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Summary 
 In this paper, We propose two efficient algorithms. referred to as 
Rate-based Load Balancing via  Virtual Routing (RLBVR) and 
Queue-based Load Balancing via Virtual Routing (QLBVR), 
which belong to the above RAP and QRAP policies. we classify 
the dynamic distributed load balancing algorithms for 
heterogeneous distributed computer systems into three policies: 
Queue Adjustment Policy (QAP), Rate Adjustment Policy (RAP), 
and Queue and Rate Adjustment Policy (QRAP). We also 
consider algorithms Estimated Load Information Scheduling 
Algorithm (ELISA) and Perfect Information Algorithm, which 
were introduced in the literature, to implement QAP policy. Our 
focus is to analyze and understand the behaviours of these 
algorithms in terms of their load balancing abilities under varying 
load conditions (light, moderate, or high) and the minimization 
of the mean response time of jobs. We compare the above classes 
of algorithms by a number of rigorous simulation experiments to 
elicit their behaviours under some influencing parameters, such 
as load on the system and status exchange intervals. We also 
extend our experimental verification to large scale cluster 
systems such as a Mesh architecture, which is widely used in 
real-life situations. From these experiments, recommendations 
are drawn to prescribe the suitability of the algorithms under 
various situations.  
Index Terms 
 Dynamic load balancing, cluster or distributed computer system, 
mean response time, queuing theory, status exchange interval. 

1. Introduction:  

A distributed computer system consists of many 
heterogeneous processors with different processing 
capabilities, connected by two-way communication links, 
and having their own resources/buffers. In such a system, if 
some hosts remain idle while others are extremely busy, 
system performance will be affected drastically. To prevent 
this, load balancing is often used to distribute the jobs and 
improve performance measures such as the mean response 
time (MRT), the time difference between the time instant 
at which a job arrives to the system and the time instant at 
which the  
 
job gets processed, system utilization, etc. The design of 
such load balancing algorithms, in general, considers 
several influencing factors, for instance, the underlying 
network topology, communication network bandwidth, job 
arrival rates at each processor in the system. Load 
balancing algorithms can be classified as either dynamic or 

