
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

41

Manuscript received February 5, 2014
Manuscript revised February 20, 2014

Comparison of Results Obtained by Application of Techniques
Based on Formal Concept Analysis and Oriented Graph for a

Remodulaisation Software Architecture Composed of Classes and
Packages

Lala Madiha Hakik†, Rachid El Harti††

† Faculty of Science and Techniques, University Hassan I, BP 577, Settat, Morocco
 †† Faculty of Science and Techniques, University Hassan I, BP 577, Settat, Morocco

Summary
In a previous study we proceeded to the remodularization
architecture based classes and packages using the Formal
Concept Analysis (FCA) [2] [13] [14], we then got two possible
remodularized architectures. We tried the redistribution of classes
by using a technique based on Oriented Graph to determine the
packages that receive the redistributed classes, we then got one
possible remodularized architecture. After, we have evaluate the
quality of a remodularized Software Architecture by metrics for
measuring Coupling and Cohesion of a Package for the two
techniques adopted. This paper presents the comparison of
results obtained by application of techniques based on formal
Concept analysis and Oriented graph for a remodulaisation
software architecture composed of classes and packages.
Keyword:
Remodularization, Software architecture, Classes and packages,
FCA, Oriented graph, Classes and packages.

1. Introduction

Great software systems based on approaches, the object
consist of classes grouped into packages, forming a
modular structure[1].
The dependency relationships between classes in the
same package (internal dependencies), and
between classes of different packages (external
dependencies generate complexity making it difficult
to understand and maintain the system. In addition, the
modular structure tends to degrade over time, making
necessary an expert intervention for modernization[1].
Many researchers make proposals on this subject using
technical visualization, algorithms of remodularization or
Exploring the Redistribution Classes of a Package with an
Approach Based on Formal Concept Analysis. [13] [14] or
solution using Oriented Graph based on the technique of
shortest path[1].
In this paper, we provide a comparison of results obtained
by application of techniques based on formal Concept
analysis [13] [14] and Oriented graph for a
remodulaisation software architecture composed of
classes and packages [1] and we illustrate our

proposal with a theoretical example.
Section 2 presents our example, then we describe the
approaches in Section 3. Section 4 presents the
comparison of results obtained by application of
techniques based on formal Concept analysis and Oriented
graph for a remodulaisation software architecture
composed of classes and packages. Related work is
presented in Section 5, and then we conclude in Section 6.

2. Illustration

 This section presents the problem of software
architectures remodularization on an example. We will use
the architecture shown in Figure 1 consists of five
packages A, B, C, D and E. Packages A, B, C, D, E are
expected to contain more classes that are not shown for
simplicity. Dependencies linking classes: they correspond
for example to call a method or use of a type. External
dependency relationships link classes of package E to
classes of other packages. Internal dependency
relationships connect classes E between. Internal
dependencies of A, B, C and D are not presented[2] [13]
[14].
We are interested in the redistribution of classes E to other
packages with an exploratory method, whose proposals for
redistribution are then presented to an expert. These
proposals are based on the idea that the expert, while
checking the semantic classes, could search for the
increase of the cohesion (within the meaning of the
coupling of classes in a package) and reduce the coupling
between classes in different packages. To do this, we
believe it is appropriate to encourage the following two
trends:
 - Classes in a package attract them to classes of E,
 - If classes of E are interconnected, it is better to
redistribute in the same package.
 We believe that the Formal Concept Analysis (FCA) and
the Oriented Graph can bring interesting ways to solve this
problem because this two technicals methods allows the

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

42

group to connect classes identically. We are not looking
here to propose a betters solutions; but offer to an expert
different hierarchical solutions.

Figure 1. An initial architecture composed of classes and

packages.

