
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

125

Manuscript received February 5, 2014
Manuscript revised February 20, 2014

Dynamic Load Balancing Algorithms for Distributed Networks

M.Thejovathi M.Tech(CS&E),
Jawaharlal Nehru Technological University , Hyderabad, India

Summary
 In this paper, We propose two efficient algorithms. referred to as
Rate-based Load Balancing via Virtual Routing (RLBVR) and
Queue-based Load Balancing via Virtual Routing (QLBVR),
which belong to the above RAP and QRAP policies. we classify
the dynamic distributed load balancing algorithms for
heterogeneous distributed computer systems into three policies:
Queue Adjustment Policy (QAP), Rate Adjustment Policy (RAP),
and Queue and Rate Adjustment Policy (QRAP). We also
consider algorithms Estimated Load Information Scheduling
Algorithm (ELISA) and Perfect Information Algorithm, which
were introduced in the literature, to implement QAP policy. Our
focus is to analyze and understand the behaviours of these
algorithms in terms of their load balancing abilities under varying
load conditions (light, moderate, or high) and the minimization
of the mean response time of jobs. We compare the above classes
of algorithms by a number of rigorous simulation experiments to
elicit their behaviours under some influencing parameters, such
as load on the system and status exchange intervals. We also
extend our experimental verification to large scale cluster
systems such as a Mesh architecture, which is widely used in
real-life situations. From these experiments, recommendations
are drawn to prescribe the suitability of the algorithms under
various situations.
Index Terms
 Dynamic load balancing, cluster or distributed computer system,
mean response time, queuing theory, status exchange interval.

1. Introduction:

A distributed computer system consists of many
heterogeneous processors with different processing
capabilities, connected by two-way communication links,
and having their own resources/buffers. In such a system, if
some hosts remain idle while others are extremely busy,
system performance will be affected drastically. To prevent
this, load balancing is often used to distribute the jobs and
improve performance measures such as the mean response
time (MRT), the time difference between the time instant
at which a job arrives to the system and the time instant at
which the

job gets processed, system utilization, etc. The design of
such load balancing algorithms, in general, considers
several influencing factors, for instance, the underlying
network topology, communication network bandwidth, job
arrival rates at each processor in the system. Load
balancing algorithms can be classified as either dynamic or

static. A dynamic algorithm [1], [2], [3], [6],makes its
decision according to the status of the system, where the
status could refer to a certain type of information, such as
the number of jobs waiting in the queue, the current job
arrival rate, the job processing rate, etc., at each processor.
On the other hand, a static algorithm [8], [11], [12], [13],
performs by a predetermined policy, without considering
the status of the system.
Dynamic load balancing algorithms offer the possibility of
improving load distribution at the expense of additional
communication and computation overheads. In [4], [20], it
was pointed out that the overheads of dynamic load
balancing may be large, especially for a large
heterogeneous distributed system. Hence, most of the
research works in the literature focused on centralized
dynamic load balancing [20], in which a Management
Station (M-Station)/Scheduler kept checking the system
status and scheduled the arriving jobs among the
processors by some strategies, such as Backfilling, Gang-
Scheduling, Migration [20], etc. By centralization, the M-
Station/Scheduler can handle most of the communication
and computation overheads efficiently and improve the
system performance. However, centralization limits the
scalability of the parallel system and the M-
Station/Scheduler has turned out to be the system
bottleneck due to the trend that distributed computer
systems are becoming larger and more complicated.
Compared with the centralized strategies, distributed
dynamic load balancing offers more advantages, such as
scalability, flexibility, and reliability, and thus has received
more and more attention recently [1]. To realize a
distributed working style, each processor in the system will
handle its own communication and computation overheads
independently [11]. In order to minimize the
communication overheads, in [1], [10], some methods
were proposed to estimate the status information of the
nodes in the system and, in [9], [14], the authors analyzed
how randomization could be used in the load balancing
problem. To obtain optimal solutions among the systems,
the computation overheads still remained high. For
example, in [11], the Li-Kameda algorithm needed more
than 400 seconds (approximately) and even a well-known
FD algorithm [7] needed more than 105 seconds to solve a
generic case. Such high computation overheads make it
impossible for the distributed systems to obtain optimal
solutions dynamically. However, in [17], the authors