static. A dynamic algorithm [1], [2], [3], [6],makes its 
decision according to the status of the system, where the 
status could refer to a certain type of information, such as 
the number of jobs waiting in the queue, the current job 
arrival rate, the job processing rate, etc., at each processor. 
On the other hand, a static algorithm [8], [11], [12], [13], 
performs by a predetermined policy, without considering 
the status of the system.  
Dynamic load balancing algorithms offer the possibility of 
improving load distribution at the expense of additional 
communication and computation overheads. In [4], [20], it 
was pointed out that the overheads of dynamic load 
balancing may be large, especially for a large 
heterogeneous distributed system. Hence, most of the 
research works in the literature focused on centralized 
dynamic load balancing [20],  in which a Management 
Station (M-Station)/Scheduler kept checking the system 
status and scheduled the arriving jobs among the 
processors by some strategies, such as Backfilling, Gang-
Scheduling, Migration [20], etc. By centralization, the M-
Station/Scheduler can handle most of the communication 
and computation overheads efficiently and improve the 
system performance. However, centralization limits the 
scalability of the parallel system and the M-
Station/Scheduler has turned out to be the system 
bottleneck due to the trend that distributed computer 
systems are becoming larger and more complicated. 
Compared with the centralized strategies, distributed 
dynamic load balancing offers more advantages, such as 
scalability, flexibility, and reliability, and thus has received 
more and more attention recently [1]. To realize a 
distributed working style, each processor in the system will 
handle its own communication and  computation overheads 
independently [11]. In order to minimize the 
communication overheads, in [1], [10], some methods 
were proposed to estimate the status information of the 
nodes in the system and, in [9], [14], the authors analyzed 
how randomization could be used in the load balancing 
problem. To obtain optimal solutions among the systems, 
the computation overheads still remained high. For 
example, in [11], the Li-Kameda algorithm needed more 
than 400 seconds (approximately) and even a well-known 
FD algorithm [7] needed more than 105 seconds to solve a 
generic case. Such high computation overheads make it 
impossible for the distributed systems to obtain optimal 
solutions dynamically. However, in [17], the authors 
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proposed an algorithm named LBVR and proved that the 
convergence rate of LBVR was super-linear. A high 
convergence rate can reduce the computation overheads 
significantly. For instance, in most cases, the LBVR 
algorithm can obtain an optimal solution of distributed 
systems within 0.1 seconds.  In this paper, according to the 
job assignment methods, we classify the distributed 
dynamic load balancing algorithms into three policies: the 
Queue Adjustment Policy (QAP), the Rate Adjustment 
Policy (RAP), and the Combination of Queue and Rate 
Adjustment Policy (QRAP). The details of the 
classification will be shown in Section 2. Based on LBVR, 
we propose two efficient algorithms, referred to as Rate-
based Load Balancing via Virtual Routing (RLBVR) and 
Queue-based Load Balancing via Virtual Routing 
(QLBVR). We introduce an algorithm called Estimated 
Load Information Scheduling Algorithm (ELISA) and an 
algorithm named Perfect Information Algorithm (PIA), 
reported in the literature [1], for the purpose of continuity. 
The algorithms ELISA and PIA belong to QAP, whereas 
RLBVR and QLBVR belong to RAP and QRAP,  
respectively. We carry out a large number of rigorous 
simulation experiments to capture and analyze the effect of 
time-varying loads and different lengths of time intervals 
on the algorithms. As our focus is to analyze and 
understand the behaviours of the algorithms in terms of 
their load balancing  ability,  minimization of mean 
response time, in our rigorous simulation experiments, we 
consider a single class of jobs for processing One of our 
added considerations in this study is to gain intuition 
regarding the relative metrics of the different approaches 
under consideration. We extend our simulations to a large 
scale cluster system such as Mesh architecture that is of 
practical use in real-life applications. Based on the mesh 
topology, many prototype and commercial systems have 
been built. Our contribution elicits certain important 
behaviours of the distributed dynamic load balancing 
algorithms that serve to quantify the performances under 
different situations. From the simulations, we observe that, 
when system utilization is light or medium, RAP performs 
much better than QAP and QRAP with a relatively longer 
status exchange interval, which means less communication 
overhead. When system utilization is very high (Þ > 0.9), 
QAP performs the best among the three load balancing 
policies with high communication overheads. When the 
system utilization changes rapidly, QRAP is suitable and 
can achieve good performance with moderate 
communication overhead. This paper is organized as 
follows: Section 2 describes in detail the system model and 
the classification of the distributed dynamic load balancing 
algorithms. In Section 3,  we propose RLBVR and 
QLBVR and give a brief introduction of ELISA. In Section 
4, we present the results of simulations carried out in a 2-
processor system to illustrate certain salient features of the 

algorithms under   consideration. In Section 5, we extend 
our work to a large scale multiprocessor system, give a 
brief description of PIA, and compare the algorithms of the 
three policies. We highlight our contributions and discuss 
possible future extensions in Section 6 

. 
Fig. 1. A distributed/parallel computer system 

2. Related work:   

The System Model and Classification Of 
Dynamic Load Balancing Algorithms: 

We first present a general system model in the design of 
the algorithms. For convenience, we use “node” and 
“processor” interchangeably in the rest of this paper. We 
consider a generic parallel/distributed system shown in Fig. 
1. The system consists of n heterogeneous nodes, which 
represent host computers having different processing 
capabilities, interconnected by an underlying arbitrary 
communication network. Here, we use N to denote the set 
of nodes, i.e., n =[N], and E to denote a set whose elements 
are  unordered pairs of distinct elements of N. Each 
unordered pair e =(i , j)  in E is called an edge. For each 
edge (i , j), we define two ordered pairs, (i , j)and (j , i), 
which are called links, and we denote L as the set of links. 
A node i  is said to be a neighbouring node of j if i is 
directly connected to j by an edge. For a node j,  let 

 denote a set of 
neighbouring nodes of node j.  We assume that jobs arrive 
at node i (i  N) according to an ergodic process, such as 
inhomogeneous Poisson process with intensity function 