3. Proposed approaches

3.1. Technique based on Formal Concept Analysis

The Formal Concept Analysis (FCA) [2] [13][14] [12] is
a technical data analysis that allows you to group entities
with common characteristics. A concept is a maximal set
of entities (extension of the concept) sharing a maximal
set of characteristics (intension of the concept). The AFC
is used in software engineering for solving several
problems [2] [13][14] .
Configurations In the context of our problem, we studied
five different configurations with FCA.
We present two of them.
The configuration with FCA is to define a formal context
C: the set O of entities studied (or formal objects) Set A of
characteristics (or formal attributes) and the relationship
R ⊆ O × A.
 The first formal context associates a class c of a package
E to the packages that access to this class c (see Figure 2,
left panel).
Context (formal context C2).
- O2 is the set of classes of E in relation to the outside.
- A2 is the set of packages A, B, C, D (which has a relation to a
class of E).
- R2 is the relation "is a target for external access".
- (e, p) ∈ R2 if e is an access target from p, for example (E2,
A) ∈ R2.

Figure 2. Formal context C2 and lattice T(C2)

–Architecture 1-[2] [13][14].

The second formal context can refine the results and
redistribute the same package into two classes that are
interconnected in E). It combines a class of package E
another class that is connected (see Figure 3, left panel).

Context (formal context C5).
- O5 is the set of classes of E in relation to the outside.
- A5 = O5: E classes in relation to the outside.
- R5 is the relation "is connected to".
- (e1, e2) ∈ R5 if there is an arrow e1 to e2 or e1 to e2,
for example (E4, E5) and (E5, E4) belong to R2.

Figure 3. Formal context C5 and lattice T(C5)

 -Architecture 1-[2] [13][14]

The concept lattice is the classification structures that
expose concepts (their nodes) and link by specialization.
For example, the concept lattice T(C2) associated with
context C2 (see Figure 2, right), contains eight concepts
outside the top and bottom. The shaded part of the labels
(upper part) corresponds to the simple intension of the
concept, while the white portion of the label (lower part) is
a simplified extension. Labeled extensions are inherited
backwards in the lattice while labels intensions are
inherited in descending.
For example the lattice T (C2) contains the concepts:
- ({E6, E7, E8}, {B}) at the top left, simplified in ({},
{B})

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

43

- ({E11, E12, E13}, {A, C}) in the middle at the bottom,
simplified ({E11, E12, E13},{})
Example of exploration The exploration is to navigate
the two lattices T (C2) and T (C5) to identify opportunities
for redistribution of classes and submit to an expert. We
partially detail an example of analysis to explain the
principle.
The lattice T (C5) can be divided into three large blocks in
which we will choose concepts.

1. Analysis of the concept ({E1, E3, E4}, {E5}) the
right of T (C5): the extension of the concept is in
the extension of the concept (Simplified) ({E1,
E2, E4}, {A}) T (C2), and E5 is also connected
to A, the expert can choose to put three classes
E1, E3, E4 in A.

2. Analysis of the concept ({E3}, {E2, E5}) the
right of T (C5) three classes are in full extension
of the concept of intension {A} of T (C2), the
expert can still choose to put them in A. The
subsystem {E1, E2, E3, E4, E5} can be put into
A.

3. Analysis of the concepts of right ({E12}, {E13})
and ({E13}, {E12}) T (C5). In T (C2) {E12,
E13} is in the extension of the concept of
intension {A, C} which indicates us the two
possible solutions. The expert can choose of
place all E12 and E13 in A or C, but it will avoid
of place E12 to E13 in A and C. This will lead to
two possible architectures of Figure 4.

4. In the center very interspersed of T (C5), the
expert chooses a concept of low ({E10}, {E5, E7,
E8, E9, E11}). Analysis of T (C2) shows that the
majority of these classes is drawn in C.

5. The expert examines the concept ({E8}, {E9,
E10}) T (C5). Its intension is in the extension of
the concept of intension {C} which tends to place
also the class E8 in C.

 Figure 4 shows two possible results. The concepts of T
(C5) have informed us on internal cohesion to package E,
while the structure of redistribution classes of E is
accessed in T (C2) and informs us about the potential
coupling.

Figure 4. two possibilities of remodularization[2] [13][14].