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014 126

proposed an algorithm named LBVR and proved that the
convergence rate of LBVR was super-linear. A high
convergence rate can reduce the computation overheads
significantly. For instance, in most cases, the LBVR
algorithm can obtain an optimal solution of distributed
systems within 0.1 seconds. In this paper, according to the
job assignment methods, we classify the distributed
dynamic load balancing algorithms into three policies: the
Queue Adjustment Policy (QAP), the Rate Adjustment
Policy (RAP), and the Combination of Queue and Rate
Adjustment Policy (QRAP). The details of the
classification will be shown in Section 2. Based on LBVR,
we propose two efficient algorithms, referred to as Rate-
based Load Balancing via Virtual Routing (RLBVR) and
Queue-based Load Balancing via Virtual Routing
(QLBVR). We introduce an algorithm called Estimated
Load Information Scheduling Algorithm (ELISA) and an
algorithm named Perfect Information Algorithm (PIA),
reported in the literature [1], for the purpose of continuity.
The algorithms ELISA and PIA belong to QAP, whereas
RLBVR and QLBVR belong to RAP and QRAP,
respectively. We carry out a large number of rigorous
simulation experiments to capture and analyze the effect of
time-varying loads and different lengths of time intervals
on the algorithms. As our focus is to analyze and
understand the behaviours of the algorithms in terms of
their load balancing ability, minimization of mean
response time, in our rigorous simulation experiments, we
consider a single class of jobs for processing One of our
added considerations in this study is to gain intuition
regarding the relative metrics of the different approaches
under consideration. We extend our simulations to a large
scale cluster system such as Mesh architecture that is of
practical use in real-life applications. Based on the mesh
topology, many prototype and commercial systems have
been built. Our contribution elicits certain important
behaviours of the distributed dynamic load balancing
algorithms that serve to quantify the performances under
different situations. From the simulations, we observe that,
when system utilization is light or medium, RAP performs
much better than QAP and QRAP with a relatively longer
status exchange interval, which means less communication
overhead. When system utilization is very high (Þ > 0.9),
QAP performs the best among the three load balancing
policies with high communication overheads. When the
system utilization changes rapidly, QRAP is suitable and
can achieve good performance with moderate
communication overhead. This paper is organized as
follows: Section 2 describes in detail the system model and
the classification of the distributed dynamic load balancing
algorithms. In Section 3, we propose RLBVR and
QLBVR and give a brief introduction of ELISA. In Section
4, we present the results of simulations carried out in a 2-
processor system to illustrate certain salient features of the

algorithms under consideration. In Section 5, we extend
our work to a large scale multiprocessor system, give a
brief description of PIA, and compare the algorithms of the
three policies. We highlight our contributions and discuss
possible future extensions in Section 6

.
Fig. 1. A distributed/parallel computer system

2. Related work:

The System Model and Classification Of
Dynamic Load Balancing Algorithms:

We first present a general system model in the design of
the algorithms. For convenience, we use “node” and
“processor” interchangeably in the rest of this paper. We
consider a generic parallel/distributed system shown in Fig.
1. The system consists of n heterogeneous nodes, which
represent host computers having different processing
capabilities, interconnected by an underlying arbitrary
communication network. Here, we use N to denote the set
of nodes, i.e., n =[N], and E to denote a set whose elements
are unordered pairs of distinct elements of N. Each
unordered pair e =(i , j) in E is called an edge. For each
edge (i , j), we define two ordered pairs, (i , j)and (j , i),
which are called links, and we denote L as the set of links.
A node i is said to be a neighbouring node of j if i is
directly connected to j by an edge. For a node j, let

 denote a set of
neighbouring nodes of node j. We assume that jobs arrive
at node i (i N) according to an ergodic process, such as
inhomogeneous Poisson process with intensity function

