
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

1

Manuscript received March 5, 2014
Manuscript revised March 20, 2014

Application of the Relational Concept Analysis (RCA) for
Remodularization of a Software Architecture and Comparison

with Others Techniques Based on FCA and Oriented Graph

 Lala Madiha Hakik†, Rachid El Harti††

† Faculty of Science and Techniques, University Hassan I, BP 577, Settat, Morocco.
†† Current address: Umm Al Qura University, College of applied sciences. Mekkah. Kingdom of Saudi Arabia, KSA.

†† Permanent address: Faculty of Science and Techniques, University Hassan I, BP 577, Settat, Morocco.

Summary
In a previous study we proceeded to the remodularization
architecture based on classes and packages using the Formal
Concept Analysis (FCA) [2] [13] [14], we then got two possible
remodularized architectures and we explored the issue of
redistributing classes of a package to other packages, we used an
approach based on Oriented Graph to determine the packages
that receive the redistributed classes and we evaluated the quality
of a remodularized software architecture by metrics[1]. This
paper presents the usefulness of relational concept analysis
(RCA) for remodularization of a software architecture composed
of classes and packages and we evaluate the quality of the result
by metrics of coupling and cohesion. Also we compare results
obtained by application of techniques based on Relational
concept analysis (RCA) between Formal Concept analysis and
Oriented graph.
Keyword: Remodularization, Software architecture, Relational
Concept Analysis (RCA), Metrics of Coupling and Cohesion.

1. Introduction

Great software systems based on approaches, the object
consist of classes grouped into packages, forming a
modular structure. The dependency relationships between
classes in the same package (internal dependencies), and
between classes of different packages (external
dependencies generate complexity making it difficult to
understand and maintain the system. In addition, the
modular structure tends to degrade over time, making
necessary an expert intervention for modernization [1].
Many researchers make proposals on this subject using
technical visualization, algorithms of remodularization,
Exploring the Redistribution Classes of a Package with an
Approach Based on Formal Concept Analysis. [13] [14] or
using an approach based on Oriented Graph based on the
technique of shortest path [1] .
In this paper, we study a particular declination, cf. the
problem presented by H. Abdeen et al. [2] [1], which is
about the redistribution of classes from one system to
existing packages. Namely, we consider in this paper
more precisely the redistribution of classes in a package

to other packages[1].
This package may be a very small and in fact we want to
balance the sizes of packages in the system, or it was
artificially created to contain added classes to the
system and the designer considers that there is no
consistency semantics[1].
We explore a solution using relational concept analysis
(RCA) and illustrate our proposal with a theoretical
example.
Section 2 presents our example, then we describe the
approach in Section 3. Section 4 presents validation
metrics of cohesion and coupling measure and we discuss
our main results. The comparison of results obtained by
application of techniques based on Relational concept
analysis (RCA) between Formal Concept analysis and
Oriented graph in Section 5. Related work is presented in
Section 6, and then we conclude in Section 7.

2. Illustration

This section presents the problem of software architectures
remodularization on an example. We will use the
architecture shown in Figure 1 consists of five packages A,
B, C, D and E. Packages A, B, C, D, E are expected to
contain more classes that are not shown for simplicity.
Dependencies linking classes: they correspond for
example to call a method or use of a type. External
dependency relationships link classes of package E to
classes of other packages. Internal dependency
relationships connect classes E between. Internal
dependencies of A, B, C and D are not presented.
We are interested in the redistribution of classes E to other
packages with an exploratory method, whose proposals for
redistribution are then presented to an expert. These
proposals are based on the idea that the expert, while
checking the semantic classes, could search for the
increase of the cohesion (within the meaning of the
coupling of classes in a package) and reduce the coupling
between classes in different packages. To do this, we

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

2

believe it is appropriate to encourage the following two
trends [12][13]:
 - Classes in a package attract them to classes of E,
 - If classes of E are interconnected, it is better to
redistribute in the same package.
 We believe that the Relational Concept Analysis (RCA)
can bring interesting ways to solve this problem because
this technical method allows the group to connect classes
identically. We are looking to propose a solution to an
expert.