3.2. Technique based on Oriented Graph

In our approach, we are inspired of the notion of graph to
present the original architecture of Figure 1 as nodes
relative to classes and arcs relative to the relationship
between these classes. Figure5 illustrates this vision[1]

Figure 5. Original architecture of Figure 1 as nodes relative to

classes and arcs relative to the relationship between these
classes[1].

A. Formalization

In a second step we focus on the classes of package
E, to be deleted related with classes of other
packages considered in this case as nodes shown in
figure 6 [1].

Figure 6. Oriented Graph result of figure 2 [1].

- The relationship between classes and packages are
represented by edges connecting each pair of nodes as an

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

44

example the nodes A and E1 are connecting by the
edge (A,E1) image of couple (Package, Class) [1].

It is found that all the conditions are met to define a graph
oriented, object of Figure 6 [1].

Definition 1 (Oriented Graph) [15]:
A graph G is a mathematical structure defined by a pair
(N, E) where N is a set of objects called nodes or
vertices and E part of N * N which represents a set of arcs
(also called edges) each connecting a pair of nodes.
This general definition is a directed graph distinguishes
two vertices s1 and s2 the edge (s1, s2) of the edge (s2, s1)
[1].
The number of connections available to each class of
package E with classes of packages A, B, C and D and
mentioned on the arcs [1].
Example of procedure:
For the choice of the allocation of classes E Package to
one of the other packages A, B, C and D, we adopted an
approach advocating the use of directed graph and the
technique based on the definition of the shortest path[1].
For examples:

1- In Figure 5, the class E1 of package E has an
external connection with class A14 of package A,
therefore the corresponding arc in figure 6
between class E1 and package A is the number 1.
where the idea of cost of a shortest path ¹.
By applying this principle class E1 of package E
is affected into package A

2- the class E12 of package E has three
external relations, both with package A
(one with class A13 of package A, the other
with the class A11 in the same package) and
the third class C16 of package C (Figure 6).
Under the definition of the shortest path the class
E12 go to Package C [1].

Special case:
3- the class E8 of package E has three
internal relations with the classes E9, E10 and
E17 of package E and two external relations, one
with class B12 of package B and the other with
class C4 of package C, since the classes
E9 and E10 will be affected by the principle of
shortest path, to the package C therefore E8
will go also to the package C dominant [1].

Thus all the classes in the package E are redistributed
according to the methodology listed above, and thereby
the package E has been deleted to arrive on
remodularized architecture (figure 7) [1].

Figure 7 . one possibility of remodularization [1].

4. The comparison of results obtained by
application of techniques based on formal
Concept analysis and Oriented graph

4.1. Comparison of remodularized software
architectures obtained

Concerning the technical of redistribution of classes
based on formal concept analysis, we got two
remodularized software architecture offering an alternative
choice to a software expert on one hand and know the way
back to the original architecture on the other hand [2] [13]
[14]
As to the result of the redistribution of classes in a
package to other package by using the graph-oriented, this
technique has generated one and unique remodularized
software architecture [1].

4.2. Comparison the results of the validation metrics
coupling and cohesion

As a reminder, for validatiton of metrics cohesion and
coupling, our calculations were based on figures 1 and 2
with an architecture comprising 5 packages A, B, C, D and
E by redistribution classes of package E (using formal
concept analysis techniques which resulted into two
possible architectures (figure 4). The package E is
removed during this operation. Initial architecture (figure
1) and the two architectures (figure 4) result from the
remodularization obtained by applying our approach based
on formal concept analysis, which has been the object of
the articles [2] [13][14].
The results obtained at the level of the cohesion for the
remodularization 1 and 2 provides an optimum value (with

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

45

an advantage to the remodularization 1 remaining
more performance for choosing a software expert). The
results of the coupling have an improvement at the level of
remodularized architectures 1 and 2 compared to the
original architecture 1 [2].
Furthermore the results obtained of the redistribution of
classes in a package to other package by using the
graph-oriented [1], at the level of the cohesion for the
remodularized architecture 1 provides an optimum value 1
compared to the original architecture 1. The results of
the coupling have an improvement at the level of
remodularized architecture 1 compared to the original
architecture 1.
So the two techniques adopted for the redistribution of
classes we have revealed interesting results tending to
optimization and limiting the number of remodularized
software architectures proposed to the software expert.

