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Summary 
The increasing ubiquity of today's Smartphones made them an 
ideal platform for many emerging mobile applications that range 
from navigation systems to healthcare monitoring. However, the 
majority of the mobile systems are being marketed primarily to 
the able-bodied users and most of them fail to be accessible to 
people with disabilities especially the deaf. As a way of 
enabling the deaf to interact naturally with the Smartphones, 
automatic hand sign recognition appears as a suitable means. In 
this paper, we propose, AndroSpell, vision-based Smartphones 
software to automatically recognize Arabic Fingerspelling signs. 
The system prototype was built entirely on the top of the 
cameraphone and was able to classify up to 10 postures with 
accuracy of 97%. The implementation and the evaluation of the 
system provide clear evidence that the emerging capabilities of 
the cameraphones could be fairly harnessed for use as an 
accessible technology for the deaf. 
Key words: 
mobile accessibility, mobile computing, posture recognition. 

1. Introduction 

Technology is often created without regard to people with 
disabilities. This creates unnecessary barriers to a large 
number of the disabled who decided to employ technology 
in one way or another in their daily lives. As a natural 
consequence, Assistive Technologies come into the scene 
to bridge this gap. 
However, most of the currently available assistive 
technologies are intimately connected with the desktop-
based computers making their use limited to the 
stationary environments. The recent developments and the 
advanced capabilities of the Smartphone allowed for 
shifting some these technologies from the desktop to the 
mobile platforms and thus exploiting their inherent 
mobility, ubiquity and ease of use. 
In the same vein, we developed AndroSpell (Figure 1) in 
an effort to enrich the Android Smartphone with static 
hand gesture recognition capability. We exploit one of the 
most ubiquitous sensors (the camera in Smartphone) and 
computer vision algorithms to interpret the finger spelling 
postures in a near real-time manner.  
 
 

 
The paper is structured as follows. Section 2 presents the 
detailed description of the overall system architecture and 
the components representing various stages in hand 
posture recognition. This is followed by Section 3 that 
includes the main experimental results we got form the 
feature extraction and the classification stages. Section 4 
lists related research efforts. Section 5 highlights the 
conclusion and the future work. 
 

 

Figure 1.  AndroSpell Prototype  

2. System Architecture 

The goal of our system is to correctly classify Arabic 
Finger spelling postures (Figure 2) of the user's bare 
hands using the mobile phone's built-in camera without 
any additional external sensors (e.g. instrumented gloves). 
The architecture employs a staged approach for posture 
recognition as illustrated in Figure 2. 
We believe that a continuous recognition of hand gestures 
is the best option in the sense that it will be increasingly 
usable in a variety of potential AndroSpell applications 
and, more importantly, it represents the most convenient 
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gestural interaction way for the user (who is supposed to 
use the system to interpret many postures in one setting).  
As we want to provide a kind of real-time recognition 
service, the system must handle camera frames processing 
on the fly. This means, on one hand, that the system 
should avoid any considerable latency in response time.  
On the other hand, the user will not use the capture button 
to provide an input for the program. Alternatively, there 
will be modules responsible for grabbing consecutive 
frames from the camera, deciding which of them may 
contain valuable information (not a frame representing 
the background for example) then forwarding it to the 
classification module. Each of the overall system 
processes (figure 3) is summarized in the following 
sections. 

 

“BEH” “TEH” 

“SEEN” “SHEEN” 

“SAAD” “DAAD” 

“KAF” “MEEM” 

“WOW” 
“LAM-ALEF” 

 

Figure 2.  AndroSpell postures list 

2.1 Camera Frame Preprocessing 

The preprocessing stage aims at improving the quality of 
the input images to increase the performance (in terms of 
processing speed and accuracy) of the subsequent stages. 
In our system frames are grabbed natively in YUV420sp 
format and preprocessing is done in two steps:  

1) Discarding repeated frames: We filter out the 
repeated frames using the “Baseline 
Differencing” approach tested here [1].  First we 
calculate the sum of absolute differences between 
successive frames, and then we check that sum 
against a predefined threshold. If it exceeds the 

threshold value then the frame is considered a 
key frame, otherwise it is rejected. 

2) Color Conversion: YUV frames are converted to 
RGB. 
 