 [15]. A job arriving at node i may either be
processed locally or transferred through the network to
another node j (j N) NÞ for remote processing. The
service time of a job is a random variable that follows an
exponential distribution with mean 1/µi, where µi denotes
the average job service rate of node i and represents the
rate (in jobs served per unit time) at which node i operates

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

127

when busy. The queue discipline of the jobs in each node
is FCFS and the buffer size is infinite. We denote βi(t) as
the rate at which the jobs are processed at node i at time t.
Once a job starts to undergo processing in a node, it is
allowed to complete processing without interruption and
cannot be transferred to another node in the meanwhile. In
this model, we assume that there is a communication delay
incurred when a job is transferred from one node to
another before the job can be processed in the system and
denote xij(t) as the job flow rate from node i to node j (j
Vi) at time t. Further, we assume that each link (i , j) can
transfer the load at its own transmission capability
(otherwise referred to as transmission rate, commonly
expressed as bytes/sec). We denote C as the set of
transmission capacities of all the links and cij as the
transmission capacity of a link (i , j) cij C . There are
many communication delay models proposed for data
networks in the literature. In our model, we assume that the
communication delay functions can be any increasing,
convex, and differential functions [11], and, for ease. Of
simplicity, here we choose M/M/1 as the communication
delay model [11], [16].

Fig.2 . (a) Node model of queue adjustment policy.

(b) Node model of rate adjustment policy.

(c) Node model of combination of queue and rate

adjustment policy.

For load balancing algorithms, the model for a node is
comprised of a scheduler, an infinite buffer to hold the jobs,
and a processor. The scheduler is to schedule the jobs
arriving at the node such that the mean response time of
the jobs is a minimum. In the absence of a scheduler in a
node, the job flow takes the following sequence of actions:
A job enters the buffer, waits in the queue for processing,
leaves the queue and gets processed in the processor, and
then leaves the node (system). However, when a scheduler
is present, depending on where a scheduler resides in a
node to exercise its control on the job flow, we classify the
distributed dynamic load balancing algorithms into three
policies:
1. Queue Adjustment Policy (QAP): As shown in
Fig. 2a, the scheduler is placed immediately after the queue.
Algorithms of this policy [1], [5], [6] attempt to balance
the jobs in the queues of the nodes. When a job arrives at
node i, if the queue is empty, the job will be sent to the
processor directly; otherwise, the job will have to wait in
the queue. The scheduler of node i periodically detects the
queue lengths of other nodes with which node i is
concerned. When an imbalance exists, the scheduler will
decide how many jobs in the queue should be transferred
and where each of the jobs should be sent to. By queue
adjustment, the algorithms could balance the load in the
system.
2. Rate Adjustment Policy (RAP): As shown in
Fig. 2b, the scheduler is immediately placed before the
queue. When a job arrives at node i, the scheduler decides
where the job should be sent and whether it is to be sent to
the queue of node i or to other nodes under consideration.
Once the job has entered the queue, it will be processed by
the processor and will not be transferred to other nodes.
Using this policy, the static algorithms [9], [11] can
attempt to control the job processing rate on each node in
the system and eventually obtain an optimal (or near
optimal) solution for load balancing. Because of the high
computation overheads, until now no dynamic algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014 128

in the literature used this policy. In this paper, we will
propose a dynamic algorithm which belongs to this policy.