5. Related Work

 Different automated approaches have been proposed to
restructure object systems. We cite three: the clustering
algorithms, algorithms based on meta -heuristics and those
based on the FCA[6]. The first aim to restructure system
by the distribution of some elements (eg classes, methods ,
attributes) in groups such that the elements of a group
are more similar to each other with elements of other
groups [3] [7] [5]. Approaches to restructuring based on
meta-heuristic algorithms [9] [8] are generally iterative
stochastic algorithms, progressing towards a global
optimum of a function by evaluating a certain objective
function (eg characteristics or quality metrics). Finally, the
approaches based on FCA [10] [12] provide an algebraic
derivation of hierarchies of abstractions from all entities of
a system. Reference [4] presents a general approach for
the application of the FCA in the field of object-ori
3ented software reengineering. In previous work, we
added the dimension of exploration using the FCA[13][14]
and we explored the issue of redistributing classes of a
package to other packages using an approach based on
Oriented Graph to determine the packages that receive
the redistributed classes and we have evaluate the
quality of a remodularized Software Architecture by
metrics for measuring Coupling and Cohesion of a
Package [18].
A large part of previous works related to oriented software
metrics has focused on the issue of characterizing the class
design, either looking internal complexity or relationship
between a given class and other classes[16] [17] [18] [19]
[20] [21] [22] [23] [24] [25] [26].
In the literature, there is also a body of work that focus on
object oriented metrics from the standpoint of their
correlation with software changeability [16][27], or from
the standpoint of their ability to predicate software

maintainability [16][28]. Other researchers argue that the
measures resulted by the cohesion and coupling metrics of
the previous works are open to interpretation [16] [28].
In general, there are few metrics in the the literature
devoted to packages.
Our cohesion and coupling metrics we provided are
similar to the metrics provided by Ducasse [16] for
validation[1] [2].
In this paper we proceed to the comparison of results
obtained by application of techniques based on formal
Concept analysis [2] and Oriented graph[1].
We think that the usefulness of this comparison is enable
to the software expert to make a choice for one of the
techniques to be adopted.

6. Conclusion

This article summarizes the methods used for the
redistribution of classes in a package of software
architecture consisting of 5 packages for its
remodularization by using formal concept analysis as a
first step and the oriented graph in a second step. These
methods have been evaluated by metrics, the calculation of
cohesion and coupling metrics which have revealed to us
indices tending to an improvement corresponding
parameters [1] [2].
We proceed in this paper to the comparison of results
obtained by application of techniques based on formal
Concept analysis and Oriented graph providing an
alternative choice for a software expert.

References
[1] L.M. Hakik, R. El harti. Technique Of Redistribution

Classes Of A Package With An Approach Based On
Oriented Graph And Evaluation Quality of A
Remodularized Software Architecture. International Journal
of Innovative Research in Science, Engineering and
Technology.ISSN:2319-8753. Vol. 3, Issue 1, January 2014.

[2] L.M. Hakik, R. El Harti. Measuring Coupling and
Cohesion to Evaluate the Quality of a Remodularized
Software Architecture Result of an Approach Based on
Formal Concept Analysis. IJCSNS International Journal of
Computer Science and Network Security .Vol. 14 No. 1 pp.
11-16. Journal ISSN : 1738-7906. January 2014..

[3] F.B. Abreu, G. Pereira, and P. Sousa. A coupling-guided
cluster analysis approach to reengineer the modularity of
object-oriented systems. In Proceeding of the confeence on
Software Maintenance and Reengineering. CSMR ‘OO,
pages 13-, Washington, DC, USA, 2000. IEEE Compter
Society Press.