 [15]. A job arriving at node i may either be 
processed locally or transferred through the network to 
another node j (j  N)   NÞ for remote processing.  The 
service time of a job is a random variable that follows an 
exponential distribution with mean 1/µi, where µi denotes 
the average job service rate of node i and represents the 
rate (in jobs served per unit time) at which node i operates 
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when busy. The queue discipline of the jobs in each node 
is FCFS and the buffer size is infinite. We denote βi(t) as 
the rate at which the jobs are processed at node i at time t. 
Once a job starts to undergo processing in a node, it  is 
allowed to complete processing without interruption and  
cannot be transferred to another node in the meanwhile.  In 
this model, we assume that there is a communication  delay 
incurred when a job is  transferred from one node to 
another before the job can be processed in the system and 
denote xij(t) as the job flow rate from node i to node j (j  
Vi) at time t. Further, we assume that each link (i , j ) can 
transfer the load at its own transmission capability  
(otherwise referred to as transmission rate, commonly 
expressed as bytes/sec). We denote C as the set of 
transmission capacities of all the links and cij as the 
transmission capacity of a link   (i , j ) cij C   . There are 
many communication delay models proposed for data 
networks in the literature. In our model, we assume that the 
communication delay functions can be any increasing, 
convex, and differential functions [11], and, for ease.  Of 
simplicity, here we choose M/M/1 as the communication   
delay model [11], [16].  

 
Fig.2 . (a) Node model of queue adjustment policy.  

  
(b) Node model of rate adjustment policy.  

  
(c) Node model of combination of queue and rate 

adjustment policy. 

For load balancing algorithms, the model for a node is 
comprised of a scheduler, an infinite buffer to hold the jobs, 
and a processor. The scheduler is to schedule the jobs 
arriving at the node such that the mean response time of 
the jobs is a minimum. In the absence of a scheduler in a 
node, the job flow takes the following sequence of actions: 
A job enters the buffer, waits in the queue for processing, 
leaves the queue and gets processed in the processor, and 
then leaves the node  (system). However, when a scheduler 
is present, depending on where a scheduler resides in a 
node to exercise its control on the job flow, we classify the 
distributed dynamic load balancing algorithms into three 
policies: 
1. Queue Adjustment Policy (QAP): As shown in 
Fig. 2a, the scheduler is placed immediately after the queue. 
Algorithms of this policy [1], [5], [6] attempt to balance 
the jobs in the queues of the nodes. When a job arrives at 
node i, if the queue is empty, the job will be sent to the 
processor directly; otherwise, the job will have to  wait in 
the queue. The scheduler of node i periodically  detects the 
queue lengths of other nodes with which  node i is 
concerned. When an imbalance exists, the scheduler will 
decide how many jobs in the queue should be transferred 
and where each of the jobs  should be sent to. By queue 
adjustment, the algorithms  could balance the load in the 
system. 
2. Rate Adjustment Policy (RAP): As shown in 
Fig. 2b, the scheduler is immediately placed before the 
queue. When a job arrives at node i, the scheduler decides 
where the job should be sent and whether it is to be sent to 
the queue of node i or to other nodes under consideration. 
Once the job has entered the queue, it will be processed by 
the processor and will  not be transferred to other nodes. 
Using this policy,  the static algorithms [9], [11] can 
attempt to control the job processing rate on each node in 
the system and eventually obtain an optimal (or near 
optimal) solution for load balancing. Because of the high 
computation overheads, until now no dynamic  algorithm 
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in the literature used this policy. In this  paper, we will 
propose a dynamic algorithm which belongs to this policy. 
   