3. Combination of Queue and Rate
Adjustment Policy (QRAP): As shown in Fig. 2c,
the scheduler is allowed to adjust the incoming job rate and
also allowed to adjust the queue size of node i in some
situations. Because we consider a dynamic situation,
especially when we use RAP, in some cases, the queue size
may exceed a predefined threshold and load imbalance
may result. Once this happens, QAP starts to work and
guarantees that the jobs in the queues are balanced in the
entire system. In this policy, we can consider the rate
adjustment as a “coarse” adjustment and the queue
adjustment as a “fine” adjustment. To the best of our
surveys to date, there is no algorithm in the published
literature that falls into this class of policies. In this paper,
we will propose an algorithm which belongs to this policy
that considers realizing a dynamic load balancing in
distributed networks.
3. Study of Algorithms: In this section, we will
introduce the algorithm named ELISA [1], which will be
used as a benchmark algorithm and qualifies under the
QAP category, and we will propose two algorithms based
on LBVR [17], referred to as Rate-based Load Balancing
via Virtual Routing (RLBVR), based on RAP, and Queue-
based Load Balancing via Virtual Routing (QLBVR),
based on QRAP, respectively.
3.1. ELISA: Estimated Load Information Scheduling
Algorithm : We describe ELISA [1] in brief. In ELISA,
the load scheduling decision is taken as follows: From the
estimated queue lengths of the nodes in its neighbouring
nodes and the accurate knowledge of its own queue length,
each node computes the average load on itself and its
neighbouring nodes. Nodes in the neighbouring set whose
estimated queue length is less than the estimated average
queue length by more than a threshold θ form an active set

Fig. 3. Intervals of estimation and status exchange

The node under consideration transfers jobs to the nodes
in the active set until its queue length is not greater than θ

and more than the estimated average queue length. The
value of θ, which is predefined, is a sensitive parameter
and it is of importance to the performance of ELISA. Here,
the threshold θ is fixed in such a way that the average
response time of the system is a minimum.

3.2 The Proposed Algorithm: RLBVR

Although LBVR is a static load balancing algorithm, due
to its super-linear convergence rate [17], LBVR can be
tuned to handle dynamic situations. Thus, we attempt to
design a dynamic load balancing algorithm RLBVR based
on the working style of LBVR. The main structure of this
algorithm is: First, we add a virtual node, which is referred
to as the destination node (node d), into the network
system. Connect node d with each node i (i N) by a
virtual direct link (i ; d). Let the nodal delay of node i be
treated as the communication delay on link (i ; d). After
these modifications, the process of load balancing can be
described in an alternative way. As shown in Fig. 4, a
three-node system has been transformed into a datagram
network in which node i basically acts as a router.
Referring to this figure, we observe that, for each node i, i
= 1, 2 , 3, it can consider two paths to reach node d via its
neighbouring nodes and one path to reach node d directly.
For example, from node 1 to node d, the paths are: 1  2
 d, 1  3  d, and 1  d. The way in which the loads
are shared by the nodes can be described as follows:

The jobs that arrive at node i according to a Poisson
process with an average external job arrival rate of i are
routed to destination node d via every node j i. The goal
of load balancing now can be alternatively stated as a
problem which attempts to minimize the mean link delay
for each job in the system. Then, each node i in the system
only considers the routing paths of (i , j)and (i , j)  (j ,
d) , j Vi Use Newton’s method [18] to obtain the
optimal job routing rate of each path of node i. Eventually,
obtain an optimal job transferring rate x ij and job
processing rate βi, which are equal to job flow rates on
paths (i , j) (j , d)and path (i , d),
respectively. Each node i in the system monitors its
external job arrival rate and obtains an estimate of the job

arrival rate , which will be used as the job arrival
rate of node i during the time interval between Tn_1 and
Tn for computing. Before node i starts computing the
optimal processing rate and transfer rates, node i
broadcasts a request message to its neighbouring nodes.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

129

Fig. 4. Routing paths for each node

When node j (j Vi) receives this message, it will send
 and βn j to node i immediately. If node i does not

receive the response message from node j, it will consider
node j has been shut down or the edge (i , j) is broken
down and it will not send jobs to node j until it receives
some message from node j some time later. Once node i
obtains all local information, it can start computing to
obtain an optimal solution, following which, node i sends
some jobs to its neighbouring nodes and processes some
jobs locally during this time interval. In the following, we
will give more details on how to compute the optimal
solution in each node.