Figure 1. An initial architecture composed of classes

and packages [12][13].

3. Proposed approach

 The Relational Concept Analysis (RCA¹) is a technical
relational data analysis whose objects are described by
attributes and relations with other objects. The RCA is
used in software engineering for solving several problems.
For redistributing of classes of package E to the
packages A, B, C, D of the software architecture for
remodularization, our exploration was carried following
the steps below:

Step1: Relational context family¹
It's a simple entity relationship mode to introduce RCA.

¹http://www.lgi2p.ema.fr/~urtado/Slides/Huchard_partie1_14_02_20
13.pdf

• Object- attribute contexts:

For our case, we have only the object- attribute
contexts are used to build the foundation of the concept
lattice family (see figure 4) result of grouping two
lattices T(C1) (figure 2) and T(C2) (figure 3).
Configurations In the context of our problem, we
studied six different configurations.
We present two of them.
The configuration with RCA is to define a formal
context C: the set O of entities studied (or formal objects)
Set A of characteristics (or formal attributes) and the
relationship
R ⊆ O × A.
 The first formal context associates a class c of a package
E to the packages that access to this class c (see Figure 2,
left panel).
Context (formal context C1).
- O1 is the set of classes of E in relation to the outside.
- A1 is the set of packages A, B, C, D (which has a relation
to a class of E).
- R1 is the relation "is a target for external access".
- (e, p) ∈ R1 if e is an access target from p, for example
(E2, A) ∈ R1.

Figure 2. Formal context C1 and lattice T(C1)

–Architecture 1-[12][13].

The second formal context can refine the results
and redistribute the same package into two
classes that are interconnected in E). It
combines a class of package E another class that
is connected (see Figure 3, left panel).

Context (formal context C5).

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

3

- O5 is the set of classes of E in relation to the outside.
- A5 = O5: E classes in relation to the outside.
- R5 is the relation "is connected to".
- (e1, e2) ∈ R5 if there is an arrow e1 to e2 or e1 to e2, for
example (E4, E5) and (E5, E4) belong to R2.

Figure 3. Formal context C2 and lattice T(C2)

–Architecture 1-

Figure 4. Concept lattice family grouping two lattices T(C1)

 (figure 2) and T(C2) (figure 3).

Step 2: RCA. Introducing relations as relational
attributes
Relations between classes interconnected of package E and
the target packages (see figure5), allow us in an
exploration for the redistribution of classes of package E to
know the exact destination of their specific assignment and
gives rise to a new context producing a new concept lattice
showing the execution of the redistribution of classes of
package E(see figure 6).

Figure 5. Relational concept family with relation :Target

package of classes of package E interconnected

Step 3: RCA. Enriching relations

The relationship enrichment object of step 2 is done by
replacing the objects columns by concepts lattice
associated with the target context; the relationship is
established by an operator of scaling¹ (see figure 6).

The New formal context associates a class c of a
package E interconnected to the packages that
access to this class c (see Figure 6, left panel).

New context (formal context C3).
- O3 is the set of classes of E in relation of the set of
interconnected classes of E.
- A3 is the concept of T(C1) in relation of the set of
interconnected classes of E.
- R3 is the relation "is a target package of classes of
package E interconnected".

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

4

Figure 6. New Formal context C3 and new lattice T(C3) result

of the relationship enrichment.

The concept lattice is the classification structures that
expose concepts (their nodes) and link by specialization.
For example, the concept lattice T(C1) associated with
context C1 (see Figure 2, right), contains eight concepts
outside the top and bottom. The shaded part of the labels
(upper part) corresponds to the simple intension of the
concept, while the white portion of the label (lower part) is
a simplified extension. Labeled extensions are inherited
backwards in the lattice while labels intensions are
inherited in descending.
For example the lattice T (C1) contains the concepts:
- ({E6, E7, E8}, {B}) at the top left, simplified in ({},
{B})
- ({E11, E12, E13}, {A, C}) in the middle at the bottom,
simplified ({E11, E12, E13},{})

Example of exploration The exploration is to navigate
the lattice T (C3) to identify opportunities for
redistribution of classes and submit to an expert. We
partially detail an example of analysis to explain the
principle.
The lattice T (C3) can be divided into three large blocks in
which we will choose concepts.

