
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

149

Manuscript received February 5, 2014
Manuscript revised February 20, 2014

The Design and Implementation of Mobile Arabic
Fingerspelling Recognition System

Ibrahim Elhenawy† and Abdelwahed Khamiss††,

Faculty of Computers and Informatics, Zagazig University, Egypt

Summary
The increasing ubiquity of today's Smartphones made them an
ideal platform for many emerging mobile applications that range
from navigation systems to healthcare monitoring. However, the
majority of the mobile systems are being marketed primarily to
the able-bodied users and most of them fail to be accessible to
people with disabilities especially the deaf. As a way of
enabling the deaf to interact naturally with the Smartphones,
automatic hand sign recognition appears as a suitable means. In
this paper, we propose, AndroSpell, vision-based Smartphones
software to automatically recognize Arabic Fingerspelling signs.
The system prototype was built entirely on the top of the
cameraphone and was able to classify up to 10 postures with
accuracy of 97%. The implementation and the evaluation of the
system provide clear evidence that the emerging capabilities of
the cameraphones could be fairly harnessed for use as an
accessible technology for the deaf.
Key words:
mobile accessibility, mobile computing, posture recognition.

1. Introduction

Technology is often created without regard to people with
disabilities. This creates unnecessary barriers to a large
number of the disabled who decided to employ technology
in one way or another in their daily lives. As a natural
consequence, Assistive Technologies come into the scene
to bridge this gap.
However, most of the currently available assistive
technologies are intimately connected with the desktop-
based computers making their use limited to the
stationary environments. The recent developments and the
advanced capabilities of the Smartphone allowed for
shifting some these technologies from the desktop to the
mobile platforms and thus exploiting their inherent
mobility, ubiquity and ease of use.
In the same vein, we developed AndroSpell (Figure 1) in
an effort to enrich the Android Smartphone with static
hand gesture recognition capability. We exploit one of the
most ubiquitous sensors (the camera in Smartphone) and
computer vision algorithms to interpret the finger spelling
postures in a near real-time manner.

The paper is structured as follows. Section 2 presents the
detailed description of the overall system architecture and
the components representing various stages in hand
posture recognition. This is followed by Section 3 that
includes the main experimental results we got form the
feature extraction and the classification stages. Section 4
lists related research efforts. Section 5 highlights the
conclusion and the future work.

Figure 1. AndroSpell Prototype

2. System Architecture

The goal of our system is to correctly classify Arabic
Finger spelling postures (Figure 2) of the user's bare
hands using the mobile phone's built-in camera without
any additional external sensors (e.g. instrumented gloves).
The architecture employs a staged approach for posture
recognition as illustrated in Figure 2.
We believe that a continuous recognition of hand gestures
is the best option in the sense that it will be increasingly
usable in a variety of potential AndroSpell applications
and, more importantly, it represents the most convenient

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

150

gestural interaction way for the user (who is supposed to
use the system to interpret many postures in one setting).
As we want to provide a kind of real-time recognition
service, the system must handle camera frames processing
on the fly. This means, on one hand, that the system
should avoid any considerable latency in response time.
On the other hand, the user will not use the capture button
to provide an input for the program. Alternatively, there
will be modules responsible for grabbing consecutive
frames from the camera, deciding which of them may
contain valuable information (not a frame representing
the background for example) then forwarding it to the
classification module. Each of the overall system
processes (figure 3) is summarized in the following
sections.

“BEH” “TEH”

“SEEN” “SHEEN”

“SAAD” “DAAD”

“KAF” “MEEM”

“WOW”
“LAM-ALEF”

Figure 2. AndroSpell postures list

2.1 Camera Frame Preprocessing

The preprocessing stage aims at improving the quality of
the input images to increase the performance (in terms of
processing speed and accuracy) of the subsequent stages.
In our system frames are grabbed natively in YUV420sp
format and preprocessing is done in two steps:

1) Discarding repeated frames: We filter out the
repeated frames using the “Baseline
Differencing” approach tested here [1]. First we
calculate the sum of absolute differences between
successive frames, and then we check that sum
against a predefined threshold. If it exceeds the

threshold value then the frame is considered a
key frame, otherwise it is rejected.

2) Color Conversion: YUV frames are converted to
RGB.