2.2 Hand Segmentation 

After preprocessing a frame it is then delivered to the 
hand segmentation module where the process of 
identifying the hand's area in the image takes place.  First 
skin pixels must be labeled then a kind of background 
objects filtering technique is applied to increase the 
confidence of the hand segmentation. Color based skin 
detection is used to discriminate the hand pixels from the 
background. Working on the RGB color space, we used 
pixel based heuristic [2]. 
The output of this phase is a binary image where the 
foreground pixels (skin color candidates) are represented 
as white pixels (Figure 4) 

 

 
Figure 3.   AndroSpell Architecture 
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Figure 4.  Skin Detection 

The binary image resulted from the previous phase may 
contain background areas that have passed through the 
skin detector as potential skin pixels. We address this case 
primarily by analyzing the total area occupied by the skin 
pixels. The skin area percentage of the total image should 
fall between two (experimentally tested) thresholds t1, t2. 
Otherwise, the frame is considered to contain either 
nothing but background object(s) that exhibit skin-like 
properties or an actual hand that it is too distant/close 
from the camera to be recognized. In both cases, the 
frame is invalid and is ultimately discarded.    
For labeling the various connected components we 
benchmarked two different Connected Component 
algorithms on the phone: 
The classical Two-Pass [3] algorithm that makes two 
passes over every single frame: one pass to assign 
provisional labels to object pixels and record the 
equivalence information among provisional labels (we 
assumed 8-connectivity) and the second to replace each 
temporary label by the label of its equivalence class. A 
union-find data structure is employed to keep track of 
equivalence relationships and manage the relabeling 
process.  
 

 
Figure 5.  Component Labeling Algorithms Benchmark 

The Run-based Two Scan algorithm [4] which, as 
opposed to the Two-Pass algorithm, works on run data (a 
“run” is a block of contiguous object pixels in a row) that 
are obtained in the algorithm’s first scan and recorded in 

a queue. In the runtime, all provisional labels that are 
assigned to a connected component found so far during 
the first scan are combined in a provisional label set, and 
the smallest label is used as their representative label. 
Connectivity checks are applied to runs (not pixels).  
Although the results (Figure 5) claim that the classical 
two-pass algorithm is more efficient than the run-based 
one, a general conclusion that can be reached here is that 
the component labeling process takes a considerable time 
in both cases. Even with the smallest resolution available 
natively from the camera (176X144) the two-pass 
algorithm needs 755 ms to process each frame.  
The output of this phase is a list of the connected 
components sorted by the perimeter. The largest 
component (which is supposed to be the hand’s blob) is 
picked and the remaining objects are discarded. 

2.3 Camera Frame Preprocessing 

Most of the Arabic Finger spelling signs are performed 
using a single hand (contrary to others like Turkish 
Finger spelling for example [5]) (a fact that allows 
AndroSpell’s user to hold the phone with one hand and 
perform the signs with the other). In the features 
calculation phase we seek to produce a list of various 
visual features (feature vector) that describe the geometric 
characteristics of the hand’s binary object.  
Good feature extraction is a challenging problem and a 
wealth of previous research work investigated the 
extraction of numerous features and testing their 
contribution to the accuracy of the recognition. However, 
in the constrained Smartphone platform case a careful 
tradeoff between the recognition rate and the performance 
must be considered. While the selection of features is 
critical to realizing robust classification, it is necessary 
not to expose the system to extracting computationally 
demanding features that may contribute the quality of the 
recognition on the expense of degrading the performance 
(for example our experiment to calculate SURF features 
[6] on the phone took 1700 ms on average for 320X240 
frames and Hu Moments were computed in 802 ms for 
240X160 frames).  
We experimented with a number of features and depended 
on the following geometric descriptors for our feature 
vector: 

• Centroid: The centroid point of the hand area is 
given by: 

∑
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• Orientation: Also called the axis of the least 

inertia ( Rθ ) and by this we mean the direction of 
the major axis, which is the axis that runs through 
the hand object centroid and along the widest part 
of the hand’s region. The orientation is calculated 
using central moments (Mpq(R)) as follows: 

 








−

= −

)()(
)(.2tan

2
1

0220

111

RR
R

R µµ
µθ

 

Provided that the central moment (Mpq(R))  is 
defined as: 
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• Eccentricity: similar to the region orientation, 
moments can also be used to determine the 
eccentricity Ecc(R) of the hand region: 
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The values of eccentricity are in the range [1,∞), 
where eccentricity = 1 corresponds to a circular 
region, and elongated  regions have values > 1. 

