path p in {im}-CPB and im 
CPBUI { }is the set of unpromising items in {im}-CPB. 
Path utility of pin {im}-CPB, i.e., pu(p,{im}-CPB), is 
recalculated and reduced 
According to minimum item utilities as below: 
 

 
 
where p.count is the support count of p in {im}-CPB. 

3.2.2 Strategy DLN: Decreasing Local Node Utilities 
during Constructing a Local UP-Tree 

As mentioned in the subsection 3.1.3, since {im}-Tree 
must not contain the information about the items below im 
in the original UP-Tree, we can discard the utilities of 
descendant nodes related to im in the original UP-Tree 
while building {im}-Tree. (Here, original UP-Tree means 
the UP Tree which is used to generate {im}-Tree.) Because 
we cannot know actual utilities of the descendant nodes, we 
use minimum item utilities to estimate the discarded 
utilities. 

3.2.3 UP-Growth: Mining a UP-Tree by Applying 
DLU and DLN 

The process of mining PHUIs by UP-Growth is described 
as follows. First, the node links in UP-Tree corresponding 
to the item im, which is the bottom entry in header table, 
are traced. Found nodes are traced to root of the UP-Tree to 
get paths related to im. All retrieved paths, their path 
utilities and support counts are collected into im’s 
conditional pattern base.A conditional UP-Tree can be 
constructed by two scansof a conditional pattern base. For 
the first scan, local promising and unpromising items are 
learned by summing the path utility for each item in the 
conditional pattern base. Then, DLU is applied to reduce 
overestimated 
  

 

 
 

 
Utilities during the second scan of the conditional pattern 
base. When a path is retrieved, unpromising items and their 
estimated utilities are eliminated from the path and its path 
utility by Eq (1). Then the path is reorganized by the 
descending order of path utility of the items in the 
conditional pattern base.DLN is applied during inserting 
reorganized paths into a conditional UP-Tree. Assume a 
reorganized path pj= <1 Ni2 Ni ...' N im >, whereik N is 
the nodes in UP-Tree and 1 � k � m’. When item i N . 1 , 
i1, is inserted into the conditional UP-Tree,thefunction 
inert_Reorgnized_Path(NR’,i1), as shown in Fig. 4, is 
called, where NR’ is root node of the conditional UP-Tree. 
The node for i1,1 Ni , is found or created under NR’ and its 
support is updated in Line 1.Then DLN is applied in Line 2 
by decreasing estimated utilities of descendant nodes under 
1 Ni , i.e.,2 Ni to N . im'Finally in Line 3, (1 Ni , i2) is 
taken as input recursively. 

3.3 An Improved Mining Method: UP-Growth+ 

   UP-Growth achieves better performance than FP-Growth 
by using DLU and DLN to decrease overestimated utilities 
of item sets. However, the overestimated utilities can be 
closer to their actual utilities by eliminating the estimated 
utilities that are closer to actual utilities of unpromising 
items and ascendant nodes. In this subsection 

TABLE 5. {B}-CPB AFTER APPLYING DGU, DGN AND DLU 
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Assume that there is a path p in {im}-CPB and im CPB UI 
{ }�is the set of unpromising items in {im}-CPB. The path 
utility of p in {im}-CPB, i.e., pu(p,{im}-CPB), is 
recalculated as below equation: 

 
Where p.count is the support count of p in {im}-
CPB.Assume that a reorganized path p = <1 N'i 2 N'i ..' N' 
im >in {im}-CPB is inserted into the path <1 Ni 2 Ni ...' N 
im > in {im}-Tree, where m’ � m. For the node 
ik N in {im}-Tree, where 1 � k � m’, nu ik N . is 
recalculated as below: 
 

 
where i old nu k N . is the node utility of ik N in {im}-Tree 
before adding p. 

TABLE 7. PARAMETER SETTINGS OF SYNTHETIC DATASETS. 

 

TABLE 8. CHARACTERISTICS OF REAL DATASETS 

 
 
Consider the UP-Tree in Fig. 7 and assume that min_util is 
set to 50. First, node links of the bottom entry {B} in 

header table are traced. Four paths are retrieved and added 
into {B}-CPB: {<A(5)D(2)C(1)>: 10, 
1},{<D(6)C(4)E(3)>: 11, 1}, {<C(4)E(3)>: 30, 1} and 
{<A(10)D(12)E(3)>: 32, 1}. Note that the number in 
bracket beside each item is minimal node utility recorded 
in that node 
After mining the whole UP-Tree by UP-Growth+, we can 
obtain all PHUIs, i.e., {A}:75, {B}:83 and {D}:55 in the 
UP-Tree. In this example, the number of PHUIs of 
UPGrowth+is less than that of UP-Growth. It means that 
the number of PHUIs, as well as the overestimated utilities 
of item sets, are further reduced by UP-Growth+. 

4.  PERFORMANCE EVALUATION 

Performance of the proposed algorithms is evaluated in this 
section. The experiments were performed on a 2.80 GHz 
Intel Pentium D Processor with 3.5 GB memory. The 
operating system is Microsoft Windows 7. The algorithms  
are presented in Java language. Both real and synthetic 
datasets are used in the experiments. Synthetic datasets 
were generated from the data generator in [1].Parameter 
descriptions and default values of synthetic datasets are 
shown in Table 7. Real world data sets Accidents and 
Chess are obtained from FIMI repository [41];Chain-store 
is obtained from NU-Mine Bench 2.0 [23]; 
Food mart is acquired from Microsoft food mart 2000 
database.Table 8 shows characteristics of the above 
datasets. In the above datasets, except Chain-store and 
Food mart, unit profits for items in utility tables are 
generated 

 
                             
We only show the results on Food mart and Chess since 
runtime for phase II is very long for large databases, such 
as Chain-store. In Fig. 11, we can observe that runtime for 
phase II is not only proportional to number of candidates in 
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phase II but also increases fiercely. Moreover, comparing 
Fig. 11 (a) and (b) with Fig. 9 (a) and Fig. 10 (c), the 
runtime of phase II is much more than that of phase I. Such 
as when min_util is 40% in Fig. 11 (a), the runtime for 
phase II of UPT&FPG is about 3,605 seconds; however in 
Fig. 9 (a), the runtime for phase I of the same method at the 
same threshold is only 84.15 seconds. Therefore, the 
performance is highly dependent on the runtime in phase. 

CONCLUSION 

In this paper, we have proposed two efficient algorithms 
named UP-Growth and UP-Growth+ for mining high utility 
item sets from transaction databases. A data structure 
named UP-Tree was proposed for maintaining the 
information of high utility item sets. Potential high utility 
item sets can be efficiently generated from UP-Tree with 
only two database scans. Moreover, we developed several 
strategies to decrease overestimated utility and enhance the 
performance of utility mining. In the experiments, both real 
and synthetic datasets were used to perform a thorough 
performance evaluation. Results show that the strategies 
considerably improved performance by reducing both the 
search space and the number of candidates. Moreover, the 
proposed algorithms, especially UPGrowth+,outperform 
the state-of-the-art algorithms substantially especially when 
databases contain lots of long transactions or a low 
minimum utility threshold is used. 
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