
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

116

Manuscript received February 5, 2014
Manuscript revised February 20, 2014

Judgment of Extracting Encryption Keys From Image Data

Omer Abu Shqeer

College of Computer Science and Engineering, Taibah University, KSA

Summary
Huge amount of sensitive data transmit over networks every day,
cryptography is famous and widely used technique to prevent
these data from unauthorized people; encryption/decryption
strength depends on the algorithm and the key(s). Keys
management including generation, goodness and distribution are
very important and of the concern of the researchers. This paper
focused on the keys generation from images data and
highlighted the good features of the image that can be used for
keys generation. A proposed algorithm for keys generation from
images has been developed, three randomness tests:
frequency/mono-bit, serial and poker tests have been
implemented. The algorithm has been used to generate large
number of keys of different lengths (256-bits and 512-bits) from
variety of images with different features, the generated keys
have been evaluated for randomness quality, results have been
classified according to images features (entropy value and
number of colors) and then analyzed and concluded. By
conclusion, images data are not a good choice for keys
generation, but some images that have a large number of colors
and big entropy value can be used for this purpose.
Keywords:
encryption, key, image, entropy, randomness.

1. Introduction

Sensitive and confidential data is very valuable and
therefore should be stored and transmitted securely.
Cryptography and steganography are used to do so.
Steganography hides the subject data into another data, so
it becomes hidden to hackers and intruders. Cryptography
transform the data into unreadable form using encryption
algorithm and a key, so even if it is available, no one can
understand it unless it is decrypted using the correct
decryption algorithm and the appropriate key. Encryption
can be symmetric (using same key for both encryption and
decryption) and asymmetric (using different keys for
encryption and decryption). The security of encrypted data
entirely depends on two things: the strength of the
cryptographic algorithm and the secrecy of the key.
Strong key should be uniformly distributed and precisely
reproduced. Regardless of the type of encryption, the
encrypted data is only secure if the encryption key is
protected. The best passphrases are alphanumeric and
random, though these are harder to remember [1][2][3].
 Many techniques are used to generate the encryption
and decryption keys. Some of these techniques may use

image data to generate the required keys if this data
satisfies the randomness requirements. Hence, a suitable
metrics are needed to investigate the degree of
randomness of the key bits sequence [4]. In this paper I
introduced some statistical tests used in evaluation of
randomness and the approaches used to do so. I proposed
a technique to generate keys from image data, and used
the mentioned statistical tests to evaluate the randomness
of the generated keys from image data, and finally I set
guidelines for the suitable images that can be used to
generate encryption keys based on the image entropy and
tests results.

2. Image entropy

One of the image attributes that are useful in image
processing is the image entropy. Entropy is a measure that
quantifies the information contained in an image. An
image of little contrast and large runs of pixels with the
same or similar color values has low entropy. On the
other hand, an image with a great deal of contrast from
one pixel to the next has high entropy (i.e. a contrast-rich
image has a high entropy value) [5][6].

 A good estimate of entropy is usually not available, but
the following are two methods that are used to calculate
the entropy. The first has been given by Galileo Imaging
Team as shown in equation 1.

∑−=
i

ii PLogPE 2
 (1)

Where:
E : Entropy Value
Pi : The probability that the difference between two
adjacent pixels is equal to i
Log 2: The base 2 logarithm

The second has been given by equation 2 below.

∑
−

=

−=
1

0
2))((log)(

G

k
e kPkPH

 (2)
Where:
He : Entropy value
G : Gray levels that the image has
P(k) : The probability of gray level k.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

117

Image entropy can however be estimated from a gray level
histogram as follows: Let an image size be W×H, number
of gray levels is 2b where b is the bits-depth, and f(k) be
the frequency of gray level k in the image where; 0 <= k
<= 2b –1, then the estimated probability occurrences of
gray level k is given in equation 3 and the entropy is
given in equation 4.

hw
kfkP
×

=
)()(~

 (3)

∑
−

=

−=
12

0
2))(~(log)(~~

b

k
e kPkPH

 (4)

Where:
He : Entropy level
P(k) : The estimated probability occurrences of gray level
k
b : Log2 (Number of gray levels)

3. Encryption key

Even if we have a strong encryption algorithm, we must
also generate strong keys so that the security of the data
isn't undermined by weak cryptographic keys. Key length
is one of the measurement factors of the key strength but
is not enough. The data used to generate the key and the
key itself must be sufficiently random as determined by
the data security requirements [7]. Many algorithms and
sources are used to generate encryption keys including
random number generators, natural data with random
property and fuzzy extraction from biometrics and noisy
data [8]. In some cases, images data can be used to
generate the encryption keys. This section presents a
proposed simple algorithm to generate keys from images
in order to be used in my experiments, and then some
statistical tests are used to evaluate the randomness level
of the generated keys.