[4] G. Arévalo, S. Ducass, and O. Nierstrasz. Lessons leaned in
appling fomal concept analysis to reverse engineering. In
Proceeding of the Third international conference on Fomal
Concept Analysis, ICFCA’05, pages 95-112, Berlin.
Heidelberg, 2005. Spinge-Velag.

[5] M. Bauer and M. Trifu. Architecture-aware adaptive
clustering of oo s ystems. In Poceedings of the Eighth

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

46

Euromicro Working Conference on Software Maintenance
and Reengineering (CSMR ‘O4), CSMR ‘O4, pages 3-,
Washington, DC, USA, 2004. IEEE Compter Society.

[6] B. Ganter and R. Wille. Formal Concept Analysis.
Mathematical Fondations. Spinge. 1999.

[7] B.S. Mitchell and S. Mancoridis. Compaing the
decompositions produced by software clustering algoithms
using similarity measurements. In ICSM, pages 744-753,
2001.

[8] M.O’Keeffe and M. i Cinneide. Seach-based refactoring fo
software maintenance. J. Syst. Softw., 81(4): 502-216, April
2008.

[9] O. Seng, J. Stammel and D. Burkhart. Search- based
determination of refactorings for improving the class
structure of object-oriented systems, In Mike Cattolico,
edito. GECCO, pages 1909-1916. ACM, 2006.

[10] G.Snelting. Software reengineering based on concept lattices.
In CSMR, pages 3-10, 2000.

[11] T. Tilley, R. Cole, P. Becker, P.W. Eklund. A survey of
formal concept analysis support for software engineering
activities. In Int. Conf. Fomal Concept Analysis (ICFCA
2005), pages 250-271, 2005.

[12] P. Tonella.Concept analysis for module restructuring. IEEE
Trans. Software Eng..27 (4): 351-363, 2001.

[13] Lala Madiha Hakik, Marianne Huchard, Rachid El Harti et
Abdelhak Djamel Seriai. Exploration de la redistribution des
classes d'un package par des techniques d'Analyse Formelle
de Concepts. The first conference in software engineering
(CIEL 2012), France, 2012.

[14] Lala Madiha Hakik, Rachid El Harti . " Exploring the
Redistribution Classes of a Package with an Approach
Based on Formal Concept Analysis ", Vol.2 - Issue 12
(December - 2013), International Journal of Engineering
Research & Technology (IJERT), ISSN: 2278-0181,
www.ijert.org.

[15] A. Anwar. Formalisation par une approche IDM de la
composition de modeles dans le profil VUML. Thesis.
Toulouse University. 2009.

[16] S. Dcasse, N. Anquetil, M.U. Bhatti and A.C. Hora.
Software metrics for package remodularisation. Research
report, November 2011.

[17] S. R. Chidamber and C. F .Kemer. A metrics suit for object
oriented design. IEEETSE, 20: 476-493, 1994.

[18] F.B. Abreu and R. Carapuca. Candidate metrics for
objected-oriented software within a taxonomy framework.
Journal of Sys, Sof. 26: 87-96, 1994.

[19] W. Li and S. Henry. Objected-oriented metrics that predict
maintainability. Journal of Sys, Sof. 23:111-112, 1993.

[20] W. Li. Another metric suit for object oriented programming.
Journal of Sys, Sof. 44:155-162, 1998.

[21] B.H. Selers. Object-Oriented Metrics: Measures of
Complexity. Prentice-Hall, 1996.

[22] J.M. Bieman and B.K. Kang. Cohesion and reuse in an
object-oriented system. In ACM Symposium on Software
Reusability. April 1995.

[23] J.M. Bieman and B.K. Kang. Measuring design-level
cohesion. IEEETSE, 24(2) :111-124, February 1998.

[24] L.C. Briand, S. Morasca and V. R. Basili. Defining and
validation measures for object-based high-level design.
IEEE TSE, pages : 722-743, 1999.

[25] L.C. Briand, J.W Daly and J. Wust. A Unified Framework

for Cohesion Measurement in Objected-Oriented Systems.
Empirical Software Engineering. An International Journal,
3(1):65-117, 1998.

