
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

124

Manuscript received January 5, 2014
Manuscript revised January 20, 2014

Utility Pattern Approach for Mining High Utility Log Items From
Web Log Data

M.S.Thanabal M.E,
Associate professor-cse, PSNA College of Engineering and Technology,

T.Anitha, M.E,

Computer Science & Engineering, PSNA College of Engineering and Technology,

Abstract
Mining frequent log items is an active area in data mining that
aims at searching interesting relationships between items in
databases. It can be used to address a wide variety of problems
such as discovering association rules, sequential patterns,
correlations and much more. Weblog that analyzes a Web site's
access log and reports the number of visitors, views, hits, most
frequently visited pages, and so forth. Mining frequent log items
from web log data can help to optimize the structure of a web site
and improve the performance of web servers. Existing methods
often generate a huge set of potential high utility log items and
their mining performance is degraded consequently. Two novel
algorithms as well as a compact data structure for efficiently
discovering high utility log items are proposed. High utility log
items are maintained in a tree-based data structure called utility
pattern tree. Implementing mining process is done through
Discarding Local Unpromising Items and Decreasing Local Node
Utility strategies. Experimental results predict that these strategies
can keep track of previously accessed pages of a user, identify
needed links to improve the overall performance of a web page,
and improve the actual design of web pages with only two
database scans.
Index Terms
frequent log items, high utility log items, Web Log file, data
mining

1. Introduction

Data mining is the process of revealing non-trivial,
previously unknown and potentially useful information
from large databases. Discovering useful patterns hidden in
a database plays an essential role in several data mining
tasks, such as frequent pattern mining, weighted frequent
pattern mining and high utility pattern mining. Among
them, frequent pattern mining is a fundamental research
topic that has been applied to different kinds of databases,
such as transactional databases
Streaming databases and time series databases and various
application domains, such as bioinformatics, Web click-
stream analysis and mobile environments. Web mining is
used to discover interest patterns which can be applied to
many real world problems like improving web sites, better

understanding the visitor’s behavior, product
recommendation etc.
Web usage mining is one of the prominent research areas
due to these following reasons. a) One can keep track of
previously accessed pages of a user. These pages can be
used to identify the typical behavior of the user and to
make prediction about desired pages. Thus personalization
for a user can be achieved through web usage mining. b)
Frequent access behavior for the users can be used to
identify needed links to improve the overall performance of
future accesses.Prefetching and caching policies can be
made on the basis of frequently accessed pages to improve
latency time. c) Common access behaviors of the users can
be used to improve the actual design of web pages and for
making other modifications to a Web site. d) Usage
patterns can be used for business intelligence in order to
improve sales and advertisement by providing product
recommendations.

2. RELATED WORK

The frequent pattern mining techniques for discovering
different types of patterns in a Web log. Web mining
involves a wide range of applications that aims at
discovering and extracting hidden information in data
stored on the Web. Another important purpose of Web
mining is to pro.vide a mechanism to make the data access
more efficiently and adequately. The third interesting
approach is to discover the information which can be
derived from the activities of users, which are stored in log
files for example for predictive Web caching. Thus, Web
mining can be categorized into three different classes based
on which part of the Web is to be mined; these three
categories are (i) Web content mining, (ii) Web structure
mining and (iii) Web usage mining. Web content mining is
the task of discovering useful information available on-line.
There are different kinds of Web content which can
provide useful information to users, for example
multimedia data, structured (i.e. XML documents), semi-
structured (i.e. HTML documents) and unstructured data
(i.e. plain text). The aim of Web content mining is to

