
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

52

Manuscript received March 5, 2014
Manuscript revised March 20, 2014

pNFS for Everyone: An Empirical Study of a Low-cost, Highly
Scalable Networked Storage

Taejin Kim and Sam H. Noh

Computer Engineering Department, Hongik University, Seoul, Korea

Summary
This paper presents empirical experience on a scalable,
high-performance storage with two existing low-cost
technologies. One technology is Ethernet-Attached Disks
(E-AD) which are iSCSI-like disks but with low cost
controllers. Another is Network File System (NFS) which
is an open standard supported through open source. In
particular, NFS version 4.0 (NFSv4.0) has been the de-
facto distributed file system protocol for generations.
Unfortunately, in this age of mass data, scalability of
NFSv4.0 has become an issue. The NFS community has
developed the pNFS protocol that takes advantage of
parallel accesses to the pool of storage, and announced
NFS version 4.1 including the pNFS protocol. We
evaluated the scalability and performance of our storage
system under various environments and benchmarks. The
results show that NFSv4.1 has substantial benefits on large
I/O units due to direct disk access and parallelism.
Key words:
Network File System, parallel NFS, E-AD, NFSv4.1

1. Introduction

This paper presents empirical experience showing that
scalable, high-performance storage can be achieved by
integrating two existing low-cost technologies. In
particular, Ethernet-Attached Disks (E-AD), which are
iSCSI-like disks but with low cost controllers, and NFS
version 4.1 (NFSv4.1)[1,2,3,4], an open standard
supported through open source, are used to provide
scalable, high performance storage.
NFS version 4.0 (NFSv4.0)[5] has been the de-facto
distributed file system protocol for generations.
Unfortunately, in this age of mass data, scalability of
NFSv4.0 has become an issue[6,7,8,9,10]. With NFSv4.0,
as the server serves all client commands and data transfer,
the performance is limited by the capability of the server.
Furthermore, capacity scalability, that is, the capability to
expand storage capacity as needed, is also limited by the
storage infrastructure such as DAS (Direct-Attached
Storage), NAS (Network-Attached Storage)[11], or SAN
(Storage Area Network)[12].

pNFS[13,14,15], introduced as part of NFS version 4.1
(NFSv4.1) has been introduced to overcome the first
limitation. NFSv4.1 separates the metadata and dataflow of
client requests thereby allowing parallel access to
simultaneously accessible storage disks. Unfortunately,
pNFS still suffers from capacity scalability limitation as
the underlying storage structure is still DAS, NAS, or SAN.
Hence, pNFS is generally supported through proprietary
implementations. Thus, exploiting the features of pNFS
can become a costly endeavour.
The goal of this study is to share our experience in
overcoming the performance and capacity scalability
limitations of NFSv4.0 through the use of low-cost existing
technologies. Through a comprehensive set of experiments
that we conduct, we show that by using low-cost Ethernet
attached disks, capacity can be expanded as needed at low
cost, while obtaining performance scalability as capacity is
added. The software platform that we use is based on the
unofficial block-based pNFS that was released in Linux
3.XX.
More specifically, we use what we call E-AD (Ethernet-
Attached Disk) devices as the disk storage subsystem for
an NFSv4.1 setting as our experimental platform. The E-
AD device, which was originally developed by Lim et
al.[16], consists of a hard disk drive and an ASIC chip that
bridges the off-the-shelf hard disk drive directly to the
Ethernet. Major advantages of this type of E-AD device
used in our experiments include (1) economy, which is a
compelling factor in deciding the storage components of
today’s huge scale storage system where over 1,000TB of
storage capacity is becoming the norm, (2) easy
expandability, which is a must for the ever-growing storage
needs that we are witnessing in today's cloud computing
environment and Hadoop[17] ecosystems. Such E-AD
devices allow practically unlimited number of disks to the
NFSv4.1 system as long as Ethernet ports are available
with comparable I/O performance at a fraction of the cost
of SAN or iSCSI storage.
The rest of the paper is organized as follows. Section 2
briefly describes related work related to the technology of
storage infrastructure and data management. Section 3
describes the E-AD technology and the workings of our
system. Section 4 describes the experiment platform.
Section 5 and Section 6 evaluate our system and show the

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

53

results under various environments and benchmarks.
Finally, we summarize and conclude this work in section 7.

