A Image Steganography based on Non-uniform Rectangular Partition

Venkata Ramesh Pokala

Y. Dasradh Ram Reddy

G. Srinivasa Reddy

BVSR, Chimakurthy, A.P BVSR, Chimakurthy, A.P BVSR, Chimakurthy, A.P

Abstract

This paper proposes a novel Image Steganography which can hide an uncompressed secret image stream in a host image stream with almost the same size. Each frame of the secret image will be Non-uniform rectangular partitioned and the partitioned codes obtained can be an encrypted version of the original frame. These codes will be hidden in the Least 4 Significant Bits of each frames of the host image. Experimental results showed that this algorithm can hide a same-size image in the host image without obvious distortion in the host image.

Keywords

Image Steganography; Image Steganography; Non-uniformed rectangular partition; LSB

I. INTRODUCTION

As the rapid growth of high speed computer networks such as the Internet, data getting snooped during transmission becomes more and more serious. The security problems of various data communication via Internet can be addressed by Cryptography and Steganography. Steganography methods become more important in avoiding data being snooped because of its significant effective to preventing others from attempting to decrypt the information hidden in the host object while the Cryptography method always causing the others to do the decryption for its encrypted secret data. Therefore, Steganography is an art of hiding secret information and make them altogether invisible. Two important properties of steganographic technique are perception and capacity. Steganography generally exploits human perception because human senses are not trained to look for file that has hidden information inside of them. Therefore, Steganography disguises information from people who try to hack them. Capacity is the amount of information that can be hidden in the cover object.

Typical Steganography methods can be divided into the time-domain methods and transformation-domain methods. Time-domain methods always can have a big capacity in hiding the information while the transformation ones often equip with robust function from being attacked. The method proposed in this paper is one kind of time-domain method which tries to get a larger data-hiding capacity without causing obvious distortion in the host image stream. Therefore a image stream can be embedded into the host image stream after encoding the secret image by applying the non-uniform rectangular partition. The coding process can be controlled by some key parameters which can be treated as the encryption key and this can increase the difficulty from being steganalyzed.

II. NON-UNIFORM RECTANGULAR PARTITION OF IMAGE

Proposed the algorithm of the non-uniform rectangular partition of image according to the pixel gray values. When the initial partition, the bivariate polynomial and the error control value are all determined, this adaptive partition algorithm can be applied to do the non-uniform rectangular partition of image. The main principle of this algorithm is that it uses the Optimal Quadratic Approximation with a specified bivariate polynomial (with undetermined coefficients) to approximate the gray values within the sub-images, if the determined bivariate polynomial can recover the original sub-image under the required control error, then the partition process will be stopped, otherwise the current sub-image will be divided into four smaller congruent rectangles and repeat the approximation process again until the approximation requirement reaches or the number of the undetermined coefficients of the bivariate polynomial is less than or equal to the pixel number within the sub-rectangle. Finally, according to the partitioned codes obtained, the original image can be reconstructed approximately.

In summary, there are three main factors in non-uniform rectangular partition process. They are the Initial Partition, the Bivariate Polynomial f(x, y) and the control error \mathcal{E} .

Some Initial Partition examples are shown in Figure 1 below. As a convenience, we normally choose the whole image area like Fig 1(a) as the initial partition. In fact, if

Manuscript received February 5, 2014

Manuscript revised February 20, 2014

we can get a more suitable initial partition, the partition results may be better. That means we may get a better reconstructed image with fewer number of partition grids and codes.

Bivariate Polynomial is used to approximate the gray values within each rectangle and its undetermined coefficients can be specified after applying the Optimal Quadratic Approximation to the gray values within it. Some typical Bivariate Polynomial examples are f(x, y) =ax + by + c, f(x, y) = ax + by + cz + d, etc. When one of the Bivariate Polynomials is selected, one specific partition pattern is obtained. Generally, the order of it may not be higher than three. The higher the order, the more complicated calculation is needed, but the number of the obtained sub-areas may be fewer for the same control error. The selection of the Bivariate Polynomial is concerned with specific problems. Error Control Value is used to check if the partitioning process can be stopped or not. Some Error Control Value examples are $\mathcal{E} = 30,10,5$ and 1.

Figure 1. Examples of the Initial Partition

As an example, we choose the control error $\mathcal{E} = 10$, 7 and 4 and the Bivariate Polynomial examples are f(x, y) = ax+by+cz+d. The following table shows the partition results and the corresponding reconstructed images. As you can see, the smaller the error, the better the reconstruction results of image obtained. Some square effects may happen in the reconstructed image if the error is not small enough.

