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Summary 
This paper presents empirical experience on a scalable, 
high-performance storage with two existing low-cost 
technologies. One technology is Ethernet-Attached Disks 
(E-AD) which are iSCSI-like disks but with low cost 
controllers. Another is Network File System (NFS) which 
is an open standard supported through open source. In 
particular, NFS version 4.0 (NFSv4.0) has been the de-
facto distributed file system protocol for generations. 
Unfortunately, in this age of mass data, scalability of 
NFSv4.0 has become an issue. The NFS community has 
developed the pNFS protocol that takes advantage of 
parallel accesses to the pool of storage, and announced 
NFS version 4.1 including the pNFS protocol. We 
evaluated the scalability and performance of our storage 
system under various environments and benchmarks. The 
results show that NFSv4.1 has substantial benefits on large 
I/O units due to direct disk access and parallelism. 
Key words: 
Network File System, parallel NFS, E-AD, NFSv4.1 

1. Introduction 

This paper presents empirical experience showing that 
scalable, high-performance storage can be achieved by 
integrating two existing low-cost technologies. In 
particular, Ethernet-Attached Disks (E-AD), which are 
iSCSI-like disks but with low cost controllers, and NFS 
version 4.1 (NFSv4.1)[1,2,3,4], an open standard 
supported through open source, are used to provide 
scalable, high performance storage. 
NFS version 4.0 (NFSv4.0)[5] has been the de-facto 
distributed file system protocol for generations. 
Unfortunately, in this age of mass data, scalability of 
NFSv4.0 has become an issue[6,7,8,9,10]. With NFSv4.0, 
as the server serves all client commands and data transfer, 
the performance is limited by the capability of the server. 
Furthermore, capacity scalability, that is, the capability to 
expand storage capacity as needed, is also limited by the 
storage infrastructure such as DAS (Direct-Attached 
Storage), NAS (Network-Attached Storage)[11], or SAN 
(Storage Area Network)[12]. 

pNFS[13,14,15], introduced as part of NFS version 4.1 
(NFSv4.1) has been introduced to overcome the first 
limitation. NFSv4.1 separates the metadata and dataflow of 
client requests thereby allowing parallel access to 
simultaneously accessible storage disks. Unfortunately, 
pNFS still suffers from capacity scalability limitation as 
the underlying storage structure is still DAS, NAS, or SAN.  
Hence, pNFS is generally supported through proprietary 
implementations. Thus, exploiting the features of pNFS 
can become a costly endeavour.  
The goal of this study is to share our experience in 
overcoming the performance and capacity scalability 
limitations of NFSv4.0 through the use of low-cost existing 
technologies. Through a comprehensive set of experiments 
that we conduct, we show that by using low-cost Ethernet 
attached disks, capacity can be expanded as needed at low 
cost, while obtaining performance scalability as capacity is 
added. The software platform that we use is based on the 
unofficial block-based pNFS that was released in Linux 
3.XX.  
More specifically, we use what we call E-AD (Ethernet-
Attached Disk) devices as the disk storage subsystem for 
an NFSv4.1 setting as our experimental platform. The E-
AD device, which was originally developed by Lim et 
al.[16], consists of a hard disk drive and an ASIC chip that 
bridges the off-the-shelf hard disk drive directly to the 
Ethernet. Major advantages of this type of E-AD device 
used in our experiments include (1) economy, which is a 
compelling factor in deciding the storage components of 
today’s huge scale storage system where over 1,000TB of 
storage capacity is becoming the norm, (2) easy 
expandability, which is a must for the ever-growing storage 
needs that we are witnessing in today's cloud computing 
environment and Hadoop[17] ecosystems. Such E-AD 
devices allow practically unlimited number of disks to the 
NFSv4.1 system as long as Ethernet ports are available 
with comparable I/O performance at a fraction of the cost 
of SAN or iSCSI storage.  
The rest of the paper is organized as follows. Section 2 
briefly describes related work related to the technology of 
storage infrastructure and data management. Section 3 
describes the E-AD technology and the workings of our 
system. Section 4 describes the experiment platform. 
Section 5 and Section 6 evaluate our system and show the 
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results under various environments and benchmarks. 
Finally, we summarize and conclude this work in section 7. 