3. Combination of Queue and Rate 
Adjustment Policy (QRAP): As shown in Fig. 2c, 
the scheduler is allowed to adjust the incoming job rate and 
also allowed to adjust the queue size of node i in some 
situations. Because we consider a dynamic situation, 
especially when we use RAP, in some cases, the queue size 
may exceed a predefined threshold and load imbalance 
may result. Once this happens, QAP starts to work and 
guarantees that the jobs in the  queues are balanced in the 
entire system. In this policy, we can consider the rate 
adjustment as a  “coarse” adjustment and the queue 
adjustment as a “fine” adjustment. To the best of our 
surveys to date, there is no algorithm in the published 
literature that falls into this class of policies. In this paper, 
we will propose an algorithm which belongs to this policy  
that considers realizing a dynamic load balancing in  
distributed networks.  
3. Study of Algorithms: In this section, we will 
introduce the algorithm named ELISA [1], which will be 
used as a benchmark  algorithm  and qualifies under the 
QAP category, and we will propose  two algorithms based 
on LBVR [17], referred to as Rate-based  Load Balancing 
via Virtual Routing (RLBVR), based on RAP,  and Queue-
based Load Balancing via Virtual Routing (QLBVR),  
based on QRAP, respectively. 
3.1. ELISA: Estimated Load Information Scheduling 
Algorithm : We describe ELISA [1] in brief. In ELISA, 
the load scheduling decision is taken as follows: From the 
estimated queue lengths of the nodes in its neighbouring 
nodes and the accurate knowledge of its own queue length, 
each node computes the average load on itself and its 
neighbouring  nodes. Nodes in the neighbouring set whose 
estimated queue  length is less than the estimated average 
queue length by more than a threshold θ form an active set 

 
Fig. 3. Intervals of estimation and status exchange 

The node under  consideration transfers jobs to the nodes 
in the active set until its queue length is  not greater than θ 

and more than the estimated average queue length. The 
value of θ, which is  predefined, is a sensitive  parameter 
and it is of importance to the performance of ELISA. Here, 
the threshold θ is fixed  in such a way that the average 
response time of the system  is a minimum. 

3.2 The Proposed Algorithm: RLBVR  

Although LBVR is a static load balancing algorithm, due 
to its super-linear convergence rate [17], LBVR can be  
tuned to handle dynamic situations. Thus, we attempt to 
design a dynamic load balancing algorithm RLBVR based 
on the working style of LBVR. The main structure of this 
algorithm is:  First, we add a virtual node, which is referred 
to as the destination node (node d), into the network 
system.  Connect node d with each node i ( i   N ) by a 
virtual direct link ( i ; d). Let the nodal delay of node i be 
treated as the communication delay on link (i ; d). After 
these modifications, the process of load balancing can be 
described in an alternative way. As shown in Fig. 4, a 
three-node system has been transformed into a datagram 
network in which node i basically acts as a router. 
Referring to this figure, we observe that, for each node i, i 
= 1, 2 , 3, it can consider two paths to reach node d via its 
neighbouring nodes and one path to reach node d directly. 
For example, from node 1 to node d, the paths are: 1  2 
 d, 1  3  d, and    1  d. The way in which the loads 
are shared by the nodes can be described as follows: 

The jobs that arrive at node i according to a Poisson 
process with an average external job arrival rate of i are 
routed to destination node d via every node j  i. The goal 
of load balancing now can be alternatively stated as a 
problem which attempts to minimize the mean link delay 
for each job in the system. Then, each node i in the system  
only considers the routing paths of (i , j)and (i , j )  ( j , 
d ) ,  j  Vi  Use Newton’s method [18] to obtain the 
optimal job  routing rate of each path of node i. Eventually, 
obtain an  optimal job transferring rate x ij and job 
processing rate βi,  which are equal to job flow rates on 
paths                         ( i , j ) (j , d )and  path ( i , d ), 
respectively. Each node i in the system monitors its 
external job arrival  rate and obtains an estimate of the job 

arrival rate   , which  will be used as the job arrival 
rate of node i during the time  interval between Tn_1 and 
Tn for computing. Before node i   starts computing the 
optimal processing rate and transfer rates, node i 
broadcasts a request message to its neighbouring nodes. 
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Fig. 4. Routing paths for each node 

When node j (j  Vi ) receives this message, it will send 
   and  βn j  to node i immediately. If node i does not 

receive the response message from node j, it will consider 
node j has been shut down or the edge ( i , j) is broken 
down and it will not send jobs to node j until it receives 
some message from node j some time later. Once node i 
obtains all local information, it can start computing to 
obtain an optimal solution, following which, node i sends 
some jobs to its neighbouring nodes and processes some 
jobs locally during this time interval. In the following, we 
will give more details on how to compute the optimal 
solution in each node.  