1. Analysis of the concept ({E5, E7}, {{E1, E2, E4},
{A}}) the right of T (C3): the expert can choose
to put five classes E1, E2, E4, E5, E7 in A.

2. Analysis of the concept ({E6, E7, E8, E11, E14}
{{E9, E10, E14}, {C}}) the left of T (C3):
eight classes are in full extension of the concept
of intension {C}, the expert can still choose to put
them in C. The subsystem {E6, E7, E8, E11, E14,
E9, E10, E14} can be put into C. Here we note
that the class E7 can be assigned to package A or
C and since it is interconnected to four classes
that go to A and interconnected to eight classes
for C, so it will go to the dominant package C.

3. Analysis of the concept ({E2}, {{E3}, {A, D}})
the right of T (C3): two classes are in full
extension of the concept of intension { A, D}, the
expert can choose to put two classes E2, E3
in package A or D and since E2 is
interconnected to four classes that go to A and
interconnected to one classe E3 that go to A or
D, so E2 will go to the dominant package A. In
this case the class E3 follow the class E2 also
in package A to stay together.

4. Analysis of the concept ({E12, E13}, {{E11, E12,
E13}, {A, C}}) the left of T (C3): three
classes are in full extension of the concept of
intension { A, C}, the expert can choose to put
three classes E11, E12, E13 in package
A or C and since E11 is interconnected to seven
classes that go to C and interconnected to two
classes E12 and E13 that go to A or C, so E11
will go to the dominant package C. In this case
the classes E12 and E13 follow the class E11 also
in package C to stay together.

Figure 7 shows one possible result of remodularized
software architecture. The classes of package E deleted
were distributed.

Figure 7. one possible result of remodularized software

-architecture -1-

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

5

4. Results and discuss

4.1 Validation metrics

For validatiton of metrics cohesion and coupling, our
calculations were based on figures 1 and 7 with an
architecture comprising 5 packages A, B, C, D and E by
redistribution classes of package E (figure 1) using The
Relational Concept Analysis (RCA¹), which resulted one
possible remodularized architecture (figure7). The package
E is removed during this operation.

1.Cohesion metics

Table 1. Cohesion metrics: Index of Package Goal Focus and Index of

Package Services Cohesion.
 PF IPSC
Package E of the original architecture 1 0,5 0,0116

Package A of the original architecture 1 0 1

Package C of the original architecture 1 0 1

Package A of the remodularization 1 0,25 1

Package C of the remodularization 1 0,46 1

Figure 8. graphic representation of Cohesion metrics: Index of

Package Goal Focus PF and Index of Package Services
Cohesion IPSC (table1).

The Cohesion metrics: Index of Package Goal Focus
(PF) and Index of Package Services Cohesion (IPSC)
take their values from 0 to 1, where 1 is the optimal value
and 0 is the wrong value.

Figure 8 gives the values of indices PF and IPSC for:

- Package E of Original Architecture 1 whose
indexes are bad values because they are lower
than 1.

- Packages A and C of remodularized architecture

whose the index IPSC is optimal value 1
therefore very good.

4. 2 Coupling metrics

Table 2. Coupling metrics: Index of Inter-Package Interaction
(IIPU and IIPE)

 IIPU IIPE
The original architecture 1 0,588 0,333

Architecture of the
remodularization 1

0,811 1

The coupling metrics: Index of Inter-Package Interaction
(IIPU and IIPE) object of the figure 9, it is observed
an improvement indexes IIPU and IIPE at
remodularization 1 architecture compared to indexes
of the original architecture 1 therefore a trend to
optimality .

Figure 9. graphic representation of Coupling metrics: Index of
Inter-Package IIPU and IIPE (table2).