2. Related Work 

In this section, we discuss the storage system layers 
relevant to our work. We first discuss the storage 
infrastructure layer. Then, the data management layer is 
discussed. Finally, we discuss the status of pNFS, which is 
most relevant to our study. 

2.1 Storage Infrastructure 

Storage systems are composed of two levels of technology. 
One is the storage infrastructure used by the storage system. 
DAS (Direct-Attached Storage), NAS (Network-Attachted 
Storage)[11], SAN (Storage Area Network)[12] are typical 
forms of storage infrastructure that are used today. DAS, as 
its name implies, attaches storage disks directly to the local 
system. With DAS, the capacity can be expanded only to 
the number of device slots that are available within the 
system. 
In contrast to DAS, NAS and SAN are storage connected 
through the network. A NAS unit is a storage appliance 
that provides file-based services to clients requesting 
service. NAS units are generally composed of a (fixed) 
number of disks and uses file-based protocols such as 
NFS[18] or CIFS[19]. Expanding NAS capacity can only 
be done in NAS units. Storage provided via SAN, on the 
other hand, provides block-based services generally using 
the Fibre Channel protocol[20], leaving the file 
management issue on the client side. Expanding the 
capacity of SAN storage is limited by the number of Fibre 
Channel switch ports, and may also require expanding the 
Fibre Channel network, which can be costly. Our current 
definition for a NAD (Network-Attached Disk) device 
includes all storage systems that exhibit the following 
properties: direct client-drive data transfer in a networked 
environment, asynchronous oversight by the high level 
filesystem, cryptographic support for the integrity of 
requests, storage self-management opportunities derived 
from a more abstract and independent  role for storage  
systems,  the ability  to extend the feature set of a NAD for 
the purpose of application as well as for the client 
operating system. 

2.2 Data Management 

The other layer of technology involved with storage 
systems is the data management layer. Numerous 
experimental and real implementations for data 
management of mass distributed storage have been 
proposed. Lustre[21], PVFS2[22], Google File System[23], 
Ceph[24], GPFS[25] are some notable research and real 

world approaches. Each of these systems present unique 
approaches to sharing, moving, and integrating data stored 
in distributed storage systems. Due to their uniqueness 
(and their proprietory and high cost nature), portability is 
the main stumbling block for wide deployment of these 
systems. 
In contrast, NFS (Network File System) is an open 
standard distributed file system protocol that has been 
widely accepted and deployed as an industry standard 
since the 1980's. Currently, NFS version 4.0 (NFSv4.0) is 
most widely deployed. However, with current trends of 
mass data production and usage, NFSv4.0 is having 
difficulty sustaining scalability in terms of performance 
and deployment as all service requests and data movement 
must pass through the NFS server of which the basic 
underlying storage infrastructure is either a NAS or a SAN. 
Hence, IETF (Internet Engineering Task Force), the open 
standards organization looking over Internet standards, 
proposed NFS version 4.1 (NFSv4.1) with the aim to 
support scalable parallel access to clustered storage servers 
for higher performance[1,2,3,4]. This form of parallel 
access support is also referred to as pNFS[13,14,15]. 
NFSv4.1 supports file-, block-, and object-based storage 
systems. 
Figure 1 shows the organization of pNFS (parallel NFS). 
The key difference of pNFS from NFSv4.0 is its separation 
of file control and management from the data transfer. First, 
the NFS client and meta-data server (MDS), which holds 
the data layout information, communicates the control and 
management information of files through the pNFS 
protocol. The data layout information exchanged depends 
on the way the data is stored, i.e., file-, block-, or object-
based. For example, in a system supporting block-based 
data layout, the starting block number and the number of 
bytes to transfer would be provided to the client. Once the 
client receives the data related information from the MDS, 
actual transfer of data is done in parallel in cooperation 
with the data servers (DS), independent of the MDS. NFS 
client-side data layout related drivers have been available 
in Linux since version 2.6.x. A few studies have been 
conducted in regards to NFSv4.1, with a focus on file-
based storage systems[6,7,8,9,10]. Moreover, the source 
code of block-based pNFS server has not been supported 
on pNFS development site since version 3.4. 