3.2.1 Procedure for a Node: 

For node i in the system, we denote Ui ( βi )as the mean 
nodal delay function for a job and Gij ( xij) as the mean 
communication delay function for a job transferred from 
node i to j. Some generic models Gij ( xij) of include the 
delay of sending a job from node i to node j and the delay 
of sending the response back from node j to node i. In 
general, the path taken in each of the above-mentioned 
transfers (job and response  transfers) may be different. 
Note that the profile of functions  Ui ( βi ) and  Gij ( xij)  
may be very complicated. In practice, for analytical ease, it 
is often assumed that the functions  Ui ( βi ) and  Gij ( xij)  
are differentiable, increasing, and convex functions [12], 
[16]. Here, we introduce another function, Fij, to unite the 
two different delay functions of Ui and Gij as follows:  

 

Then, node i obtains for the time 
interval between Tn_1 and Tn. When node i starts to  

compute, it calculates the total job arrival rate  , which 
is: 

 
Referring to Fig. 4 again, we can see that node i has Pi, a 

set of routing paths. Hence, node i must determine the job 

flow rate xnp on each path p, (p  Pi), and the objective 

function of node i is 

 

 
We denote dp as the first derivative length of path p with 

respect to xn
p   

 
 

 

 

 

 

 

 

 

 

 

 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014 130 

 

3.3 The Proposed Algorithm: QLBVR : 

Now, we propose another dynamic load balancing 
algorithm, referred to as “Queue-based Load Balancing via 
Virtual Routing” (QLBVR), which belongs to the QRAP 
category, namely by combining queue and rate adjustment 
policies. As mentioned earlier, QLBVR carries out coarse 
adjustments on job transferring and processing rates and 
fine adjustments on queue lengths (number of jobs in the 
queue). These are as described below. 

1. Coarse adjustment (on transfer and processing rates): 
The working style is similar to RLBVR. At every time 
instant Tn (n = 0 , 1,  .......) , nodes in the system use the 
procedure for a single node to obtain an  optimal solution. 
In the next time interval, Ts, each node adjusts its job 
transferring rates and job processing rate according to the 
computed optimal solution.  

2. Fine adjustment (on queue lengths):The working style is 
similar to ELISA. Each status exchange interval Ts is 
divided into equal subintervals, denoted as estimation 
intervals Te. At time instant Te, node i estimates and 

adjusts the earlier estimate of the queue lengths of its 
neighbouring nodes and has an accurate knowledge of its 
own queue length. 

From the analysis of QLBVR, we can observe that fine 
adjustment can affect the real transfer rates. However, xji, 
( j  Vi ), the job transfer rate on link ( j , i )  that coarse 
adjustment of node i considers is an optimal solution of 
node j, instead of the real transfer rate on link(j , i ). Hence, 
we can conclude that fine adjustment has no effect on the 
solution of coarse adjustment.  

Remarks. Note that, in distributed dynamic load balancing 

algorithms, there may exist a nonzero probability that a  

job would shuttle between processors. 
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There are various ways to alleviate this problem. One of 
the ways is to allow the job to join at the position where it 
should have  been if the job had arrived at this queue, 
instead of adding it at the end of the queue. This means 
that we keep track of the time at which it arrived at the 
system. This can considerably reduce the probability of the 
job being transferred once again and can guarantee 
minimizing the response time of that job. 

4.   Performance   evaluation and discussions:  

We have conducted extensive simulation tests to quantify 
the performance of the three types of load-balancing  
algorithms discussed above. As mentioned earlier, one of 
our added considerations in this study is to gain an 
intuition regarding the relative metrics of the different 
approaches under consideration. Our simulations focus on 
two main aspects of dynamic situation. One is the effect of 
the load on the nodes and the other is the effect of the 
status exchange interval lengths, which is indeed a crucial 
parameter that reflects the sensitivity of the algorithms. 
Here, we consider the mean response time (MRT) of a job 
as the main metric in our simulations. First, we give the 
introduction of our simulation model. 