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

125

provide an efficient mechanism to help the users to find the
information they seek. Web content mining includes the
task of organizing and clustering the documents and
providing search engines for accessing the different
documents by keywords, categories, contents etc.
Existing methods often generate a huge set of potential
high utility item sets and their mining performance is
degraded consequently. This situation may become worse
when databases contain many long transactions or low
thresholds are set. The huge number of potential high
utility item sets forms a challenging problem to the mining
performance since the more potential high utility item sets
the algorithm generates, the higher processing time it
consumes. To address this issue, we propose two novel
algorithms as well as a compact data structure for
efficiently discovering high utility item sets from
transactional databases.
Major contributions of this work are summarized as
follows:
Two algorithms, named UP-Growth (Utility Pattern
Growth) and UP-Growth+, and a compact tree structure,
called UP-Tree (Utility Pattern Tree), for discovering high
utility item sets and maintaining important information
related to utility patterns within databases are proposed.
High utility
item sets can be generated from UP-Tree efficiently with
only two scans of original databases.
2. Several strategies are proposed for facilitating the
mining processes of UP-Growth and UP-Growth+ by
maintaining only essential information in UP-Tree. By
these strategies, overestimated utilities of candidates can be
well reduced by discarding utilities of the items that cannot
be high utility or are not involved in the search space. The
proposed strategies can not only decrease the overestimated
utilities of potential high utility item sets but also greatly
reduce the number of candidates.
3. Different types of both real and synthetic datasets are
used in a series of experiments to compare the performance
of the proposed algorithms with the state-of the-art utility
mining algorithms. Experimental results show that UP-
Growth and UP-Growth+ outperform other algorithms
substantially in terms of execution time, especially when
databases contain lots of long transactions or low minimum
utility thresholds are set.

3. Organizing log files

The Log Files are collected from the data catalogs. The
patterns are generated as per the logic such as each user is
initialized with their own id.The quantities which
determine the number of times user accessed the websites.
For each log, the profit table is initialized. However the
transaction utility (TU) hereby called as log utility (LU) is
estimated by multiplying the quantity and log Profit value.

Given a finite set of items I = {i1, i2, …, im}, each item ip
has a unit profit pr(ip). An item set X is a set of k distinct
items {i1, i2, …, ik}, where ij�I, k is the length of X. An
item set with length k is called a k-item

TABLE 1.AN EXAMPLE DATABASE

TABLE 2.PROFIT TABLE

For example, in Tables 1 and 2, u({A}, T1) = 5×1 = 5;
u({AD},T1) = u({A},T1) + u({D},T1) = 5+2 = 7; u({AD})
=u({AD},T1) + u({AD},T3) + u({AD},T6) = 7+22+7 = 36.
 If min_util is set to 30, {AD} is a high utility item set.

3.1Transaction-weighted Downward Closure

Compute the minimum weighted utility. Compute the
Transaction utility of a transaction Td.Compute the
Transaction-weighted utility of an item set X is the sum of
the transaction utilities of all the transactions containing X,
which is denoted as TWU(X).Estimate the high transaction
weighted utility item set . It is the one which is not less
than min_util.Evaluate the Transaction Weighted
Downward Closure by downward closure property which
can be done by applying the transaction weighted utility

 Fig. 1. An IHUP-Tree when min_util = 40.

To efficiently generate HTWUIs in phase I and avoid
scanning database too many times, Ahmed et al. [3]
proposed a tree-based algorithm, named IHUP. A tree-
based structure called IHUP-Tree is used to maintain the
information about item sets and their utilities. Each node of

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

126

an IHUP-Tree consists of an item name, a TWU value and
a support count. IHUP algorithm has three steps: (1)
construction of IHUP-Tree, (2) generation of HTWUIs and
(3) identification of high utility item sets. In step 1, items in
transactions are rearranged in a fixed order such as
lexicographic order, support descending order or TWU
descending order. Then the rearranged transactions are
inserted into an IHUP-Tree. Fig. 1 shows the global
IHUPTree
for the database in Table 1, in which items are arranged in
the descending order of TWU. For each node in Fig. 1, the
first number beside item name is its TWU and the second
one is its support count. In step 2, HTWUIs are generated
from the IHUP-Tree by applying FP-Growth [14]. Thus,
HTWUIs in phase I can be found without generating any
candidate for HTWUIs. In step 3, high utility item sets and
their utilities are identified from the set of HTWUIs by
scanning the original database once..

3.2 Utility Pattern-Tree

To facilitate the mining performance and avoid scanning
original database repeatedly, we use a compact tree
structure, named UP-Tree (Utility Pattern Tree), to
maintain the information of transactions and high utility
item sets. Two strategies are applied to minimize the
overestimated utilities stored in the nodes of global UP-
Tree. In following subsections, the elements of UP-Tree are
first defined. Next, the two strategies are introduced.
Finally, how to construct an UP-Tree with the two
strategies is illustrated in detail by a running example.