2. Related Work

In this section, we discuss the storage system layers
relevant to our work. We first discuss the storage
infrastructure layer. Then, the data management layer is
discussed. Finally, we discuss the status of pNFS, which is
most relevant to our study.

2.1 Storage Infrastructure

Storage systems are composed of two levels of technology.
One is the storage infrastructure used by the storage system.
DAS (Direct-Attached Storage), NAS (Network-Attachted
Storage)[11], SAN (Storage Area Network)[12] are typical
forms of storage infrastructure that are used today. DAS, as
its name implies, attaches storage disks directly to the local
system. With DAS, the capacity can be expanded only to
the number of device slots that are available within the
system.
In contrast to DAS, NAS and SAN are storage connected
through the network. A NAS unit is a storage appliance
that provides file-based services to clients requesting
service. NAS units are generally composed of a (fixed)
number of disks and uses file-based protocols such as
NFS[18] or CIFS[19]. Expanding NAS capacity can only
be done in NAS units. Storage provided via SAN, on the
other hand, provides block-based services generally using
the Fibre Channel protocol[20], leaving the file
management issue on the client side. Expanding the
capacity of SAN storage is limited by the number of Fibre
Channel switch ports, and may also require expanding the
Fibre Channel network, which can be costly. Our current
definition for a NAD (Network-Attached Disk) device
includes all storage systems that exhibit the following
properties: direct client-drive data transfer in a networked
environment, asynchronous oversight by the high level
filesystem, cryptographic support for the integrity of
requests, storage self-management opportunities derived
from a more abstract and independent role for storage
systems, the ability to extend the feature set of a NAD for
the purpose of application as well as for the client
operating system.

2.2 Data Management

The other layer of technology involved with storage
systems is the data management layer. Numerous
experimental and real implementations for data
management of mass distributed storage have been
proposed. Lustre[21], PVFS2[22], Google File System[23],
Ceph[24], GPFS[25] are some notable research and real

world approaches. Each of these systems present unique
approaches to sharing, moving, and integrating data stored
in distributed storage systems. Due to their uniqueness
(and their proprietory and high cost nature), portability is
the main stumbling block for wide deployment of these
systems.
In contrast, NFS (Network File System) is an open
standard distributed file system protocol that has been
widely accepted and deployed as an industry standard
since the 1980's. Currently, NFS version 4.0 (NFSv4.0) is
most widely deployed. However, with current trends of
mass data production and usage, NFSv4.0 is having
difficulty sustaining scalability in terms of performance
and deployment as all service requests and data movement
must pass through the NFS server of which the basic
underlying storage infrastructure is either a NAS or a SAN.
Hence, IETF (Internet Engineering Task Force), the open
standards organization looking over Internet standards,
proposed NFS version 4.1 (NFSv4.1) with the aim to
support scalable parallel access to clustered storage servers
for higher performance[1,2,3,4]. This form of parallel
access support is also referred to as pNFS[13,14,15].
NFSv4.1 supports file-, block-, and object-based storage
systems.
Figure 1 shows the organization of pNFS (parallel NFS).
The key difference of pNFS from NFSv4.0 is its separation
of file control and management from the data transfer. First,
the NFS client and meta-data server (MDS), which holds
the data layout information, communicates the control and
management information of files through the pNFS
protocol. The data layout information exchanged depends
on the way the data is stored, i.e., file-, block-, or object-
based. For example, in a system supporting block-based
data layout, the starting block number and the number of
bytes to transfer would be provided to the client. Once the
client receives the data related information from the MDS,
actual transfer of data is done in parallel in cooperation
with the data servers (DS), independent of the MDS. NFS
client-side data layout related drivers have been available
in Linux since version 2.6.x. A few studies have been
conducted in regards to NFSv4.1, with a focus on file-
based storage systems[6,7,8,9,10]. Moreover, the source
code of block-based pNFS server has not been supported
on pNFS development site since version 3.4.