4.1 Two-Processor System Model and Some 
Important Issues: 

In order to illustrate the salient features of the algorithms 
in discussion, first we consider the simplest case when a 
multiprocessor system is limited to two processors, as 
shown in Fig. 5. It is possible that this model could also be 
considered equivalent to a situation in which an isolated 
processor communicates to a (single) processor that 
represents the rest of the network. Another reason why a 2-
processor network is used as a test case is that an algorithm 
that does not work for two processors is unlikely to 
perform well for a  multiprocessor case. In Fig. 5, we 
assume that jobs arrive at node 1 and node 2  according to 
Poisson processes with rates ℷ1 and ℷ2  respectively. We 
also assume that the average service times of a job at node 
1 and node 2 are 1 and   2   respectively. From [19], 
we obtain that the average nodal  delay of a job in node i 
( i = 1,2 ) is :  Si   where  = 0:25 jobs/sec and  2 
= 0:5 jobs/sec in our simulation tests. In Fig. 5, jobs arrive 
at node 2 according to a homogeneous Poisson process 
with 2 = 0:12 jobs/sec, which will be held constant 
throughout our simulations. Without load balancing, the 
system utilization of node 2 is P2= ℷ2/ 2 = 0.12/0.5 = 

0.24  and the system is at a low utilization level. In order to 
consider dynamic  situations, the job arrival rate at a node 
must be a time-varying quantity. Thus, the job arrival rate 
at node 1 is an inhomogeneous Poisson process with 
intensity function  ℷ1 (t) [15]. 

 
We assume that the pattern of ℷ1 (t)  is as shown in Fig. 6. 
At time 0,  ℷ1 (t) starts from the lowest point  l1. As time 
elapses, ℷ1 (t) increases linearly. At time t = 1, 000 seconds, 
ℷ1 (t)  reaches the peak  h1 and,  afterward, ℷ1 (t)  decreases 
linearly. Finally, at time t = 2, 000 seconds, it reaches the 
lowest point, l1.After this point,   ℷ1 (t) increases again. For 
the sake of  simplicity, we fix the difference between h1 
and l1 to 0.2 jobs/sec. In order to describe the job arrival 
pattern quantitatively,  
we denote ℷ1    as the load of the dynamic job 
arrival rate. For example, we use ℷ = 0.3 to consider the  ℷ  
(t) shown in Fig. 6.  

4.2 Effect of System Loading: 

In this section, we will analyze the performances of the 
three policies with respect to the load on the system. First, 
in our simulation, we set ℷ1 = 0.1 jobs/sec and then 
increase the value of  ℷ1  by 0.005 jobs per step. Also, we 
set Ts = 60 seconds and Te = 20 seconds in our 
experiments. For each value of  ℷ1, the simulation time is 
set to 20,000 seconds to obtain a statistical mean response 
time of the jobs arriving at the system. When the average 
system utilization  p is greater than 0.95, we terminate the 
simulation, where  p is defined as the ratio of average total 
arrival rate to aggregate processing rate of the system: 
p    
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5 . Extension to large scale cluster System: 

we shall consider a large scale networked cluster system to 
capture and understand the behaviour of our algorithms. 
This is an important study as it reflects a real life scenario. 
In our study, we specifically considered a mesh connected 
processor architecture. As mentioned earlier, based on the 
mesh topology, many prototype and commercial systems 
have been built and these architectures are able to handle 
data intensive computations. Hence, in this section, we 
extend our simulation experiments to a mesh 
multiprocessor system, as shown in Fig. 9. We will 
compare the performances of the three policies under 
different system workloads in a mesh-connected 
multiprocessor system. 

 
Fig. 9. The mesh-connected cluster system M=(8; 8) 

system 

5.1 Static or Slowly Varying System Loading 

Here, we assume that jobs arrive at node (x;,y) according 

to 

a homogeneous Poisson process with ℷ(x , y) jobs/sec. 

 
Under a given set of ℷ[ X , Y], the system utilization is: 

We carry out a series of simulations for the M [8, 8] mesh 
connected multiprocessor system with the five algorithms 

described  above, under different system utilization 
parameter 

Ƿ The simulation conditions are kept identical for all five 
algorithms for a given Ƿ. For each simulation run, the 
Simulation time is set to 20,000 seconds, during which the 
first 5,000 seconds are considered “warm time.” After the 
warm time, we trace the jobs arriving at each node and 
record their arriving time, processing time, and leaving 
time. We average 10,000 jobs’ response time as the mean 
response time for this simulation. In the first simulation, 

the job arriving rates  ℷ[X, Y]are randomly generated. 
Then, each node (x,y)increases its ℷ(x,y)by 0.25 jobs per 
second in each step. When the system utilization exceeds 
0.9, we terminate the simulations. Below figure shows the 
simulation results for the five   algorithms. 