 
Fig. 1 Overview of pNFS protocol 
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2.3 Network Attached Disks 

There are a number of network attached disks systems such 
as FC SAN [12], iSCSI[26], NASD[27], AoE[28], and 
FCoE[29]. E-AD used in our experiments distinguishes 
itself from others. E-AD implements its own re-
transmission mechanism at its transport layer protocol 
without relying on TCP as in iSCSI in order to achieve 
higher effective data transfer rate by exploiting faster re-
transmission. E-AD disk drive provides economic storage 
because it is not required to have a CPU or memory while 
most other network attached systems require a CPU and 
memory. E-AD adopts a virtual HBA (Host Bus Adapter) 
in the host computers, i.e., the device driver software 
installed in host computers provide a virtual HBA without 
having a physical HBA for E-AD. Although E-AD does 
not use a physical HBA, the E-AD system achieves high 
data I/O bandwidth by realizing I/O commands that 
transfer bigger chunks of data than the commands in ATA , 
SCSI, or FC. Since E-AD uses generic off-the-shelf 
Ethernet switches it has more applicability than others that 
are required to use special network hubs as in FC SAN. 

3. Cost Effective, Scalable pNFS 

3.1 E-AD Technology 

The E-AD storage devices, originally developed by Lim et 
al.[16], are basically SATA hard disk drives directly 
attached to Ethernet through a bridging ASIC, as shown in 
Figure 2. The protocol used by this device can be regarded 
as a variation of iSCSI, Ethernet based SAN, or AoE 
(ATA over Ethernet). However, the particular proprietary 
protocol suite implemented here emphasizes economy and 
performance over iSCSI and AoE by not employing any 
DRAM or CPU and by adopting a fast and reliable packet 
re-transmission mechanism. The host computer, i.e. 
NFSv4.1 MDS and clients, issues I/O commands similar to 
those of iSCSI to the E-AD devices. The controller in the 
ASIC translates the host computer issued I/O commands 
into SATA I/O operation commands for the SATA disk 
drives, and vice versa.  
The effective protocol of E-AD allows multiple hosts to 
issue I/O commands at the same time to a multitude of the 
E-AD devices in parallel. Since the host computers view 
the devices as their own local disks attached to their own 
internal bus, they issue block-level I/O commands directly 
to the devices as they would to local drives and all existing 
software can run without any modification to make use of 
the E-AD devices.  
In addition, the fact that the protocol does not require an IP 
address for each individual device makes it possible to 
expand the storage space to practically an unlimited 

capacity as long as Ethernet ports are available to 
accommodate the devices. 
 

 
Fig. 2   E-AD storage device: SATA hard disk drives 
directly attached to Ethernet through a bridging ASIC 

3.2 Overview of the Workings 

Figure 3 shows the workings of our system. As shown in 
the figure, it is essentially a typical NFSv4.1 SAN 
configuration without the costly SAN Fibre Channel. The 
NFS server in the figure serves as the MDS and data is 
stored in E-ADs. The MDS uses the LVM (Logical 
Volume Manager) to configure the E-ADs into a 
configuration of choice, say RAID0. This configuration 
becomes a single logical volume, and the MDS exports this 
volume as a block device and a mount point to the clients.    
 

 
Fig. 3 Workings of our system 

 
To store or retrieve data, the NFS client initially mounts 
the MDS exported volume. In so doing, the client 
generates a logical volume of its own based on the server 
exported configuration, whereupon the client sets up the 
device information. This set of device information is an 
extra step not found in NFSv4.0 and is used to directly 
access the devices from the client. 
 
The read procedure of NFSv4.1 is as follows: 
1. The client sends a read request (which includes the 

file descriptor, the start address, and length) to the 
MDS. 

2. Based on the file inode information, the MDS replies 
with a layout that contains the device number and the 
set of extents, i.e. offset and length pair, that comprise 
the file. 
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3. Using the layout received, the client reads the disks 
directly based on the logical volume configuration 
information. 

 
The write procedure of NFSv4.1 is as follows: 
1. The client sends a write request (which includes the 

file descriptor, the start address, and length) to the 
MDS. 

2. The MDS allocates (as consecutively as possible) the 
requested size in a minimal number of extents and 
sends the layout, which comprises the device number 
and the set of extents, to the client. 

3. Using the layout received, the client directly writes to 
the disks based on the logical volume configuration 
information. 