TABLE I NON-UNIFORM RECTANGULAR PARTITION GRIDS AND THE RECONSTRUCTED IMAGE FOR ERROR ε = 10, 7 AND 4 IN ROW ORDER

III. IMAGE STEGANOGRAPHY BASED ON NON-UNIFORM RECTANGULAR PARTITION

"Tangram" is one kind of the puzzle game which appeared early in China and then spread all over the world. The idea of Tangram in computer image processing and formed a novel so-called Tangram algorithm by building the transformation between two images. That algorithm is one kind of image steganography. Many experiments were done and proved that the algorithm was robust but its disadvantage rested with the long coding time.

Here a novel image steganography method based on the idea of Tangram is proposed. The implementation process is almost totally different for the two following main points:

a. Adaptive non-uniform rectangular partition is used.

b. Partition information of the hidden image is recorded and carried by the open host image.

High encoding and decoding speed are the obvious advantage of this algorithm. As shown in Table II, the partitioning time for a standard 256*256 gray image is about 0.1 seconds while the reconstruction time is around 0.01 seconds.

Suppose the hidden Image is A, choose Image B (arbitrarily!) as the disguised image and it is open. According to the following algorithm, the codes of Image A can be hidden in Image B without any obvious quality distortion and cause others' interest:

A. Encoding of the Image steganograph. The encoding process can be described as follows:

a. Choose an initial partition, the original image area is most convenient one used. Specify the control error H, its effective range for generally image is between 2 and 6. Here we use $\mathcal{E} = 4$. Suppose the Bivariate Polynomial is f(x, y) = ax + by + cz + d, get the partition grids of Image A by following the non-uniform rectangular partition algorithm mentioned above.

b. Put the partition grids of image A onto image B and read the gray values of { z } and { ' z } for both images over the grids and record h1 = z1 - z1', h2 = z2 - z2', h3 = z3 - z3', h4 = z4 - z4'. Here z1, z2, z3, z4 and z1', z2', z3', z4' are the gray values of four vertexes of each rectangular sub-area.

c. Hide all of the partition codes and its corresponding gray difference { h } into the four lowest significant bits of each gray byte of Image B.

For RGB image, apply the above algorithm three times for R, G and B components separately.

B. Decoding of the Image Steganograph When receiving Image B, follow the decoding process below to extract the hidden image:

a. Extract the codes from Image B. Those are partition number and their corresponding gray difference set of $\{h\}$. b. With the set of $\{h\}$, calculate the gray values four vertexes of each sub-area in A. With the set of $\{z\}$, solve for the coefficients of each plane in each partitioned sub-area.

c. According to each set of $\{d \ c \ b \ a,,,\}$ and plane coordinates, each sub-area can be re-constructed. All reconstructed sub-areas form the whole original image area A finally.

C. Testing Experimental Results

Rectangular Partition Grid+Original Image	Reconstructed Image	Partition Time(s)	Reconstruction Time(s)
	R	0.103	0.011
		0.101	0.012

TABLE II. NON-UNIFORM RECTANGULAR PARTITION AND RECONSTRUCTION TIME FOR ERROR $\mathcal{E} = 4$

In order to investigate the feasibility and effect of the proposed image Steganography algorithm, many experiments have been done. Here, four groups of results are listed below with the control error $\mathcal{E}=1$ and 6 and the bivariate polynomial is f(x, y) = ax + by + cz + d. Each group gives (a) the hidden image, that is the original image itself, (b) the disguising image or host image, chosen arbitrarily and is significantly different from the hidden image, (c) the disguising image with information of the hidden image, (d) the reconstructed image, whose quality depends on the actual problem and the subjective judgment. In the illustration of images, the image size, encoding time(s), reconstruction time (s) and its PSNR (dB) are also given as reference.

The programming environment is: Intel Due-core 1.86G, 1G Ram, Visual C#2003. From group data above, we can see that the encoding speeds vary between 0.16 and 0.30 seconds while the reconstruction speeds vary between 0.10 and 0.14 seconds, which makes it possible to extend this algorithm to image Steganography. In fact, the computation speed can be increased more and this paper has only proposed the idea of this algorithm without any managing details.

IV. IMAGE STEGANOGRAPHY BASED ON STEGANOGRAPHY

Due to the high encoding speed of the image steganography algorithm above, we extend the image

hidden technique to image one. Here we simply consider the steganography in the uncompressed image. That means we try to hide a image stream in another image stream with almost the same size. The main idea is that we treat each frame of both image s as the images and apply the image steganography for each frame with some necessary mechanism. Suppose the host image stream is F, hidden image stream is H. The frame length of F is longer than or equal to that of H. The encoding and decoding process can be described as follows.

A. Encoding of the Image Steganograph

a. Extract each frame from image stream F and H to RF, GF, BF and RH, GH, BH correspondingly as some static images.

b. For each group of {RF, RH},{GF, GH} and {BF,BH}, apply the above image steganography algorithm to hide {RH,GH,BH} into {RF,GF,BF} to form {R2F,G2F,B2F} Here we should choose a suitable control error so that the length of the partitioning codes do not excess the embedding space of the host. Usually, the control error of 6 is chosen and then the non-uniform rectangular partition is performed, if the embedding-length requirements is not satisfactory, increase the control error by 0.5 and try the coding again until the requirement is reached although this may further reduce the reconstruction quality.

c. Reform each set of $\{R2F, G2F, B2F\}$ to the whole image stream F2 with the codes of the hidden image stream.