3.2.1 Procedure for a Node:

For node i in the system, we denote Ui (βi)as the mean
nodal delay function for a job and Gij (xij) as the mean
communication delay function for a job transferred from
node i to j. Some generic models Gij (xij) of include the
delay of sending a job from node i to node j and the delay
of sending the response back from node j to node i. In
general, the path taken in each of the above-mentioned
transfers (job and response transfers) may be different.
Note that the profile of functions Ui (βi) and Gij (xij)
may be very complicated. In practice, for analytical ease, it
is often assumed that the functions Ui (βi) and Gij (xij)
are differentiable, increasing, and convex functions [12],
[16]. Here, we introduce another function, Fij, to unite the
two different delay functions of Ui and Gij as follows:

Then, node i obtains for the time
interval between Tn_1 and Tn. When node i starts to

compute, it calculates the total job arrival rate , which
is:

Referring to Fig. 4 again, we can see that node i has Pi, a

set of routing paths. Hence, node i must determine the job

flow rate xnp on each path p, (p Pi), and the objective

function of node i is

We denote dp as the first derivative length of path p with

respect to xn
p

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014 130

3.3 The Proposed Algorithm: QLBVR :

Now, we propose another dynamic load balancing
algorithm, referred to as “Queue-based Load Balancing via
Virtual Routing” (QLBVR), which belongs to the QRAP
category, namely by combining queue and rate adjustment
policies. As mentioned earlier, QLBVR carries out coarse
adjustments on job transferring and processing rates and
fine adjustments on queue lengths (number of jobs in the
queue). These are as described below.

1. Coarse adjustment (on transfer and processing rates):
The working style is similar to RLBVR. At every time
instant Tn (n = 0 , 1, ) , nodes in the system use the
procedure for a single node to obtain an optimal solution.
In the next time interval, Ts, each node adjusts its job
transferring rates and job processing rate according to the
computed optimal solution.

2. Fine adjustment (on queue lengths):The working style is
similar to ELISA. Each status exchange interval Ts is
divided into equal subintervals, denoted as estimation
intervals Te. At time instant Te, node i estimates and

adjusts the earlier estimate of the queue lengths of its
neighbouring nodes and has an accurate knowledge of its
own queue length.

From the analysis of QLBVR, we can observe that fine
adjustment can affect the real transfer rates. However, xji,
(j Vi), the job transfer rate on link (j , i) that coarse
adjustment of node i considers is an optimal solution of
node j, instead of the real transfer rate on link(j , i). Hence,
we can conclude that fine adjustment has no effect on the
solution of coarse adjustment.

Remarks. Note that, in distributed dynamic load balancing

algorithms, there may exist a nonzero probability that a

job would shuttle between processors.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

131

There are various ways to alleviate this problem. One of
the ways is to allow the job to join at the position where it
should have been if the job had arrived at this queue,
instead of adding it at the end of the queue. This means
that we keep track of the time at which it arrived at the
system. This can considerably reduce the probability of the
job being transferred once again and can guarantee
minimizing the response time of that job.

4. Performance evaluation and discussions:

We have conducted extensive simulation tests to quantify
the performance of the three types of load-balancing
algorithms discussed above. As mentioned earlier, one of
our added considerations in this study is to gain an
intuition regarding the relative metrics of the different
approaches under consideration. Our simulations focus on
two main aspects of dynamic situation. One is the effect of
the load on the nodes and the other is the effect of the
status exchange interval lengths, which is indeed a crucial
parameter that reflects the sensitivity of the algorithms.
Here, we consider the mean response time (MRT) of a job
as the main metric in our simulations. First, we give the
introduction of our simulation model.

4.1 Two-Processor System Model and Some
Important Issues:

In order to illustrate the salient features of the algorithms
in discussion, first we consider the simplest case when a
multiprocessor system is limited to two processors, as
shown in Fig. 5. It is possible that this model could also be
considered equivalent to a situation in which an isolated
processor communicates to a (single) processor that
represents the rest of the network. Another reason why a 2-
processor network is used as a test case is that an algorithm
that does not work for two processors is unlikely to
perform well for a multiprocessor case. In Fig. 5, we
assume that jobs arrive at node 1 and node 2 according to
Poisson processes with rates ℷ1 and ℷ2 respectively. We
also assume that the average service times of a job at node
1 and node 2 are 1 and 2 respectively. From [19],
we obtain that the average nodal delay of a job in node i
(i = 1,2) is : Si where = 0:25 jobs/sec and 2
= 0:5 jobs/sec in our simulation tests. In Fig. 5, jobs arrive
at node 2 according to a homogeneous Poisson process
with 2 = 0:12 jobs/sec, which will be held constant
throughout our simulations. Without load balancing, the
system utilization of node 2 is P2= ℷ2/ 2 = 0.12/0.5 =