4. Upon completion, the client sends a commit to the 
MDS. 

5. The MDS modifies its meta-data information based 
on the commit information. 

 
Table 1: Settings of experimental environment 

 Features 
Meta-data 
Server 

Linux 3.3.0,  i3 CPU, 8G RAM,  
1Gbs Network Adapter, 
 HDD(500GB/7200rpm/16M Cache) 

Client 
Machine 

Linux 3.3.0,  i7 CPU, 8G RAM,  
1Gbs Network Adapter, 
HDD(3TB/7200rpm/64M Cache) 

E-AD SATA2 Interface ASIC 
HDD(3TB/7200rpm/64M Cache) 

Network 
Switch 10/100/1000Mbps (autosensing) 

4. Experimental Platform 

In this section, we describe the platform in which all our 
experiments were performed. Table 1 shows the hardware 
platform with which the experiments were conducted. To 
support NFSv4.1, there is one meta-data server (MDS) and 
a maximum of 16 E-AD devices. The E-AD   devices   are   
configured   in   various ways   as experiments are 
performed as we will describe in the next two sections. A 
maximum of 6 client machines, individually an i7 machine 
running Linux 3.3.0, generate the workloads to the storage 
system. A maximum 1Gbps network switch connects all 
the machines. The maximum network bandwidth of the 
network switch limits the throughput of the storage system. 
The software that we use in our experiments are originally 
the pNFS source code of the Linux kernel 3.3 maintained 
by Benny Halevy obtained from the kernel NFS git 
repository[30]. The downloaded source includes the block-
based pNFS server code that was modified from the file-
based pNFS server code spnfs developed by EMC[31]. 

However, this block-based server code has not been 
patched since kernel 3.4. The downloaded code, which had 
a few bugs, was debugged as needed. Specifically, we list a 
few significant problems that were corrected.  
1) The storage system was not being properly recognized 
when two or more disks were configured as RAID0.  
2) Originally, when the client requested a file write, the 
layout request was made only in 4K page sizes. This 
resulted in significant communication overhead between 
the MDS and the client that obviated the benefits of 
writing directly to the storage devices, especially when the 
write size was large. We modified this code to allow layout 
requests of any size that we desire.  
3) Originally, the client periodically issued commits to the 
server during file writes to storage. This was a major bug 
that resulted in disastrous consequences. To elaborate, to 
write a file to storage, the client requests for a layout for a 
write of a particular size from the MDS. The MDS 
responses with one, and the client starts to write to disks. 
In the middle of writing, the client may decide to commit, 
sending the committed layout to the server. Upon receiving 
this committed layout, the server takes its own layout that 
it had originally sent to the client and modifies it according 
to the committed layout. This results in the client and 
server layouts being different; the client still has the 
original layout and the server has the new (partial) 
committed layout.  
At this point, if the client tries to commit once again after 
writing more, the server simply ignores the request as the 
two layouts are not in sync. A similar problem arises when 
a read of the written data is requested. To remedy this 
problem, we modified the code so that a commit will 
happen only after the write is complete. 

5. Scalability Experiments 

In this section, we look into the scalability aspect of pNFS. 
In the following set of experiments, we conduct a series of 
copy operations (using the “cp” command) from the local 
disk to the E-AD devices, and vice versa. The results are 
denoted as “To E-AD” and “From E-AD”, the former 
referring to local disk to E-AD and the latter to E-AD to 
local disk copies. In the case of more than one E-AD 
device, the devices are configured as RAID0 so that the 
devices are accessed in parallel. 

5.1 Effect of disk parallelism 

Figure 4 shows the average throughput results (in MB/sec) 
as the number of E-AD devices is increased when copying 
10 files each of size 1GB. Contrasting the results of 
copying to and from E-AD, we see that writing to E-AD 
shows better throughput. The main reason behind this is 
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because writes are asynchronous and acknowledgements 
arrive at the client even before the data is fully written to 
the device. The difference of overhead incurred by 
messages exchanged between the server and the client 
during read and write operation also influences these 
results. The results also show that throughput improves as 
the number of devices used, that is, parallelism, is 
increased saturating the network bandwidth with an only a 
few devices. 

5.2 Effect of the number of clients 

We repeat the experiments conducted in the previous 
subsection as we increase the number of client machines. 
Figure 5 shows the (aggregate and average) throughput as 
each client copies a 1GB file from (and to) local disk to 
(and from) 16 E-AD devices. The results show that the 
aggregate throughput scales with increased number of 
clients. 