3.2.1 The Elements in UP-Tree

In a UP-Tree, each node N consists of N.name,
N.count,N.nu, N.parent, N.hlink and a set of child nodes.
N.name is the node’s item name. N.count is the node’s
support count.N.nu is the node’s node utility, i.e.,
overestimated utility of the node. N.parent records the
parent node of N. N.hlink is a node link which points to a
node whose item name is the same as N.name.A table
named header table is employed to facilitate the traversal of
UP-Tree. In header table, each entry records an item name,
an overestimated utility, and a link. The link points to the
last occurrence of the node which has the same item as the
entry in the UP-Tree. By following the links in header table
and the nodes in UP-Tree, the nodes having the same name
can be traversed efficiently. In following subsections, two
strategies for decreasing the overestimated utility of each
item during the construction of a global UP-Tree are
introduced.

3.2.2 Strategy DGU: Discarding Global Unpromising
Items during Constructing a Global UP-Tree

The construction of a global UP-Tree can be performed
with two scans of the original database. In the first scan,TU
of each transaction is computed. At the same time,TWU of
each single item is also accumulated. By TWDC property,
an item and its supersets are unpromising to be high utility
item sets if its TWU is less than the minimum utility
threshold. Such an item is called an unpromising item.
Definition 8 gives a formal definition of what are
unpromising items and promising items.

3.2.3Constructing a global UP-Tree by Applying
DGU and DGN

Recall that the construction of a global UP-Tree is
performed with two database scans. In the first scan, each
Transaction’s TU is computed; at the same time, each 1-
Item’s TWU is also accumulated. Thus we can get
promising items and unpromising items. After getting all
promising items, DGU is applied. The transactions are
reorganized by pruning the unpromising items and sorting
the remaining promising items in a fixed order. Any
ordering Can be used such as the lexicographic, support or
TWU Order. Each transaction after the above
reorganization is Called a reorganized transaction. In the
following paragraphs, we use the TWU descending order to
explain the whole process since it is mentioned that the
performance of this order.

Then a function Insert_Reorganized_Transaction is called
to apply DGN during constructing a global UP-Tree. Its
subroutine is shown in Fig. 2. When a reorganized
transaction

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

127

tj’ = {i1, i2, …, in}) is inserted into a global UP-Tree,
Insert_Reorganized_Transaction(N, ix) is called, where N
is a node in UP-Tree and ix is an item in tj’(ix�tj’, 1 � x �
n). First, (NR, i1) is taken as input, where NR is the root
node of UP-Tree. The node for i1,1 Ni , is found or created
under NR and its support is updated in Line 1.

TABLE 3. REORGANIZED TRANSACTIONS AND THEIR
RTUS

Then DGN is applied in Line 2 by discarding the utilities of
descendant nodes under 1 Ni , i.e.,2 Ni to N . in Finally in
Line 3, (1 Ni , i2) is taken as input recursively. An example
is given to explain how to apply the two strategies during
the construction of a global UP-Tree. Consider the
transaction database in Table 1 and the profit table in Table
2. Suppose min_util is 50. In the first scan of database, TUs
of all transactions and TWUs of distinct items are
computed. Five promising items, i.e.,{A}:93, {B}:92,
{C}:99, {D}:96 and {E}:107, are sorted in the header table
by the descending order of TWU, that is, {E},{C}, {D},
{A} and {B}. Then the transactions are reorganized by
sorting promising items and subtracting utilities of
unpromising items from their TUs. The reorganized
transactions and their RTUs are shown in Table 3.
Comparing Table 3 and Table 1, the RTUs of T2, T3 and
T5 in Table 3 are less than the TUs in Table 1 since the
utilitiesof {F}, {G} and {H} have been removed by
DGU.After a transaction has been reorganized, it is inserted
into the global UP-Tree. When T1’ = {(C,10)(D,1)(A,1)} is
inserted, the first node NC is created with NC.item =
{C}and NC.count = 1. NC.nu is increased by RTU(T1’)
minus the utilities of the rest items that are behind {C} in
T1’, that is, NC.nu = RTU(T1’) – (u({D},T1’) +
u({A},T1’)) = 17–(2+5) =10. Note that it can also be
calculated as the sum of utilities of the items that are before
item {D} in T1’, i.e., NC.nu= u({C},T1’) = 10. The second
node ND is created with ND.item = {D}, ND.count = 1 and
ND.nu = RTU(T1’) –u({A},T1’) = 17–5 = 12. The third
node NA is created with NA.item = {A}, NA.count = 1 and
NA.nu = RTU(T1’) = 17.After inserting all reorganized
transactions by the same way, the global UP-Tree shown in
Fig. 3 is constructed.Comparing with the IHUP-Tree in Fig.
1, node utilities of the nodes in UP-Tree are less than those