0.24 and the system is at a low utilization level. In order to
consider dynamic situations, the job arrival rate at a node
must be a time-varying quantity. Thus, the job arrival rate
at node 1 is an inhomogeneous Poisson process with
intensity function ℷ1 (t) [15].

We assume that the pattern of ℷ1 (t) is as shown in Fig. 6.
At time 0, ℷ1 (t) starts from the lowest point l1. As time
elapses, ℷ1 (t) increases linearly. At time t = 1, 000 seconds,
ℷ1 (t) reaches the peak h1 and, afterward, ℷ1 (t) decreases
linearly. Finally, at time t = 2, 000 seconds, it reaches the
lowest point, l1.After this point, ℷ1 (t) increases again. For
the sake of simplicity, we fix the difference between h1
and l1 to 0.2 jobs/sec. In order to describe the job arrival
pattern quantitatively,
we denote ℷ1 as the load of the dynamic job
arrival rate. For example, we use ℷ = 0.3 to consider the ℷ
(t) shown in Fig. 6.

4.2 Effect of System Loading:

In this section, we will analyze the performances of the
three policies with respect to the load on the system. First,
in our simulation, we set ℷ1 = 0.1 jobs/sec and then
increase the value of ℷ1 by 0.005 jobs per step. Also, we
set Ts = 60 seconds and Te = 20 seconds in our
experiments. For each value of ℷ1, the simulation time is
set to 20,000 seconds to obtain a statistical mean response
time of the jobs arriving at the system. When the average
system utilization p is greater than 0.95, we terminate the
simulation, where p is defined as the ratio of average total
arrival rate to aggregate processing rate of the system:
p

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

132

5 . Extension to large scale cluster System:

we shall consider a large scale networked cluster system to
capture and understand the behaviour of our algorithms.
This is an important study as it reflects a real life scenario.
In our study, we specifically considered a mesh connected
processor architecture. As mentioned earlier, based on the
mesh topology, many prototype and commercial systems
have been built and these architectures are able to handle
data intensive computations. Hence, in this section, we
extend our simulation experiments to a mesh
multiprocessor system, as shown in Fig. 9. We will
compare the performances of the three policies under
different system workloads in a mesh-connected
multiprocessor system.

Fig. 9. The mesh-connected cluster system M=(8; 8)

system

5.1 Static or Slowly Varying System Loading

Here, we assume that jobs arrive at node (x;,y) according

to

a homogeneous Poisson process with ℷ(x , y) jobs/sec.

Under a given set of ℷ[X , Y], the system utilization is:

We carry out a series of simulations for the M [8, 8] mesh
connected multiprocessor system with the five algorithms

described above, under different system utilization
parameter

Ƿ The simulation conditions are kept identical for all five
algorithms for a given Ƿ. For each simulation run, the
Simulation time is set to 20,000 seconds, during which the
first 5,000 seconds are considered “warm time.” After the
warm time, we trace the jobs arriving at each node and
record their arriving time, processing time, and leaving
time. We average 10,000 jobs’ response time as the mean
response time for this simulation. In the first simulation,

the job arriving rates ℷ[X, Y]are randomly generated.
Then, each node (x,y)increases its ℷ(x,y)by 0.25 jobs per
second in each step. When the system utilization exceeds
0.9, we terminate the simulations. Below figure shows the
simulation results for the five algorithms.