5.3 Effect of file size 

Figure 6 shows the effect of the file size on performance 
when the number of E-AD devices is 16 starting from one 
1MB file to one 10000MB file. Each data point is reported 
is an average of five executions with the system rebooted 
after each execution. We see that the throughput increases 
as the file size increases saturating at maximum network 
throughput. 

5.4 Effect of the number of files 

We now take a 1MB file and increase the number of files 
to see the effect of the number of files on performance. In 
this experiment the lone client sequentially copies the 
specified number of 1MB files to (from) the 16 E-AD 
devices from (to) the local disk. The results are presented 
in Figure 7. We see that with the increase of the number of 
files, there is no deterioration of performance even though 
the MDS is consulted for each data service request. 
However, we also see that the performance does not 
saturate the network bandwidth as each file is only 1MB. 

6. Benchmark Performance 

In this section, we present results for the Filebench and 
FIO benchmarks. We present results comparing NFSv4.1 
with NFSv4.0. The experimental environment is the same 
as the scalability experiments, except that there is only one 
client. 
 

 
Fig. 4  Disk scalability 

 
Fig. 5  Client scalability 

 
Fig. 6  File size scalability 

 
Fig. 7  Number of files scalability 
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6.1 Filebench 

Filebench is a file system and storage benchmark that 
generates a large variety of workloads. Table 2 shows the 
feature of the workloads used in our experiments. 
Figure 8 shows substantial performance improvements 
with NFSv4.1 on fileserver and videoserver workloads 
using mass data. This result shows that the bigger I/O unit 
allows for greater benefits for pNFS as it increases the 
effectiveness of direct disk access. The results for 
workloads with many small reads are different in that 
NFSv4.0 performs better or in par with NFSv4.1. The first 
reason for this is that in case of NFSv4.0, most I/O 
requests are serviced through the cache of the local file 
system in the NFS server because the I/O unit is small. 
Another reason is that the effectiveness of direct disk 
access in NFSv4.1 is small because the I/O unit is small. 
 

Table 2:  Filebench workloads 
Workload Mean file size Read: write ratio 

Fileserver 128K 1:2 

Varmail 16K 1:1 

Webserver 16K 10:1 
Videoserver 1G Read only 

 

 
Fig. 8   Filebench benchmark 

6.2 FIO 

FIO is an I/O tool meant to be used both as a benchmark 
and for stress/hardware verification. In this benchmark, we 
conducted sequential write/read and random write/read. 
Figures 9, 10, 11 and 12 show that the performance of 
NFSv4.1 is better than NFSv4.0, except for random read 
requests smaller than 128Kbytes. The reason is similar to 
the case of workloads with many small reads for the 
Filebench benchmark. 

 
Fig. 9   FIO benchmark: sequential write 

 

 
Fig. 10   FIO benchmark: random write 

 

 
Fig. 11   FIO benchmark: sequential read 

 

 
Fig. 12   FIO benchmark: random read 
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7. Summary and Conclusion 

In this work, we implemented and studied the feasibility of 
a cost effective large scale disk storage system with E-AD 
and pNFS technology. E-AD device has the feature of 
cheaper and easier installation than other network disk 
devices such as NAS and SAN. The scalability and 
performance of our storage system was shown through 
experiments. The results showed that NFSv4.1 has 
substantial benefits for large I/O units due to direct disk 
access and parallelism. In other words, the results show 
that the NFSv4.1 server is more suitable for large scale I/O 
servers such as video streaming servers and cloud storage 
servers.  
For future work, we plan to reinforce the NFSv4.1 protocol. 
The first reinforcement is to have NFSv4.1 act as NFSv4.0 
for small sized requests. Through this study, we found that 
the weakness of NFSv4.1 is in servicing small requests. 
We plan to modify NFSv4.1 so that the client is able to 
select NFSv4.0 or NFSv4.1 depending on the request size. 
The second reinforcement is to have NFSv4.1 work for 
various disk array configurations. The main feature of 
NFSv4.1 is direct disk access and parallelism. The disk 
configuration of current NFSv4.1 can only use RAID0. We 
plan to modify NFSv4.1 so that it can work on various disk 
array configurations. 
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