in IHUP-Tree since the node utilities are effectively
decreased by the two strategies DGU and DGN.

3.2 Utility Pattern-Growth

After constructing a global UP-Tree, a basic method for

Fig. 3. A UP-Tree by applying strategies DGU and DGN.

TABLE 4. MINIMUM ITEM UTILITY TABLE

generating PHUIs is to mine UP-Tree by FP-Growth
[14].However too many candidates will be generated. Thus,
we propose an algorithm UP-Growth (Utility Pattern
Growth) by pushing two more strategies into the
framework of FP-Growth. By the strategies, overestimated
utilities of item sets can be decreased and thus the number
of PHUIs can be further reduced. In following subsections,
we first propose the two strategies and then describe the
process of UP-Growth in detail by an example.

3.2.1 Strategy DLU: Discarding Local Unpromising
Items during Constructing a Local UP-Tree

The common method for generating patterns in tree based
algorithms [3, 14] contains three steps: (1) Generate
conditional pattern bases by tracing the paths in the original
tree, (2) construct conditional trees (also called local trees
in this paper) by the information in conditional pattern
bases and (3) mine patterns from the conditional trees.
However, strategies DGU and DGN can not be applied
into conditional UP-Trees since actual utilities of items in
different transactions are not maintained in a global UP
Tree. We cannot know actual utilities of unpromising items
that need to be discarded in conditional pattern bases unless
an additional database scan is performed. To overcome this
problem, a naïve solution is to maintain items’ actual
utilities in each transaction into each node of global UP-
Tree. However, this is impractical since it needs lots of
memory space. In view of this, we propose two strategies,
named DLU and DLN, that are applied in the first two
mining steps and introduced in this and next subsections,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

128

respectively. For the two strategies, we maintain a
minimum item utility table to keep minimum item utilities
for all global promising items in the database.
For example, pu(<ADC>,{B}-CPB), which is the path
utility of the leftist path in Figure 3 in {B}-CPB, is defined
as NB.nu, i.e., 10, in that path. By Definitions 9 and
10,assume that there is a path p in {im}-CPB and im
CPBUI { }is the set of unpromising items in {im}-CPB.
Path utility of pin {im}-CPB, i.e., pu(p,{im}-CPB), is
recalculated and reduced
According to minimum item utilities as below:

where p.count is the support count of p in {im}-CPB.

3.2.2 Strategy DLN: Decreasing Local Node Utilities
during Constructing a Local UP-Tree

As mentioned in the subsection 3.1.3, since {im}-Tree
must not contain the information about the items below im
in the original UP-Tree, we can discard the utilities of
descendant nodes related to im in the original UP-Tree
while building {im}-Tree. (Here, original UP-Tree means
the UP Tree which is used to generate {im}-Tree.) Because
we cannot know actual utilities of the descendant nodes, we
use minimum item utilities to estimate the discarded
utilities.