5.2 Experiments when the Arrival of Loads Is

Varying Rapidly:

We construct another job pattern to simulate the situation
when the job arriving rate of each node changes rapidly.
We assume that, for each node, the time interval for a
batch of jobs is 10 seconds, during which jobs arrive at the
node according to a homogeneous Poisson process. In each
10 second time interval, the probability that the arrival rate
will be same as in its previous interval is (0,1) otherwise,
the job arriving rates are generated randomly with uniform
distribution between ℷ min and ℷ max. We assume that, in
each node, the maximum job arriving rate cannot exceed
its maximum job processing rate.

For node (x, y),we use rmin to denote the ratio and

rmax to denote the ratio . Hence, we can use [rmin,

rmax](x,y) to denote this job pattern for node (x,y) in the

system. For example, the job pattern shown in below Fig

can be denoted as (0.3,0.7) (7,7)for node (7, 7) whose job

processing rate is nine jobs per sec. Again, let Ƿ be the

average system utilization for our simulations, which is:

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

133

We conducted four kinds of simulation tests, indicated as

S.N. (simulation number), shown in the following:

A: System utilization is light. In this case, the job pattern
of

each node (x,y) in the system is (0.1,0.4)(x,y)and

B: System utilization is moderate. In this case, the job
pattern
is (0.3,0.7)(x,y)for node (x,y)and

C: System utilization is high. In this case, the job pattern is

(0.7,1)(x,y)for each node (x,y) in the system and

D: We randomly choose one-third of the nodes as lightly

loaded nodes ([0.1, 0.4]), one-third of the nodes as
moderately loaded nodes ([0.3, 0.7]), and the remaining
one-third of nodes as highly loaded nodes ([0.7, 1]) and

In each kind of simulations, for all five algorithms, we
generate a set of job arriving rate sequences to ensure that
the simulation conditions remain identical.

6. Conclusions and Future Work:

In this paper, we first classified the distributed dynamic
load balancing algorithms into three policies:

QAP policy: queue adjustment policy, RAP policy: rate
adjustment policy, and QRAP policy: combination of
queue and rate adjustment policy. We proposed two
algorithms, referred to as Rate-based Load Balancing via
Virtual Routing (RLBVR) and Queue-based Load

Balancing via Virtual Routing (QLBVR), which belong to
RAP and QRAP, respectively. These two algorithms are
based on LBVR and, hence, the computation overheads are
small [17]. We have used Estimated Load Information
Scheduling Algorithm (ELISA) [1] to present QAP policy,
the main idea of which is to carry out estimation of load by
reducing the frequency of status exchange, thereby
reducing the communication overheads. Our policies are
directly useful for performance evaluation of cluster/grid
and distributed networks. The usefulness and applicability
of our policies are demonstrated via rigorous simulation
tests on a wide variety of system loading and other
influencing parameters. We have also demonstrated the
applicability of our policies to large scale

cluster systems with mesh-connected topology.

We construct a dynamic job arrival rate pattern and carry
out rigorous simulation experiments to compare the
performances of the three algorithms under different
system loads, with different status exchange intervals. With
our rigorous experiments, we have shown that, when the
system loads are light or moderate, algorithms of the RAP
policy are preferable

From our experiments, we have clearly identified the
relative metrics of the performances of the proposed
algorithms and we are able to recommend the use of
suitable algorithms for

different loading situations. Our system model and
experimental study can be directly extended to large size
networks, such as multidimensional hyper cubes networks,

to test their performances. Finally, in this paper, we have
rigorously demonstrated the performances of the
algorithms

for a single class of jobs. In our near future work, we
intend to divide the jobs in the system into several classes
and assign each class of jobs its own priority. It would be
interesting to consider multiclass jobs system as well and
analyze the performances of these algorithms

References:
[1] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated

Load Information Scheduling Algorithm for Distributed
Computing System,” Computers and Math. with
Applications, vol. 37, pp. 57-85, 1999.

[2] D. Evans and W. Butt, “Dynamic Load Balancing Using
Task- Transfer Probabilities,” Parallel Computing, vol. 19,
pp. 279-301,1993.