3.1.Key selection/generation

Various approaches can be used to generate a key from an
image data. In this proposal, I assumed that the key is
selected from an image data one bit at a time in a random
fashion until the required number of bits chosen. In this
case the number of possible keys (NoPK) with length k
from an image data of n bits, with assumption that any bit
can be selected more than once is given by equation 5.

knNoPK = (5)

For example: Consider a 640 × 480 image with 24-bits
resolution and a key of length 512 bits, then we have (640
× 480 × 24)512 possible keys. Following is the proposed
algorithm.

ALGORITM Key_Selection
Load image
Input k /* k: key length */
n = number of image pixels * bits resolution /* n: # of bits
in the image */
Convert image data into ImageBitsArray(n)
For i = 0 to k-1
 r = random integer between (0, n-1) /* r: a bit
position in the image */
 Key_array(i) = ImageBitsArray(r)
Next i
END Key_Selection
Input: An image, key length
Output: A key of length k.

3.1.Evaluation of key randomness

A lot of options are available to analyze cryptographic
RNG. Among these are The National Institute of
Standards and Technology (NIST) statistical test suite,
and the tests described by Donald Knuth in his book 'the
art of computer programming, semi-numerical algorithms,
volume 2'. The most commonly used tests are mono-bit or
frequency, frequency test within a block, runs, longest
runs of ones, serial, poker, and autocorrelation. Each test
aims to test such characteristic(s) of the random sequence.
Different evaluation approaches: threshold value, fixed
range, and probability value are used to decide whether a
sequence passed or failed a statistical test. In this paper I
explained only three statistical tests as a sample to be used
in my experiments, these are: mono-bit, serial and poker
tests. I used only those tests because my goal is to check
the effect of image entropy and number of colors on
selecting an image for key generation. [9][10][11].

3.1.1.Frequency/Mono-bit test

"The purpose of this test is to determine whether the
number of ones and zeros in a sequence are approximately
the same as would be expected for a truly random
sequence. The test assesses the closeness of the fraction of
ones to ½" [11]. The test statistic is given by equation 6,
and the P-value by equation 7 [11].

n
S

S n
obs =

 (6)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

118

Where;
n: Sequence length
Sn = X1 + X2 + … + Xn , where, Xi = 2ε i -1
ε: ith input of the sequence

)
2

(_ obsS
erfcValueP = (7)

3.1.1.Serial Test

The purpose of this test is to determine whether the
number of occurrences of m-bit overlapping patterns is
approximately the same as would be expected for a
random sequence [11]. With the assumption that m=2,
this test can be accomplished as given in equation 8.

1)()(
1

4 2
1

2
0

2
11

2
10

2
01

2
00 ++−+++

−
= nnnnnn

n
STV (8)

Where;
STV: Serial Test Value
n0: Number of 0's
n1: Number of 1's
n00: Number of occurrences of the pattern 00
n01: Number of occurrences of the pattern 01
n10: Number of occurrences of the pattern 10
n11: Number of occurrences of the pattern 11
n: The sequence length

3.1.1.Poker Test

The purpose of this test is to determine whether the
number of ones and zeros in each of m non-overlapping
blocks created from a sequence appear to have a random
distribution [11]. This test can be accomplished as given
in equation 9.

kn
k

PTV
m

i
i

m

−

= ∑

=

2

1

22

 (9)

Where;
PTV: Poker Test Value
m : Length of each pattern in bits
k : Number of non-overlapping patterns
ni : Number of occurrences of the ith pattern

4. Experiments and Results

We applied the tests measurements that mentioned
previously on different images categorized in low,
medium, and high entropy values. Within each category I
chose different images such that some of them have

unbalanced number of 1's and 0's in the image data bits,
and some other have almost balanced number of 1's and
0's in the image data bits. Hundred thousands keys of
length 256 and another hundred thousands keys of length
512 were generated from each image. All the images are
of size 400 × 300 pixels and of 8-bits depth. Figure-1
below shows the used images, table-1 presents detailed
results for each of the randomness statistical tests for
every image, and table-2 presents cumulative results of
the randomness statistical tests for every image.
Randomness tests have been executed with the following
assumptions:
The significance level (α = 0.05).
In serial test, m is assumed to be 2 bits (i.e. patterns are
00, 01, 10, and 11).
In poker test, m is assumed to be 12 blocks; each of them
has 80000 bits.
It is clear from tables 1 and 2 that images of zero entropy
value (i.e. images from 1 to 4) are not suitable at all
where the percent of keys that passed the randomness
tests is almost zero; from this point and forward I will
ignore these extreme images from my discussion. Table 3
presents cumulative results as well as their averages of the
randomness tests for the images of entropy value greater
than zero and the generated keys of length 256-bits; while
table-4 presents these results for the 512-bits keys. It is
clear from table-3 that only 12.6% of the generated keys
of length 256-bits failed to pass any randomness test, and
this percent is bigger with 512-bits keys where it is about
23% as shown in table-4; Also it is clear from the tables
that 52.2% of the generated keys of length 256-bits passed
all the three randomness tests, and less percent 42.1%
passed all the three randomness tests for 512-bits keys.
The data in tables 3 and 4 also shows that images of
higher entropy values almost give better randomness tests
results. The column charts in figures 2 and 3 summarize
the data of those tables respectively.