2.2 Hand Segmentation

After preprocessing a frame it is then delivered to the
hand segmentation module where the process of
identifying the hand's area in the image takes place. First
skin pixels must be labeled then a kind of background
objects filtering technique is applied to increase the
confidence of the hand segmentation. Color based skin
detection is used to discriminate the hand pixels from the
background. Working on the RGB color space, we used
pixel based heuristic [2].
The output of this phase is a binary image where the
foreground pixels (skin color candidates) are represented
as white pixels (Figure 4)

Figure 3. AndroSpell Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

151

Figure 4. Skin Detection

The binary image resulted from the previous phase may
contain background areas that have passed through the
skin detector as potential skin pixels. We address this case
primarily by analyzing the total area occupied by the skin
pixels. The skin area percentage of the total image should
fall between two (experimentally tested) thresholds t1, t2.
Otherwise, the frame is considered to contain either
nothing but background object(s) that exhibit skin-like
properties or an actual hand that it is too distant/close
from the camera to be recognized. In both cases, the
frame is invalid and is ultimately discarded.
For labeling the various connected components we
benchmarked two different Connected Component
algorithms on the phone:
The classical Two-Pass [3] algorithm that makes two
passes over every single frame: one pass to assign
provisional labels to object pixels and record the
equivalence information among provisional labels (we
assumed 8-connectivity) and the second to replace each
temporary label by the label of its equivalence class. A
union-find data structure is employed to keep track of
equivalence relationships and manage the relabeling
process.

Figure 5. Component Labeling Algorithms Benchmark

The Run-based Two Scan algorithm [4] which, as
opposed to the Two-Pass algorithm, works on run data (a
“run” is a block of contiguous object pixels in a row) that
are obtained in the algorithm’s first scan and recorded in

a queue. In the runtime, all provisional labels that are
assigned to a connected component found so far during
the first scan are combined in a provisional label set, and
the smallest label is used as their representative label.
Connectivity checks are applied to runs (not pixels).
Although the results (Figure 5) claim that the classical
two-pass algorithm is more efficient than the run-based
one, a general conclusion that can be reached here is that
the component labeling process takes a considerable time
in both cases. Even with the smallest resolution available
natively from the camera (176X144) the two-pass
algorithm needs 755 ms to process each frame.
The output of this phase is a list of the connected
components sorted by the perimeter. The largest
component (which is supposed to be the hand’s blob) is
picked and the remaining objects are discarded.

2.3 Camera Frame Preprocessing

Most of the Arabic Finger spelling signs are performed
using a single hand (contrary to others like Turkish
Finger spelling for example [5]) (a fact that allows
AndroSpell’s user to hold the phone with one hand and
perform the signs with the other). In the features
calculation phase we seek to produce a list of various
visual features (feature vector) that describe the geometric
characteristics of the hand’s binary object.
Good feature extraction is a challenging problem and a
wealth of previous research work investigated the
extraction of numerous features and testing their
contribution to the accuracy of the recognition. However,
in the constrained Smartphone platform case a careful
tradeoff between the recognition rate and the performance
must be considered. While the selection of features is
critical to realizing robust classification, it is necessary
not to expose the system to extracting computationally
demanding features that may contribute the quality of the
recognition on the expense of degrading the performance
(for example our experiment to calculate SURF features
[6] on the phone took 1700 ms on average for 320X240
frames and Hu Moments were computed in 802 ms for
240X160 frames).
We experimented with a number of features and depended
on the following geometric descriptors for our feature
vector:

• Centroid: The centroid point of the hand area is
given by:

∑
∈

=
Rvu

vu
R

x
),(

01.1

∑

∈

=
Rvu

vu
R

y
),(

10.1

Where |R| is the area and calculated as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

152

∑

∈

==
Rvu

RRA
),(
1)(

• Orientation: Also called the axis of the least

inertia (Rθ) and by this we mean the direction of
the major axis, which is the axis that runs through
the hand object centroid and along the widest part
of the hand’s region. The orientation is calculated
using central moments (Mpq(R)) as follows:









−

= −

)()(
)(.2tan

2
1

0220

111

RR
R

R µµ
µθ

Provided that the central moment (Mpq(R)) is
defined as:

∑
∈

−−=
Rvu

qp
pq yvxuR

),(
).()()(µ

• Eccentricity: similar to the region orientation,
moments can also be used to determine the
eccentricity Ecc(R) of the hand region:

()
() 2

11
2

02200220

2
11

2
02200220

.4

.4
)(

µµµµµ

µµµµµ

+−−+

+−++
=REcc

The values of eccentricity are in the range [1,∞),
where eccentricity = 1 corresponds to a circular
region, and elongated regions have values > 1.