[3] C. Walshaw and M. Berzins, “Dynamic Load-Blancing for
PDE Solvers on Adaptive Unstructured Meshes,”
Concurrency: Practice and Experience, vol. 7, pp. 17-28,
1995.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

134

[4] Y. Zhang, K. Hakozaki, H. Kameda, and K. Shimizu, “A
Performance Comparison of Adaptive and Static Load
Balancing in Heterogeneous Distributed Systems,” Proc.
IEEE 28th Ann. Simulation Symp., pp. 332-340, Apr. 1995.

[5] Y. Amir, B. Awerbuch, A. Barak, R.S. Borgstrom, and A.
Keren, “An Opportunity Cost Approach for Job Assignment
in a Scalable Comsputing Cluster,” IEEE Trans. Parallel and
Distributed Systems, vol. 11, no. 7, pp. 760-768, July 2000.

[6] J. Watts and S. Taylor, “A Practical Approach to Dynamic
Load Balancing,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 3, pp. 235-248, Mar. 1998.

[7] L. Fratta, M. Gerla, and L. Kleinrock, “The Flow Deviation
Network Design,” Networks, vol. 3, pp. 97-133, 1973.

[8] D. Grosu and A.T. Chronopoulos, “A Game-Theoretic
Model and Algorithm for Load Balancing in Distributed
Systems,” Proc. 16th Int’l Parallel & Distributed Symp.,
Apr. 2002.

[9] M. Mitzenmacher, “The Power of Two Choices in
Randomized Load Balancing,” IEEE Trans. Parallel and
Distributed Systems,vol. 12, no. 10, pp. 1094-1104, Oct.
2001.

[10] M. Mitzenmacher, “How Useful Is Old Information?” IEEE
Trans.Parallel and Distributed Systems, vol. 11, no. 1, pp. 6-
20, Jan. 2000.

[11] J. Li and H. Kameda, “Load Balancing Problems for
MulticlassJobs in Distributed/Parallel Computer Systems,”
IEEE Trans.Computers, vol. 47, no. 3, pp. 322-332, Mar.
1998.

[12] A.N. Tantawi and D. Towsley, “Optimal Static Load
Balancing in Distributed Computer Systems,” J. ACM, vol.
32, no. 2, pp. 445-465, Apr. 1985.

[13] J. Li and H. Kameda, “Optimal Static Load Balancing of
Multi- Class Jobs in a Distributed Computer System,” Proc.
10th Int’l Conf. Distributed Computing Systems, pp. 562-
569, 1990.

[14] A.E. Kostin, I. Aybay, and G. Oz, “A Randomized
Contention-Based Load-Balancing Protocol for a
Distributed Multi server Queuing System,” IEEE Trans.
Parallel and Distributed Systems, vol. 11, no. 12, Dec. 2000.

[15] F.E. Beichelt and L.P. Fatti, Stochastic Processes and Their
Application. Taylor & Francis, 2002.

[16] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall,
1992.

[17] Z. Zeng and V. Bharadwaj, “A Static Load Balancing
Algorithm via Virtual Routing,” Proc. Conf. Parallel and
Distributed Computing and Systems (PDCS ’03), Nov. 2003.

[18] M. Avriel, Nonlinear Programming Analysis and Methods.
Prentice- Hall, 1997.

[19] N.U. Prabhu, Foundations of Queuing Theory. Kluwer
Academic, 1997.

[20] Y. Zhang, H. Kameda, and K. Shimizu, “Adaptive Bidding
Load Balancing Algorithms in Heterogeneous Distributed
Systems,” Proc. IEEE Second Int’l Workshop Modeling,
Analysis, and Simulation of Computer and Telecomm.
Systems, pp. 250-254, Jan. 1994.

Recieved B.Tech and M.Tech Degrees
in Computer Science &Information
Technology from Jawaharlal Nehru
Technological University,Hyderabad ,AP,
INDIA. 2004 & 2007. Currently working
as an Assistant Professor of computer
science Department in KING KHALID
University K.S.A. Previously worked as

Assistant Professor in JNTU Affliated Engineering Colleges,
Hyderabad INDIA