3.2.3 UP-Growth: Mining a UP-Tree by Applying
DLU and DLN

The process of mining PHUIs by UP-Growth is described
as follows. First, the node links in UP-Tree corresponding
to the item im, which is the bottom entry in header table,
are traced. Found nodes are traced to root of the UP-Tree to
get paths related to im. All retrieved paths, their path
utilities and support counts are collected into im’s
conditional pattern base.A conditional UP-Tree can be
constructed by two scansof a conditional pattern base. For
the first scan, local promising and unpromising items are
learned by summing the path utility for each item in the
conditional pattern base. Then, DLU is applied to reduce
overestimated

Utilities during the second scan of the conditional pattern
base. When a path is retrieved, unpromising items and their
estimated utilities are eliminated from the path and its path
utility by Eq (1). Then the path is reorganized by the
descending order of path utility of the items in the
conditional pattern base.DLN is applied during inserting
reorganized paths into a conditional UP-Tree. Assume a
reorganized path pj= <1 Ni2 Ni ...' N im >, whereik N is
the nodes in UP-Tree and 1 � k � m’. When item i N . 1 ,
i1, is inserted into the conditional UP-Tree,thefunction
inert_Reorgnized_Path(NR’,i1), as shown in Fig. 4, is
called, where NR’ is root node of the conditional UP-Tree.
The node for i1,1 Ni , is found or created under NR’ and its
support is updated in Line 1.Then DLN is applied in Line 2
by decreasing estimated utilities of descendant nodes under
1 Ni , i.e.,2 Ni to N . im'Finally in Line 3, (1 Ni , i2) is
taken as input recursively.

3.3 An Improved Mining Method: UP-Growth+

 UP-Growth achieves better performance than FP-Growth
by using DLU and DLN to decrease overestimated utilities
of item sets. However, the overestimated utilities can be
closer to their actual utilities by eliminating the estimated
utilities that are closer to actual utilities of unpromising
items and ascendant nodes. In this subsection

TABLE 5. {B}-CPB AFTER APPLYING DGU, DGN AND DLU

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

129

Assume that there is a path p in {im}-CPB and im CPB UI
{ }�is the set of unpromising items in {im}-CPB. The path
utility of p in {im}-CPB, i.e., pu(p,{im}-CPB), is
recalculated as below equation:

Where p.count is the support count of p in {im}-
CPB.Assume that a reorganized path p = <1 N'i 2 N'i ..' N'
im >in {im}-CPB is inserted into the path <1 Ni 2 Ni ...' N
im > in {im}-Tree, where m’ � m. For the node
ik N in {im}-Tree, where 1 � k � m’, nu ik N . is
recalculated as below:

where i old nu k N . is the node utility of ik N in {im}-Tree
before adding p.

TABLE 7. PARAMETER SETTINGS OF SYNTHETIC DATASETS.

TABLE 8. CHARACTERISTICS OF REAL DATASETS

Consider the UP-Tree in Fig. 7 and assume that min_util is
set to 50. First, node links of the bottom entry {B} in

header table are traced. Four paths are retrieved and added
into {B}-CPB: {<A(5)D(2)C(1)>: 10,
1},{<D(6)C(4)E(3)>: 11, 1}, {<C(4)E(3)>: 30, 1} and
{<A(10)D(12)E(3)>: 32, 1}. Note that the number in
bracket beside each item is minimal node utility recorded
in that node
After mining the whole UP-Tree by UP-Growth+, we can
obtain all PHUIs, i.e., {A}:75, {B}:83 and {D}:55 in the
UP-Tree. In this example, the number of PHUIs of
UPGrowth+is less than that of UP-Growth. It means that
the number of PHUIs, as well as the overestimated utilities
of item sets, are further reduced by UP-Growth+.

4. PERFORMANCE EVALUATION

Performance of the proposed algorithms is evaluated in this
section. The experiments were performed on a 2.80 GHz
Intel Pentium D Processor with 3.5 GB memory. The
operating system is Microsoft Windows 7. The algorithms
are presented in Java language. Both real and synthetic
datasets are used in the experiments. Synthetic datasets
were generated from the data generator in [1].Parameter
descriptions and default values of synthetic datasets are
shown in Table 7. Real world data sets Accidents and
Chess are obtained from FIMI repository [41];Chain-store
is obtained from NU-Mine Bench 2.0 [23];
Food mart is acquired from Microsoft food mart 2000
database.Table 8 shows characteristics of the above
datasets. In the above datasets, except Chain-store and
Food mart, unit profits for items in utility tables are
generated

We only show the results on Food mart and Chess since
runtime for phase II is very long for large databases, such
as Chain-store. In Fig. 11, we can observe that runtime for
phase II is not only proportional to number of candidates in

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.1, January 2014

130

phase II but also increases fiercely. Moreover, comparing
Fig. 11 (a) and (b) with Fig. 9 (a) and Fig. 10 (c), the
runtime of phase II is much more than that of phase I. Such
as when min_util is 40% in Fig. 11 (a), the runtime for
phase II of UPT&FPG is about 3,605 seconds; however in
Fig. 9 (a), the runtime for phase I of the same method at the
same threshold is only 84.15 seconds. Therefore, the
performance is highly dependent on the runtime in phase.