• Convex Hull: Convex Hull was employed in 
various hand gesture recognition systems [7, 8]. 
Calculating the hand’s bounding convex hull in 
our system is based on Andrew's Monotone Chain 
[9] algorithm. It constructs convex hull of a set of 

2D points in )log( nnO  time. It does this by 
first sorting the points lexicographically (first by 
x-coordinate, and in case of a tie, by y-coordinate), 
and then constructing upper and lower hulls of 
the points.  

Although Andrew’s algorithm requires the input 
set of points to be sorted, we handle this in our 
implementation by scanning the input frame 
properly. For example, PU constitutes the set 
points that will be fed into the upper hull 
procedure. We collect them by scanning the frame 
column by column from left to right and from top 
to down until the first white pixel is encountered 
then we record its position and move to the next 
column. 

Since the numerous vertices resulted from the 
convex hull algorithm will result in high 
dimensional feature vector, the classification task 
may become complicated. For tackling this 
difficulty, we forward the produced list of vertices 
to a convex hull smoothing procedure to generate 
a kind of less complicated and smoothed convex 
hull. The clustering approach described here [10] 
is used. The technique works by grouping the 
adjacent vertices into a single cluster using the k-
means. Adjacency is determined based on the 
polar angle of each vertex. 

The previous geometric descriptors are combined 
into the feature vector. Convex hull descriptors 
are the distances from the centroid to the vertices 
of the smoothed convex hull after scaling them so 
that the largest is of them becomes equal to 1. 

2.4 Classification 

Previous research works have proposed and tested several 
classification techniques. Here we use two of the well-
known classification algorithms. 
K-Nearest Neighbors (KNN) that proved to work well in 
the hand gesture recognition problem [11]. Although 
KNN doesn’t make any assumptions about the underlying 
data distribution, the data is assumed to be in a feature 
space and thus have a notion of distance function 
responsible for measuring similarity between instances. 
Euclidean distance is the most commonly used distance 
function and is the one used in our system.  
Given a test instance (posture feature vector) x, its k 
nearest neighbors are found and a vote conducted to 
assign the most common class to x.  KNN requires no 
training and thus all the training data are kept along with 
it in the runtime, this means that a linear (sequential) 
search of the training data would require nontrivial time 
for large amount of training data. We developed a KD-
Tree [12] to keep/search the training instances during the 
program runtime.  
Decision Tree classifier was adopted successfully in the 
hand gesture recognition [13]. We use it in AndroSpell as 
an alternative to the k-nearest neighbor. We constructed 
the classification decision tree for our 10 gestures list 
using the C4.5 algorithm [14]. Eccentricity was selected 
as the root of the tree. The orientation (angle) and some 
convex hull descriptors were involved in the classification 
criteria. 
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3. System Evaluation 

AndroSpell prototype was implemented as a self-
contained piece of software that runs on Android phones. 
We evaluate our system by conducting various 
experiments on the prototype we developed. All the 
experiments were carried on using the HTC Legend 
phone equipped with 600 MHz ARM 11 processor 
Qualcomm MSM7227 chipset and Android v2.1 (Eclair) 
as the operating system. The camera is configured to grab 
176X144 frames. As a finger spelling recognition system 
we care about the accuracy of the system concerning how 
many postures were identified correctly. Also the 
embedded constrained nature of the Smartphone platform 
requires measuring and evaluating the computational 
performance and, more importantly, the power 
consumption of the software. 

3.1 Classification Accuracy 

We collected 1000 gesture images for training and 
validating the classification modules in AndroSpell. The 
images were uniformly distributed (100 images per 
gesture) and 66% of the collected data used for the 
training while the remaining portion used as the test set. 
The overall classification results (Figure 8) showed the 
decision tree to be the most robust classifier with a 
precision of 97%. This outperforms the 1NN that 
achieved a recognition rate slightly less than 96%. 
However 1NN becomes the best classifier when compared 
to 2NN, 3NN and 4NN respectively. Note that in the cases 
of 2NN, 3NN and 4NN we select the class of the gesture 
based on the majority voting. 
 