Table 3. Coupling metrics: Index of Package changing Impact
IPCI; Index of Package Communications Diversion (IIPUD and

IIPED)
 IPCI IIPUD IIPED

Package E of the original
architecture 1

0 0,271 1

Package A of the original
architecture 1

1 1 1

Package B of the original
architecture 1

1 1 1

Package C of the original
architecture 1

1 1 1

Package D of the original
architecture 1

1 1 1

The original architecture 1 0,8 0,854 1
Package A of the
remodularization 1

0 0,38 0,38

Package B of the
remodularization 1

1 0,583 0,583

Package C of the
remodularization 1

1 0,541 0,541

Package D of the
remodularization 1

1 1 1

Remodularization 1 0,75 0,626 0,626

Concerning the coupling metrics: Index of Package
changing Impact (IPCI) and Index of Package

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

6

Communications Diversion (IIPUD and IIPED) presented
in figure 10, the results obtained for remodularization 1
approximate from those of the original architecture 1
extend to a higher interesting value 0.626.

Figure 10. graphic representation of Coupling metrics: Index of
Package changing Impact; Index of Package Communications

Diversion (table3).

The results obtained at the level of the cohesion for the
remodularized architecture 1 provides an optimum value 1
compared to the original architecture 1.
The results of the coupling have an improvement at the
level of remodularized architecture 1 compared to the
original architecture 1.

5. The comparison of results obtained by
application of techniques based on Relational
concept analysis (RCA) between Formal
Concept analysis and Oriented graph

5.1. Comparison of remodularized software
architectures obtained

Concerning the technical of redistribution of classes
based on formal concept analysis, we got two
remodularized software architecture offering an
alternative choice to a software expert on one hand and
know the way back to the original architecture on the other
hand [2] [13] [14]
As to the result of the redistribution of classes in a package
to other package by using the graph-oriented, this
technique has generated one and unique remodularized
software architecture [1].
Also the method of Relational concept analysis (RCA)
generated one unique remodularized software
architecture .

5.2. Comparison the results of the validation metrics
coupling and cohesion

As a reminder, for validatiton of metrics cohesion and
coupling, our calculations were based on figures 1 and 2
with an architecture comprising 5 packages A, B, C, D and
E by redistribution classes of package E (using formal
concept analysis techniques which resulted into two
possible architectures . The package E is removed during
this operation. Initial architecture (figure 1) and the two
architectures result from the remodularization obtained by
applying our approach based on formal concept analysis,
which has been the object of the articles [2] [13][14]
[29].
The results obtained at the level of the
cohesion for the remodularization 1 and 2 provides an
optimum value (with an advantage to the
remodularization 1 remaining more performance for
choosing a software expert). The results of the coupling
have an improvement at the level of remodularized
architectures 1 and 2 compared to the original
architecture 1 [2] [29].
Furthermore the results obtained of the redistribution
of classes in a package to other package by using the
graph-oriented [1] [29], at the level of the
cohesion for the remodularized architecture 1 provides
an optimum value 1 compared to the original
architecture 1. The results of the coupling have an
improvement at the level of remodularized architecture 1
compared to the original architecture 1 [29] .
Also the method of Relational concept analysis
(RCA) generated one unique remodularized software
architecture and have revealed interesting results of
the cohesion and coupling at the level of
remodularized architecture 1 compared to the original
architecture 1.
So the three techniques adopted for the redistribution of
classes have revealed interesting results tending to
optimization and limiting the number of remodularized
software architectures proposed to the software
expert .