Let us now discuss the effect of the image colors on the
randomness tests results. We know that every color in a
digital image is represented by a sequence of bits, and
therefore any digital image is a sequence of 1's and 0's.
Tables 5 and 6 present cumulative results of the
randomness tests for the images of entropy value greater
than zero and the generated keys of lengths 256-bits and
512-bits respectively, data in those tables are sorted
according to the percent of 1's in the image bits. It is very
clear that images with balanced number of 1's and 0's in
the image data (i.e. percent of 1's is almost 50%) satisfied
better randomness results for the generated keys of both
lengths. The column charts in figures 4 and 5 summarize
the data of tables 5 and 6 respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

119

5. Conclusion

This paper presents the importance of the
encryption/decryption keys in the field of data security.
Sources of these keys, generating algorithms and
goodness are important issues. In this research I proposed
a simple algorithm to generate the keys from images data,
tested that algorithm on variety of images and evaluated
the randomness quality of the generated keys, and
discussed the effect of image entropy value and image
colors on the randomness quality. Through the analysis of
the experiments results I can conclude the following:
Even though some images of the experiments showed
good results and some other showed bad results we can
say that image data may be used to generate encryption
keys, but at the same time we can say that images data are
not a perfect choice to be used for keys generation.
Images with very low entropy value (i.e. they have a
limited number of colors) are not suitable for keys
generation; while images with high entropy value (i.e.
they have variety of colors) can be used to generate keys.
Images with unbalanced number of 1's and 0's in the
image data bits are not suitable for keys generation; while
images with balanced number of 1's and 0's in the image
data bits are good to be used.
The best images to be used are those that have bigger
entropy value with balanced number of 1's and 0's in the
image data bits.
Finally, this conclusion is based on the three mentioned
randomness tests and can be enhanced by applying more
randomness tests on the experimental images.

References
[1] 9TPfleeger, C. P. and Pfleeger, S. L. (2007). Security in

Computing, 4th ed. Prentice Hall.
[2] 9TStallings, W. (2010). Cryptography and network security –

principles and practices, 5th ed. New Jersy, USA. Prentice
Hall.

[3] 9TKurose J and Ross K. (2010). Computer networking, 5th ed.
Addison Wesley.

[4] 9TJuan Soto, Statistical testing of random number generators,
National Institute of Standards & Technology.

[5] 9TMohammad Ali Bani Younes and Amman Jantan (2008),
An image encryption approach using a combination of
permutation technique followed by encryption, IJCSNS
vol.8, No.4.

[6] 9TJayant Kushwaha and Bhola Nath Ro, Secure Image Data
by Double encryption, International Journal of Computer
Applications (0975 – 8887) Volume 5– No.10.

[7] 9Thttps://www.owasp.org/index.php/Cryptographic_Storage_
Cheat_Sheet, cited on 9/2/2013.

[8] 9TYevgeniyDodis et al (2008). Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy
Data, SIAMJournalonComputing, 38(1):97-139.

[9] 9TS. KIM, K. UMENO, A. HASEGAWA, (2003). On the
NIST statistical test suite for randomness ,IEICE, Technical
Report,Vol.103, No.449, pp21-27.

[10] 9TNIST (2001), FIPS PUB 140-2, Security Requirements for
Cryptographic Modules.

[11] 9T(http://www.us.designeuse.com/exit?url=http://csrc.nist.gov
/publications/fips/fips140-2/fips1402.pdf).

[12] 9TNIST (2001), Special Publication 800-22, A statistical test
suite for random and pseudo-random number generators for
cryptographic applications. (http://csrc.nist.gov/rng/)

Omer Abu Shqeer: received the B.Sc.,
M.Sc, and PhD degrees in computer
science from Yarmouk univ. – Jordan
(1986), Univ. of Sains Malysia – Malysia
(2002), and Amman Arab Univ. for
Graduate Studies – Jordan (2006)
respectively. He was a programmer and
systems analyst in Jordan universities

(1990 – 1996), Lecturer in computing in Oman technical
colleges (1996 – 2001), Lecturer in Philadelphia univ. – Jordan
(2002 – 2006) and then assistant prof. (2006 – 2011), and now
assistant prof. in Taibah univ. – KSA (2011 – Now).

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
http://www.us.designeuse.com/exit?url=http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.us.designeuse.com/exit?url=http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/rng/