• Convex Hull: Convex Hull was employed in
various hand gesture recognition systems [7, 8].
Calculating the hand’s bounding convex hull in
our system is based on Andrew's Monotone Chain
[9] algorithm. It constructs convex hull of a set of

2D points in)log(nnO time. It does this by
first sorting the points lexicographically (first by
x-coordinate, and in case of a tie, by y-coordinate),
and then constructing upper and lower hulls of
the points.

Although Andrew’s algorithm requires the input
set of points to be sorted, we handle this in our
implementation by scanning the input frame
properly. For example, PU constitutes the set
points that will be fed into the upper hull
procedure. We collect them by scanning the frame
column by column from left to right and from top
to down until the first white pixel is encountered
then we record its position and move to the next
column.

Since the numerous vertices resulted from the
convex hull algorithm will result in high
dimensional feature vector, the classification task
may become complicated. For tackling this
difficulty, we forward the produced list of vertices
to a convex hull smoothing procedure to generate
a kind of less complicated and smoothed convex
hull. The clustering approach described here [10]
is used. The technique works by grouping the
adjacent vertices into a single cluster using the k-
means. Adjacency is determined based on the
polar angle of each vertex.

The previous geometric descriptors are combined
into the feature vector. Convex hull descriptors
are the distances from the centroid to the vertices
of the smoothed convex hull after scaling them so
that the largest is of them becomes equal to 1.

2.4 Classification

Previous research works have proposed and tested several
classification techniques. Here we use two of the well-
known classification algorithms.
K-Nearest Neighbors (KNN) that proved to work well in
the hand gesture recognition problem [11]. Although
KNN doesn’t make any assumptions about the underlying
data distribution, the data is assumed to be in a feature
space and thus have a notion of distance function
responsible for measuring similarity between instances.
Euclidean distance is the most commonly used distance
function and is the one used in our system.
Given a test instance (posture feature vector) x, its k
nearest neighbors are found and a vote conducted to
assign the most common class to x. KNN requires no
training and thus all the training data are kept along with
it in the runtime, this means that a linear (sequential)
search of the training data would require nontrivial time
for large amount of training data. We developed a KD-
Tree [12] to keep/search the training instances during the
program runtime.
Decision Tree classifier was adopted successfully in the
hand gesture recognition [13]. We use it in AndroSpell as
an alternative to the k-nearest neighbor. We constructed
the classification decision tree for our 10 gestures list
using the C4.5 algorithm [14]. Eccentricity was selected
as the root of the tree. The orientation (angle) and some
convex hull descriptors were involved in the classification
criteria.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

153

3. System Evaluation

AndroSpell prototype was implemented as a self-
contained piece of software that runs on Android phones.
We evaluate our system by conducting various
experiments on the prototype we developed. All the
experiments were carried on using the HTC Legend
phone equipped with 600 MHz ARM 11 processor
Qualcomm MSM7227 chipset and Android v2.1 (Eclair)
as the operating system. The camera is configured to grab
176X144 frames. As a finger spelling recognition system
we care about the accuracy of the system concerning how
many postures were identified correctly. Also the
embedded constrained nature of the Smartphone platform
requires measuring and evaluating the computational
performance and, more importantly, the power
consumption of the software.

3.1 Classification Accuracy

We collected 1000 gesture images for training and
validating the classification modules in AndroSpell. The
images were uniformly distributed (100 images per
gesture) and 66% of the collected data used for the
training while the remaining portion used as the test set.
The overall classification results (Figure 8) showed the
decision tree to be the most robust classifier with a
precision of 97%. This outperforms the 1NN that
achieved a recognition rate slightly less than 96%.
However 1NN becomes the best classifier when compared
to 2NN, 3NN and 4NN respectively. Note that in the cases
of 2NN, 3NN and 4NN we select the class of the gesture
based on the majority voting.