CONCLUSION

In this paper, we have proposed two efficient algorithms
named UP-Growth and UP-Growth+ for mining high utility
item sets from transaction databases. A data structure
named UP-Tree was proposed for maintaining the
information of high utility item sets. Potential high utility
item sets can be efficiently generated from UP-Tree with
only two database scans. Moreover, we developed several
strategies to decrease overestimated utility and enhance the
performance of utility mining. In the experiments, both real
and synthetic datasets were used to perform a thorough
performance evaluation. Results show that the strategies
considerably improved performance by reducing both the
search space and the number of candidates. Moreover, the
proposed algorithms, especially UPGrowth+,outperform
the state-of-the-art algorithms substantially especially when
databases contain lots of long transactions or a low
minimum utility threshold is used.

REFERENCES
[1] R. Agrawal and R. Srikant. “Fast algorithms for mining

association rules,” in Proc. of the 20th VLDB Conf., pp. 487-
499, 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” in
Proc. of the 11th Int’l Conference on Data Engineering, pp.
3-14, Mar., 1995.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K. Lee.
“Efficient tree structures for high utility pattern mining in
incremental databases,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, Issue 12, pp. 1708-1721,
2009.

[4] C. H. Cai, A. W. C. Fu, C. H. Cheng and W. W. Kwong,
“Mining Association Rules with Weighted Items,” in Proc.
of the Int’l Database Engineering and Applications
Symposium (IDEAS 1998), pp. 68-77, 1998.

[5] R. Chan, Q. Yang and Y. Shen. “Mining high utility item
sets,” in Proc. of Third IEEE Int'l Conf. on Data Mining, pp.
19-26, Nov., 2003.

[6] J. H. Chang, “Mining weighted sequential patterns in a
sequence database with a time-interval weight,” Knowledge-
Based Systems, Vol. 24, Issue 1, 2011.

[7] M.-S. Chen, J.-S. Park and P. S. Yu, “Efficient data mining
for path traversal patterns,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 10, no. 2,pp. 209-
221, 1998.

[8] C. Creighton and S. Hanash, “Mining Gene Expression
Databases for Association Rules,” Bioinformatics, Vol. 19,
No. 1, pp. 79-86, 2003.

[9] M. Y. Eltabakh, M. Ouzzani, M. A. Khalil, W. G. Aref and
A. K. Elmagarmid,“Incremental mining for frequent patterns
in evolving time series databases, “Technical Report of
Purdue University, CSD TR#08-02, 2008.

[10] A. Erwin, R. P. Gopalan and N. R. Achuthan, “Efficient
mining of high utility item sets from large datasets,” in Proc.
of PAKDD 2008, LNAI 5012, pp. 554-561.

[11] E. Georgii, L. Richter, U. Rucker and S. Kramer, “Analyzing
microarray data using quantitative association rules,”
Bioinformatics, Vol. 21, pp. 123-129, 2005.

[12] J. Han, G. Dong, Y. Yin, “Efficient Mining of Partial
Periodic Patterns in Time Series Database,” in Proc. of the
Int’l Conf. on Data Engineering, pp. 106-115, 1999.

[13] J. Han and Y. Fu, “Discovery of multiple-level association
rules from large databases,” in Proc. 21th VLDB Conf., Sep.
1995, pp. 420–431.

[14] J. Han, J. Pei, Y. Yin, “Mining frequent patterns without
candidate generation, “in Proc. of the ACM-SIGMOD Int'l
Conf. on Management of Data, pp. 1-12, 2000.

[15] S. C. Lee, J. Paik, J. Ok, I. Song and U. M. Kim, “Efficient
Mining of User Behaviors by Temporal Mobile Access
Patterns,” Int'l. Journal of