6. Related Work

Different automated approaches have been proposed to
restructure object systems. We cite three: the clustering
algorithms, algorithms based on meta -heuristics and those
based on the FCA[6]. The first aim to restructure system
by the distribution of some elements (eg classes, methods ,
attributes) in groups such that the elements of a group
are more similar to each other with elements of other
groups [3] [7] [5]. Approaches to restructuring based on
meta-heuristic algorithms [9] [8] are generally iterative
stochastic algorithms, progressing towards a global

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

7

optimum of a function by evaluating a certain objective
function (eg characteristics or quality metrics). Finally, the
approaches based on FCA [10] [12] provide an algebraic
derivation of hierarchies of abstractions from all entities of
a system. Reference [4] presents a general approach for the
application of the FCA in the field of object-oriented
software reengineering. In previous work, we added the
dimension of exploration using the FCA[13] [14].
Last work we explored the issue of redistributing classes
of a package to other packages. We use an approach based
on Oriented Graph to determine the packages that receive
the redistributed classes and we have evaluate the quality
of a remodularized Software Architecture by metrics for
measuring Coupling and Cohesion of a Package[1] .
In this paper use an approach based on relational concept
analysis (RCA) for remodularization of a software
architecture composed of classes and packages and we
evaluate the quality of the result by metrics of coupling
and cohesion.
A large part of previous works related to oriented software
metrics has focused on the issue of characterizing the class
design, either looking internal complexity or relationship
between a given class and other classes [1] [16] [17] [18]
[19] [20] [21] [22] [23] [24] [25] [26].
In the literature, there is also a body of work that focus on
object oriented metrics from the standpoint of their
correlation with software changeability [16][27], or from
the standpoint of their ability to predicate softwair
maintenability [1] [16][28]. Other reasearchers argue
that the measures resulted by the cohesion and coupling
metrics of the previous works are open to interpretation [1]
[16] [28].
In general, there are few metrics in the the literature
devoted to packages.
Our cohesion and coupling metrics we provide in this
work are similar to the metrics provided by Ducasse[1]
[16].

Conclusion

In this article we explore the issue of redistributing classes
of a package to other packages. We use an approach based
on relational concept analysis (RCA) to determine the
packages that receive the redistributed classes, and we
have evaluate the quality of a remodularized software
architecture by metrics for measuring coupling and
cohesion of a package . The results have an improvement
at the level of remodularized architecture.
we compare results obtained by application of techniques
based on Relational concept analysis (RCA) between
Formal Concept analysis and Oriented graph. So the
three techniques adopted for the redistribution of classes
have revealed interesting results tending to optimization
and limiting the number of remodularized software

architectures proposed to the software expert [29].

References
[1] L.M. Hakik, R. El harti. Technique Of Redistribution

Classes Of A Package With An Approach Based On
Oriented Graph And Evaluation Quality of A Remodularized
Software Architecture. International Journal of Innovative
Research in Science, Engineering and
Technology.ISSN:2319-8753. Vol. 3, Issue 1, January 2014.

[2] L.M. Hakik, R. El Harti. Measuring Coupling and
Cohesion to Evaluate the Quality of a Remodularized
Software Architecture Result of an Approach Based on
Formal Concept Analysis. IJCSNS International Journal of
Computer Science and Network Security .Vol. 14 No. 1 pp.
11-16. Journal ISSN : 1738-7906. January 2014..

[3] F.B. Abreu, G. Pereira, and P. Sousa. A coupling-guided
cluster analysis approach to reengineer the modularity of
object-oriented systems. In Proceeding of the confeence on
Software Maintenance and Reengineering. CSMR ‘OO,
pages 13-, Washington, DC, USA, 2000. IEEE Compter
Society Press.

[4] G. Arévalo, S. Ducass, and O. Nierstrasz. Lessons leaned in
appling fomal concept analysis to reverse engineering. In
Proceeding of the Third international conference on Fomal
Concept Analysis, ICFCA’05, pages 95-112, Berlin.
Heidelberg, 2005. Spinge-Velag.

[5] M. Bauer and M. Trifu. Architecture-aware adaptive
clustering of oo s ystems. In Poceedings of the Eighth
Euromicro Working Conference on Software Maintenance
and Reengineering (CSMR ‘O4), CSMR ‘O4, pages 3-,
Washington, DC, USA, 2004. IEEE Compter Society.

[6] B. Ganter and R. Wille. Formal Concept Analysis.
Mathematical Fondations. Spinge. 1999.

[7] B.S. Mitchell and S. Mancoridis. Compaing the
decompositions produced by software clustering algoithms
using similarity measurements. In ICSM, pages 744-753,
2001.