Figure 6. Classification Precision

3.2 Computational Performance

The computational performance is a key criterion in
assessing the usability of any gesture recognition program
and our system is not an exception especially that its
components depend on the computationally demanding
vision algorithms. However it is challenging to keep the
system response time within an acceptable threshold time.
This happens because of three main reasons: 1) the
preprocessing modules consume a considerable time of
the total frame processing time (for example the YUV
conversion stage takes approximately 250 milliseconds
per frame), 2) the connected component filtering (CCF) is
going to take at least 755 milliseconds (as mentioned in
section 2.2), 3) the features we extract make extensive use
of floating point arithmetic that proved to be 2x slower
than integer arithmetic on Android devices [15].
An earlier study [16] suggests that Android applications
can become up to 10 times faster if they utilized native
code. Android applications are usually programmed in
Java using the Android SDK while native component
could be developed using the Android NDK. We
reprogrammed the frame preprocessing code using C++
and ported it to our application using Java Native
Interfaces (JNI). A considerable performance gain (Figure
9) that is equal to 386 milliseconds was achieved. A
second optimization step that was taken is down-sampling
the captured frame to 100X100 pixels in order to shorten
the CCF and the feature extraction period. The ultimate
result is that the total frame processing and recognition
time is 1200 milliseconds when using decision tree and
1400 milliseconds with 1NN classifier.
Figure 10 summarizes the frame processing profiling
results for AndroSpell. Clearly, KNN classification
consumes a considerable time compared to the decision
tree classification that takes 1.3 ms (approximately 0%)
on average of the total frame processing time. The KD-
Tree implementation used to speed up the search process
is still performing slower. The technical reasoning to this
phenomenon is that the decision tree once trained
becomes a set of rules that could be evaluated very
efficiently in the run time.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

154

Figure 7. Native Code Performance Gain

Figure 8. Frame Processing Profiling

4. Related Work

The body of the work presented here is developed mainly
to be mobile accessibility software, but it also falls in the
broader context of static hand gesture recognition.
Work on applications and systems for mobile accessible
and assistive technology is growing in importance.
Applications of accessible mobile and portable systems
range from text-to-speech output and screen
magnification to audio amplifiers and hearing aid
compatibility. For example, there exist systems for the
visually impaired that can guide a person in the case of an
emergency [17] , help him to find his way [18] and allow
him to remotely control home appliance using voice
recognition [19].
A number of existing systems addressed the issue of
mobile accessibility for the deaf. Jemni et. al. [20]
proposed an application for automatically translating text
messages into MMS containing avatar-based sign
language animation to be sent to the deaf. MobileASL
[21] is another research effort that develops a sign-aware
video encoder to be used by the deaf in their video calls.
While the previously mentioned examples pursued a line
of research that aims to provide the deaf with accessibility
to the mobile communication, our system focuses instead
on offering accessibility to the Smartphone platform itself
which, we believe, will form a framework for future
Smartphone hand gesture based applications.
Recently, a work by [10] studied the feasibility of hand
gesture recognition on Smartphone. Our work goes
beyond the idea of viability to propose a robust continuous
hand gesture recognition mobile prototype.

In the context of static hand gesture, various works have
already dealt with this challenging field using various
techniques. Garg [22] summarizes the main approaches to
hand gesture recognition. The whole process of gesture
recognition in these systems can be coarsely divided into
few sequential phases with each phase responsible for
performing specific task and delivering the result to the
next phase. Our work offers a system with the same
purpose and architectural similarity. However, the design
choices were adapted to enable successful deployment and
operation on the Smartphone.

5. Conclusion and Future Work

In this paper we presented the design, implementation
and evaluation of AndroSpell; the cameraphone Arabic
Finger spelling recognition system. Our results indicate
that the system performance and the classification
accuracy enabled the Smartphone to robustly interpret
static hand gestures. A number of challenges and
limitations will be considered for future developments of
the system. New ways to optimize the total frame
processing time should be investigated. We will test
another set of features and move more of computationally
expensive code to the native side. Further work will
consider the recognition of the dynamic (multiple frames)
gestures. Hierarchical classification may be used in the
cases where confusion between signs takes place. We will
use the framework presented here as a base for building
interactive mobile gesture-based applications like an
educational finger spelling game targeted to children.

References
[1] Cherniavsky, N., Chon, J., Wobbrock, J.O., Ladner, R.E.

and Riskin, E.A. Activity analysis enabling real-time video
communication on mobile phones for deaf users.
Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 2009, pp. 79-88

[2] Kovac, J., Peer, P. and Solina, F. Human skin color
clustering for face detection. EUROCON 2003. Computer
as a Tool. The IEEE Region 8. 2003, Vol. 2, pp. 144 - 148
vol.2

[3] Shapiro, L.G., Stockman, G.C., Shapiro, L.G. and
Stockman, G. Computer Vision. Prentice Hall,
Hardcover, 2001, pp. 69–73

[4] He, L., Chao, Y. and Suzuki, K. A Run-Based Two-Scan
Labeling Algorithm. Image Analysis and Recognition
Springer Berlin / Heidelberg, 2007, Vol. 4633, pp. 131-142