 

Figure 6.  Classification Precision 

3.2 Computational Performance 

The computational performance is a key criterion in 
assessing the usability of any gesture recognition program 
and our system is not an exception especially that its 
components depend on the computationally demanding 
vision algorithms. However it is challenging to keep the 
system response time within an acceptable threshold time. 
This happens because of three main reasons: 1) the 
preprocessing modules consume a considerable time of 
the total frame processing time (for example the YUV 
conversion stage takes approximately 250 milliseconds 
per frame), 2) the connected component filtering (CCF) is 
going to take at least 755 milliseconds (as mentioned in 
section 2.2), 3) the features we extract make extensive use 
of floating point arithmetic that proved to be 2x slower 
than integer arithmetic on Android devices [15].  
An earlier study [16] suggests that Android applications 
can become up to 10 times faster if they utilized native 
code. Android applications are usually programmed in 
Java using the Android SDK while native component 
could be developed using the Android NDK. We 
reprogrammed the frame preprocessing code using C++ 
and ported it to our application using Java Native 
Interfaces (JNI). A considerable performance gain (Figure 
9) that is equal to 386 milliseconds was achieved. A 
second optimization step that was taken is down-sampling 
the captured frame to 100X100 pixels in order to shorten 
the CCF and the feature extraction period. The ultimate 
result is that the total frame processing and recognition 
time is 1200 milliseconds when using decision tree and 
1400 milliseconds with 1NN classifier.  
Figure 10 summarizes the frame processing profiling 
results for AndroSpell. Clearly, KNN classification 
consumes a considerable time compared to the decision 
tree classification that takes 1.3 ms (approximately 0%) 
on average of the total frame processing time. The KD-
Tree implementation used to speed up the search process 
is still performing slower. The technical reasoning to this 
phenomenon is that the decision tree once trained 
becomes a set of rules that could be evaluated very 
efficiently in the run time. 
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Figure 7.  Native Code Performance Gain 

 

Figure 8.  Frame Processing Profiling 

4. Related Work 

The body of the work presented here is developed mainly 
to be mobile accessibility software, but it also falls in the 
broader context of static hand gesture recognition. 
Work on applications and systems for mobile accessible 
and assistive technology is growing in importance. 
Applications of accessible mobile and portable systems 
range from text-to-speech output and screen 
magnification to audio amplifiers and hearing aid 
compatibility. For example, there exist systems for the 
visually impaired that can guide a person in the case of an 
emergency [17] , help him to  find his way [18] and allow 
him to remotely control home appliance using voice 
recognition [19].  
A number of existing systems addressed the issue of 
mobile accessibility for the deaf. Jemni et. al. [20] 
proposed an application for automatically translating text 
messages into MMS containing avatar-based sign 
language animation to be sent to the deaf.  MobileASL 
[21] is another research effort that develops a sign-aware 
video encoder to be used by the deaf in their video calls. 
While the previously mentioned examples pursued a line 
of research that aims to provide the deaf with accessibility 
to the mobile communication, our system focuses instead 
on offering accessibility to the Smartphone platform itself 
which, we believe, will form a framework for future 
Smartphone hand gesture based applications. 
Recently, a work by [10] studied the feasibility of hand 
gesture recognition on Smartphone. Our work goes 
beyond the idea of viability to propose a robust continuous 
hand gesture recognition mobile prototype. 

In the context of static hand gesture, various works have 
already dealt with this challenging field using various 
techniques. Garg [22] summarizes the main approaches to 
hand gesture recognition. The whole process of gesture 
recognition in these systems can be coarsely divided into 
few sequential phases with each phase responsible for 
performing specific task and delivering the result to the 
next phase. Our work offers a system with the same 
purpose and architectural similarity. However, the design 
choices were adapted to enable successful deployment and 
operation on the Smartphone. 

5. Conclusion and Future Work 

In this paper we presented the design, implementation 
and evaluation of AndroSpell; the cameraphone Arabic 
Finger spelling recognition system. Our results indicate 
that the system performance and the classification 
accuracy enabled the Smartphone to robustly interpret 
static hand gestures. A number of challenges and 
limitations will be considered for future developments of 
the system. New ways to optimize the total frame 
processing time should be investigated. We will test 
another set of features and move more of computationally 
expensive code to the native side. Further work will 
consider the recognition of the dynamic (multiple frames) 
gestures. Hierarchical classification may be used in the 
cases where confusion between signs takes place. We will 
use the framework presented here as a base for building 
interactive mobile gesture-based applications like an 
educational finger spelling game targeted to children. 
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	1) Discarding repeated frames: We filter out the repeated frames using the “Baseline Differencing” approach tested here [1].  First we calculate the sum of absolute differences between successive frames, and then we check that sum against a predefined...