 

5.2  Experiments when the Arrival of Loads Is 

Varying Rapidly: 

We construct another job pattern to simulate the situation 
when the job arriving rate of each node changes rapidly. 
We assume that, for each node, the time interval for a 
batch of jobs is 10 seconds, during which jobs arrive at the 
node according to a homogeneous Poisson process. In each 
10 second time interval, the probability that the arrival rate 
will be same as in its previous interval is (0,1) otherwise, 
the job arriving rates are generated randomly with uniform 
distribution between ℷ min and ℷ max. We assume that, in 
each node, the maximum job arriving rate cannot exceed 
its maximum job processing rate. 

For node (x, y),we use  rmin  to denote the ratio  and 

rmax to denote the ratio  . Hence, we can use [rmin, 

rmax](x,y) to denote this job pattern for node (x,y) in the 

system. For example, the job pattern shown in below Fig 

can be denoted as (0.3,0.7) (7,7)for node (7, 7) whose job 

processing rate is nine jobs per sec. Again, let Ƿ be the 

average system utilization for our simulations, which is:  
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We conducted four kinds of simulation tests, indicated as 

S.N. (simulation number), shown in the following: 

A:  System utilization is light. In this case, the job pattern 
of 

each node (x,y) in the system is (0.1,0.4)(x,y)and  

                  
B: System utilization is moderate. In this case, the job 
pattern 
is (0.3,0.7)(x,y)for node (x,y)and 

                        
C: System utilization is high. In this case, the job pattern is 

(0.7,1)(x,y)for each node (x,y) in the system and 

                
D: We randomly choose one-third of the nodes as lightly 

loaded nodes ([0.1, 0.4]), one-third of the nodes as 
moderately loaded nodes ([0.3, 0.7]), and the remaining 
one-third of nodes as highly loaded nodes ([0.7, 1]) and 

           
In each kind of simulations, for all five algorithms, we 
generate a set of job arriving rate sequences to ensure that 
the simulation conditions remain identical. 

6. Conclusions and Future Work: 

In this paper, we first classified the distributed dynamic 
load balancing algorithms into three policies:  

QAP policy: queue adjustment policy, RAP policy: rate 
adjustment policy, and QRAP policy: combination of 
queue and rate adjustment policy. We proposed two 
algorithms, referred to as Rate-based Load Balancing via 
Virtual Routing (RLBVR) and Queue-based Load 

Balancing via Virtual Routing (QLBVR), which belong to 
RAP and QRAP, respectively. These two algorithms are 
based on LBVR and, hence, the computation overheads are 
small [17]. We have used Estimated Load Information 
Scheduling Algorithm (ELISA)  [1] to present QAP policy, 
the main idea of which is to carry out estimation of load by 
reducing the frequency of status exchange, thereby 
reducing the communication overheads. Our policies are 
directly useful for performance evaluation of cluster/grid 
and distributed networks. The usefulness and applicability 
of our policies are demonstrated via rigorous simulation 
tests on a wide variety of system loading and other 
influencing parameters. We have also demonstrated the 
applicability of our policies to large scale 

cluster systems with mesh-connected topology.   

We construct a dynamic job arrival rate pattern and carry 
out rigorous simulation experiments to compare the 
performances of the three algorithms under different 
system loads, with different status exchange intervals. With 
our rigorous experiments, we have shown that, when the 
system loads are light or moderate, algorithms of the RAP 
policy are preferable 

From our experiments, we have clearly identified the 
relative metrics of the performances of the proposed 
algorithms and we are able to recommend the use of 
suitable algorithms for 

different loading situations. Our system model and 
experimental study can be directly extended to large size 
networks, such as multidimensional hyper cubes networks, 

to test their performances. Finally, in this paper, we have 
rigorously demonstrated the performances of the 
algorithms 

for a single class of jobs. In our near future work, we 
intend to divide the jobs in the system into several classes 
and assign each class of jobs its own priority. It would be 
interesting to consider multiclass jobs system as well and 
analyze the performances of these algorithms 
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