[5] Altun, O., Albayrak, S., Ekinci, A. and Bükün, B. Turkish
Fingerspelling Recognition System Using Axis of Least
Inertia Based Fast Alignment. AI 2006: Advances in
Artificial Intelligence, 19th Australian Joint Conference on
Artificial Intelligence, Hobart, Australia, December 4-8,
2006, Proceedings. Springer, 2006, Vol. 4304, pp. 473-481

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.2, February 2014

155

[6] Bay, H., Tuytelaars, T. and Gool, L.V. Surf: Speeded up
robust features. In ECCV 2006, pp. 404-417

[7] Manresa, C., Varona, J., Mas, R. and Perales, F.J. Hand
Tracking and Gesture Recognition for Human-Computer
Interaction. Hand The, Citeseer, 2005, Vol. 5(3), pp. 96-
104

[8] Tan, T. and Guo, Z. Research of hand positioning and
gesture recognition based on binocular vision. VR
Innovation (ISVRI), 2011 IEEE International Symposium
on 2011, pp. 311 -315

[9] Andrew, A.M. Another Efficient Algorithm for Convex
Hulls in Two Dimensions. Information Processing
Letters, 1979, Vol. 9, pp. 216-219

[10] Tarrataca, L., Santos, A.C. and Cardoso, J. a.M.P. The
current feasibility of gesture recognition for a smartphone
using J2ME. Proceedings of the 2009 ACM symposium on
Applied Computing. ACM, 2009, pp. 1642-1649

[11] Savaris, A. and von Wangenheim, A. Comparative
evaluation of static gesture recognition techniques based on
nearest neighbor, neural networks and support vector
machines. Journal of the Brazilian Computer Society,
Springer London, 2010, Vol. 16, pp. 147-162.

[12] Moore, A.W. An Intoductory Tutorial on Kd-Trees. 1991
[13] Nisar, S., Khan, A.A. and Javed, M.Y. A statistical feature

based decision tree approach for hand gesture recognition.
Proceedings of the 7th International Conference on
Frontiers of Information Technology. ACM, 2009, pp. 27:1-
27:6

[14] Quinlan, J.R. C4.5: Programs for Machine Learning. 1993
[15] http://developer.android.com/guide/practices/design/perfor

mance.html
[16] Batyuk, L., Schmidt, A.-D., Schmidt, H.-G., Camtepe, A.

and Albayrak, S. Developing and Benchmarking Native
Linux Applications on Android. MobileWireless
Middleware, Operating Systems, and Applications Springer
Berlin Heidelberg, 2009, Vol. 7, pp. 381-392

[17] Amemiya, T. and Sugiyama, H. Design of a Haptic
Direction Indicator for Visually Impaired People in
Emergency Situations. Computers Helping People with
Special Needs Springer Berlin / Heidelberg, 2008, Vol.
5105, pp. 1141-1144

[18] Ivanchenko, V., Coughlan, J. and Shen, H. Crosswatch: A
Camera Phone System for Orienting Visually Impaired
Pedestrians at Traffic Intersections. Computers Helping
People with Special Needs Springer Berlin /
Heidelberg, 2008, Vol. 5105, pp. 1122-1128

[19] Yoshida, R. and Yasumura, M. A New Cell Phone Remote
Control for People with Visual Impairment. Computers
Helping People with Special Needs. Springer Berlin /
Heidelberg, 2008, Vol. 5105, pp. 1145-1152

[20] Jemni, M., Ghoul, O.E., Yahia, N.B. and Boulares, M.
Sign Language MMS to Make Cell Phones Accessible to
the Deaf and Hard-of-hearing Community. CVHI 2007

[21] Cavender, A., Ladner, R.E. and Riskin, E.A. MobileASL:
intelligibility of sign language video as constrained by
mobile phone technology. Proceedings of the 8th
international ACM SIGACCESS conference on Computers
and accessibility. ACM, 2006, pp. 71-78

[22] Garg, P., Aggarwal, N. and Sofat, S. Vision Based Hand
Gesture Recognition. World Academy of Science
Engineering and Technology, 2009, pp. 972-977

http://developer.android.com/guide/practices/design/performance.html
http://developer.android.com/guide/practices/design/performance.html

	1) Discarding repeated frames: We filter out the repeated frames using the “Baseline Differencing” approach tested here [1]. First we calculate the sum of absolute differences between successive frames, and then we check that sum against a predefined...