B. Decoding of the Image Steganograph When receiving the image stream F2, the hidden image can be reconstructed by following the decoding process below:

a. Divide each frame of the image stream F2 and F into static-image group {R2F, G2F, B2F} and {RF, GF, BF}.

b. Apply the decoding process of image steganography algorithm to extract each hidden frame from {R2F, G2F, B2F} and {RF, GF, BF} to {R2H, G2H, B2H}.

c. Reform each set of {R2H, G2H, B2H} to the whole reconstructed hidden image stream H2.

V. TESTING RESULTS OF IMAGE STEGANOGRAPHY

To test the effect of the above algorithm, we have two uncompressed AVI image streams F (the host image, totally 150 frames, 15 frame/sec) and H (hidden image, totally 137 frames, and 15 frame/sec) to be processed. After applying the encoding process and decoding process, we obtain the F2 with hidden information of H and the reconstructed image stream H2. Table III gives the frameper-second comparison between F and F2 visually. Table V gives the maximum PSNR, average PSNR and the minimum PSNR values among the corresponding frames of F and F2. We can see that there no obvious distortion happening in frames of F2 so that no one will think that there is something being hidden in F2 and all kinds of PSNRs are larger than 28dB.

TABLE III. FFRAME/SECOND COMPARISON BETWEEN F AND F2

As we can see in Table IV, the visual quality of the reconstructed hidden image stream is acceptable and all PNSRs between H and H2 are round 28dB as shown in Table VI.

TABLE IV. FFRAME/SECOND COMPARISON BETWEEN H AND

TABLE V. FFRAME- PSNR COMPARISON BETWEEN F AND F2

Number of frame to be compared	150 frames	
Maximum PSNR between F	and F2	
29.75dB Average PSNR between	F and F2	
29.15dB Minimum PSNR between	n F and F2	

TABLE VI	FFR AME-PSNR	COMPARISON	BETWEEN	H AND H2
TADLL VI.	11 KANL-I SINK	COM ARISON	DEIWEEN	II AND II2

Number of frame to be compared	137 frames
Maximum PSNR between H and H2	9.37dB
Average PSNR between H and H2	28.64dB
Minimum PSNR between H and H2	27.42dB

VI. CONCLUSION

Image can be partitioned adaptively by following the nonuniform rectangular partition algorithm. The partition codes obtained can be used to reconstruct the original image approximately. A novel image steganography algorithm is designed based on the non-uniform rectangular partition algorithm. Different initial partitions, bivariate polynomials and control errors lead different partition codes thus the user can use different combination of them as the security key to enhance the security of the steganography algorithm. This paper proposes a novel secure large-capacity uncompressed-image Steganography algorithm based on that image steganography algorithm. Experimental results show that there is no obvious visual distortion happening in host image stream while the quality of the reconstructed image stream is also acceptable for the practical use.

ACKNOWLEDGMENT

This work was supported in part by National Basic Research Program of China (No.2011CB302400), Science and Technology Development Fund of Macao SAR (No. 006/2011/A1).

REFERENCES

- Sheng Dun Hu, KinTak U, "A Novel Video Steganography based on Non-uniform Rectangular Partition," IEEE on Computational Science and Engineering, Special Issue on Copyright & Privacy Protection, vol. 10 no. 1109, pp 474-481, Dec 2012.
- [2] Ross J. Anderson and Fabien A.P. Petitcolas, "On the limits of steganography," IEEE Journal on Selected Areas in Communications (J-SAC), Special Issue on Copyright & Privacy Protection, vol. 16 no. 4, pp 474-481, May 1998.
- [3] T Mrkel, JHP Eloff and MS Olivier ."An Overview of Image Steganography," in Proceedings of the fifth annual Information Security South Africa Conference, 2005.

- [4] U Kin Tak, Zesheng Tang, Dongxu Qi. "A non-uniform rectangular partition coding of digital image and its application", Proceedings of the 2009 IEEE International Conference on Information and Automation, 2009, pp. 995-999.
- [5] Dongxu Qi, Wei Ding and Huashan Li. Tangram Algorithm: Image Transformation For Storing And Transmitting Visual Secrets, Proc. Of the 5th International Conference on Computer-Aided Design & Computer Graphics, International Academic Publishers, Vol. 1, 1997-11, Shenzhen, China, 135-139; Journal of Computer Science and Technology, Vol. 13(Supp.), 1998-12, pp.17-21.
- [6] Wei Ding, Dongxu Qi. Digital Image Transformation and Information Hiding and Disguising Technology. Chinese J. Computers. Vol.21, No.9, 1998, pp.838-843.