[26] L.C. Briand, J.W Daly and J. Wust. A Unified Framework
for Coupling Measurement in Objected-Oriented Systems.
IEEETSE, 25(1):91-121, 1999.

[27] R.K. Bandi, V.K. Vaishnavi and D.E. Tuk. Predicting
maintenance performance using object- oriented design
complexity metrics. IEEETSE, 29: 77-87, 2003.

[28] H. Kabaili, R.K. Keller, F. Lustman. Cohesion as
changeability indicator in object- oriented systems. In Fifth
Europ. Conf, on Sof. Maintenance and Reengineering.
CSMR 01, pages39-46, Washington, DC, USA, 2001. IEEE
Computer Society.

[29] R.K. Bandi, V.K. Vaishnavi and D.E. Tuk. Predicting
maintenance performance using object- oriented design
complexity metrics. IEEETSE, 29: 77-87, 2003.

Lala Madiha Hakik received the Maitrise
in Computer Engineering, from Hassan 1st
University, FST, Settat, Morocco in
2005, Specialized Master in Software
Engineering, Montpellier -2- University,
France in 2009, She is a PHD Student in
Computer Science specialized in
Software Engineering, University Hassan
1st , FST, Settat, Morocco, 2014.

Rachid El Harti received the PHD in
Mathematics and applications from
Mohammed V University, Morocco in
1993, Full professor , Hassan 1st iversity,
Morocco

	Lala Madiha HakikP†P, Rachid El HartiP††
	Great software systems based on approaches, the object consist of classes grouped into packages, forming a modular structure[1].
	0TThe0T 0Tdependency relationships0T 0Tbetween0T 0Tclasses0T 0Tin the same0T 0Tpackage0T 0T(0Tinternal dependencies), and between 0Tclasses of different0T 0Tpackages0T 0T(0Texternal dependencies generate 0Tcomplexity0T 0Tmaking it difficult to0T 0Tund...
	Many researchers make proposals on this subject using technical visualization, algorithms of remodularization or Exploring the Redistribution Classes of a Package with an Approach Based on Formal Concept Analysis. [13] [14] or solution using Oriented ...
	We are interested in the redistribution of classes E to other packages with an exploratory method, whose proposals for redistribution are then presented to an expert. These proposals are based on the idea that the expert, while checking the semantic c...
	- Classes in a package attract them to classes of E,
	- If classes of E are interconnected, it is better to redistribute in the same package.
	We believe that the Formal Concept Analysis (FCA) and the Oriented Graph can bring interesting ways to solve this problem because this two technicals methods allows the group to connect classes identically. We are not looking here to propose a better...
	Concerning the technical of redistribution of classes based on formal concept analysis, we got two remodularized software architecture offering an alternative choice to a software expert on one hand and know the way back to the original architectur...
	As to the result of the redistribution of classes in a package to other package by using the graph-oriented, this technique has generated one and unique remodularized software architecture [1].
	As a reminder, for validatiton of metrics cohesion and coupling, our calculations were based on figures 1 and 2 with an architecture comprising 5 packages A, B, C, D and E by redistribution classes of package E (using formal concept analysis techniqu...
	Different automated approaches have been proposed to restructure object systems. We cite three: the clustering algorithms, algorithms based on meta -heuristics and those based on the FCA[6]. The first aim to restructure system by the distribution of ...
	3ented software reengineering. In previous work, we added the dimension of exploration using the FCA[13][14] and we explored the issue of redistributing classes of a package to other packages using an approach based on Oriented Graph to determine th...
	In the literature, there is also a body of work that focus on object oriented metrics from the standpoint of their correlation with software changeability [16][27], or from the standpoint of their ability to predicate software maintainability [16][28...
	In general, there are few metrics in the the literature devoted to packages.
	Our cohesion and coupling metrics we provided are similar to the metrics provided by Ducasse [16] for validation[1] [2].
	This article summarizes the methods used for the redistribution of classes in a package of software architecture consisting of 5 packages for its remodularization by using formal concept analysis as a first step and the oriented graph in a second step...