[8] M.O’Keeffe and M. i Cinneide. Seach-based refactoring fo
software maintenance. J. Syst. Softw., 81(4): 502-216, April
2008.

[9] O. Seng, J. Stammel and D. Burkhart. Search- based
determination of refactorings for improving the class
structure of object-oriented systems, In Mike Cattolico,
edito. GECCO, pages 1909-1916. ACM, 2006.

[10] G.Snelting. Software reengineering based on concept lattices.
In CSMR, pages 3-10, 2000.

[11] T. Tilley, R. Cole, P. Becker, P.W. Eklund. A survey of
formal concept analysis support for software engineering
activities. In Int. Conf. Fomal Concept Analysis (ICFCA
2005), pages 250-271, 2005.

[12] P. Tonella.Concept analysis for module restructuring. IEEE
Trans. Software Eng..27 (4): 351-363, 2001.

[13] L.M. Hakik, M. Huchard, R. El Harti et A.D. Seriai.
Exploration de la redistribution des classes d'un package par
des techniques d'Analyse Formelle de Concepts. The first
conference in software engineering (CIEL 2012), France,
2012.

[14] L.M. Hakik, R. El Harti . "Exploring the Redistribution
Classes of a Package with an Approach Based on Formal
Concept Analysis ", Vol.2 - Issue 12 (December - 2013),
International Journal of Engineering Research &

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

8

Technology (IJERT), ISSN: 2278-0181, www.ijert.org.
[15] A. Anwar. Formalisation par une approche IDM de la

composition de modeles dans le profil VUML. Thesis.
Toulouse University. 2009.

[16] S. Ducasse, N. Anquetil, M.U. Bhatti and A.C. Hora.
Software metrics for package remodularisation. Research
report, November 2011.

[17] S. R. Chidamber and C. F .Kemer. A metrics suit for object
oriented design. IEEETSE, 20: 476-493, 1994.

[18] F.B. Abreu and R. Carapuca. Candidate metrics for
objected-oriented software within a taxonomy framework.
Journal of Sys, Sof. 26: 87-96, 1994.

[19] W. Li and S. Henry. Objected-oriented metrics that predict
maintainability. Journal of Sys, Sof. 23:111-112, 1993.

[20] W. Li. Another metric suit for object oriented programming.
Journal of Sys, Sof. 44:155-162, 1998.

[21] B.H. Selers. Object-Oriented Metrics: Measures of
Complexity. Prentice-Hall, 1996.

[22] J.M. Bieman and B.K. Kang. Cohesion and reuse in an
object-oriented system. In ACM Symposium on Software
Reusability. April 1995.

[23] J.M. Bieman and B.K. Kang. Measuring design-level
cohesion. IEEETSE, 24(2) :111-124, February 1998.

[24] L.C. Briand, S. Morasca and V. R. Basili. Defining and
validation measures for object-based high-level design.
IEEE TSE, pages : 722-743, 1999.

[25] L.C. Briand, J.W Daly and J. Wust. A Unified Framework
for Cohesion Measurement in Objected-Oriented
Systems. Empirical Software Engineering. An International
Journal, 3(1):65-117, 1998.

[26] L.C. Briand, J.W Daly and J. Wust. A Unified Framework
for Coupling Measurement in Objected-Oriented
Systems. IEEETSE, 25(1):91-121, 1999.

[27] R.K. Bandi, V.K. Vaishnavi and D.E. Tuk. Predicting
maintenance performance using object- oriented design
complexity metrics. IEEETSE, 29: 77-87, 2003.

[28] H. Kabaili, R.K. Keller, F. Lustman. Cohesion as
changeability indicator in object- oriented systems. In Fifth
Europ. Conf, on Sof. Maintenance and Reengineering.
CSMR 01, pages39-46, Washington, DC, USA, 2001.
IEEE Computer Society.

[29] R.K. Bandi, V.K. Vaishnavi and D.E. Tuk. Predicting
maintenance performance using object- oriented design
complexity metrics. IEEETSE, 29: 77-87, 2003.

[30] L.M. Hakik, R. El Harti. Comparison of Results Obtained
by Application of Techniques Based on Formal Concept
Analysis and Oriented Graph for a Remodulaisation
Software Architecture Composed of Classes and Packages.
IJCSNS International Journal of Computer Science and
Network Security .Vol. 14 No. 2 . Journal ISSN : 1738-7906.
January 2014.

Lala Madiha Hakik received the Maitrise
in Computer Engineering, from Hassan 1st
University, FST, Settat, Morocco in 2005,
Specialized Master in Software
Engineering, Montpellier -2- University,
France in 2009, She is a PHD Student in
Computer Science specialized in
Software Engineering, University Hassan
1st , FST, Settat, Morocco, 2014. Members

of the specific scientific committee and editorial review on World
Academy of Science, Engineering and Technology. International
association for the engineers and computer scientists member
(IAENG member).

Rachid El Harti received the PHD in
Mathematics and applications from
Mohammed V University, Morocco in 1993,
Full professor, Hassan 1st University,
Morocco

	Great software systems based on approaches, the object consist of classes grouped into packages, forming a modular structure. The dependency relationships between classes in the same package (internal dependencies), and between classes of different pa...
	This package may be a very small and in fact we want to balance the sizes of packages in the system, or it was artificially created to contain added classes to the system and the designer considers that there is no consistency semantics[1].
	We are interested in the redistribution of classes E to other packages with an exploratory method, whose proposals for redistribution are then presented to an expert. These proposals are based on the idea that the expert, while checking the semantic c...
	- Classes in a package attract them to classes of E,
	- If classes of E are interconnected, it is better to redistribute in the same package.
	We believe that the Relational Concept Analysis (RCA) can bring interesting ways to solve this problem because this technical method allows the group to connect classes identically. We are looking to propose a solution to an expert.
	Concerning the technical of redistribution of classes based on formal concept analysis, we got two remodularized software architecture offering an alternative choice to a software expert on one hand and know the way back to the original architectu...
	As to the result of the redistribution of classes in a package to other package by using the graph-oriented, this technique has generated one and unique remodularized software architecture [1].
	Also the method of Relational concept analysis (RCA) generated one unique remodularized software architecture .
	As a reminder, for validatiton of metrics cohesion and coupling, our calculations were based on figures 1 and 2 with an architecture comprising 5 packages A, B, C, D and E by redistribution classes of package E (using formal concept analysis techniqu...
	In the literature, there is also a body of work that focus on object oriented metrics from the standpoint of their correlation with software changeability [16][27], or from the standpoint of their ability to predicate softwair maintenability [1] [16...
	In general, there are few metrics in the the literature devoted to packages.
	Our cohesion and coupling metrics we provide in this work are similar to the metrics provided by Ducasse[1] [16].
	[19] W. Li and S. Henry. Objected-oriented metrics that predict maintainability. Journal of Sys, Sof. 23:111-112, 1993.
	[20] W. Li. Another metric suit for object oriented programming. Journal of Sys, Sof. 44:155-162, 1998.
	[21] B.H. Selers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, 1996.
	[22] J.M. Bieman and B.K. Kang. Cohesion and reuse in an object-oriented system. In ACM Symposium on Software Reusability. April 1995.
	[23] J.M. Bieman and B.K. Kang. Measuring design-level cohesion. IEEETSE, 24(2) :111-124, February 1998.
	[24] L.C. Briand, S. Morasca and V. R. Basili. Defining and validation measures for object-based high-level design. IEEE TSE, pages : 722-743, 1999.
	[25] L.C. Briand, J.W Daly and J. Wust. A Unified Framework for Cohesion Measurement in Objected-Oriented Systems. Empirical Software Engineering. An International Journal, 3(1):65-117, 1998.
	[26] L.C. Briand, J.W Daly and J. Wust. A Unified Framework for Coupling Measurement in Objected-Oriented Systems. IEEETSE, 25(1):91-121, 1999.