Fig. 1 Overview of pNFS protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

54

2.3 Network Attached Disks

There are a number of network attached disks systems such
as FC SAN [12], iSCSI[26], NASD[27], AoE[28], and
FCoE[29]. E-AD used in our experiments distinguishes
itself from others. E-AD implements its own re-
transmission mechanism at its transport layer protocol
without relying on TCP as in iSCSI in order to achieve
higher effective data transfer rate by exploiting faster re-
transmission. E-AD disk drive provides economic storage
because it is not required to have a CPU or memory while
most other network attached systems require a CPU and
memory. E-AD adopts a virtual HBA (Host Bus Adapter)
in the host computers, i.e., the device driver software
installed in host computers provide a virtual HBA without
having a physical HBA for E-AD. Although E-AD does
not use a physical HBA, the E-AD system achieves high
data I/O bandwidth by realizing I/O commands that
transfer bigger chunks of data than the commands in ATA ,
SCSI, or FC. Since E-AD uses generic off-the-shelf
Ethernet switches it has more applicability than others that
are required to use special network hubs as in FC SAN.

3. Cost Effective, Scalable pNFS

3.1 E-AD Technology

The E-AD storage devices, originally developed by Lim et
al.[16], are basically SATA hard disk drives directly
attached to Ethernet through a bridging ASIC, as shown in
Figure 2. The protocol used by this device can be regarded
as a variation of iSCSI, Ethernet based SAN, or AoE
(ATA over Ethernet). However, the particular proprietary
protocol suite implemented here emphasizes economy and
performance over iSCSI and AoE by not employing any
DRAM or CPU and by adopting a fast and reliable packet
re-transmission mechanism. The host computer, i.e.
NFSv4.1 MDS and clients, issues I/O commands similar to
those of iSCSI to the E-AD devices. The controller in the
ASIC translates the host computer issued I/O commands
into SATA I/O operation commands for the SATA disk
drives, and vice versa.
The effective protocol of E-AD allows multiple hosts to
issue I/O commands at the same time to a multitude of the
E-AD devices in parallel. Since the host computers view
the devices as their own local disks attached to their own
internal bus, they issue block-level I/O commands directly
to the devices as they would to local drives and all existing
software can run without any modification to make use of
the E-AD devices.
In addition, the fact that the protocol does not require an IP
address for each individual device makes it possible to
expand the storage space to practically an unlimited

capacity as long as Ethernet ports are available to
accommodate the devices.

Fig. 2 E-AD storage device: SATA hard disk drives
directly attached to Ethernet through a bridging ASIC

3.2 Overview of the Workings

Figure 3 shows the workings of our system. As shown in
the figure, it is essentially a typical NFSv4.1 SAN
configuration without the costly SAN Fibre Channel. The
NFS server in the figure serves as the MDS and data is
stored in E-ADs. The MDS uses the LVM (Logical
Volume Manager) to configure the E-ADs into a
configuration of choice, say RAID0. This configuration
becomes a single logical volume, and the MDS exports this
volume as a block device and a mount point to the clients.

Fig. 3 Workings of our system

To store or retrieve data, the NFS client initially mounts
the MDS exported volume. In so doing, the client
generates a logical volume of its own based on the server
exported configuration, whereupon the client sets up the
device information. This set of device information is an
extra step not found in NFSv4.0 and is used to directly
access the devices from the client.

The read procedure of NFSv4.1 is as follows:
1. The client sends a read request (which includes the

file descriptor, the start address, and length) to the
MDS.

2. Based on the file inode information, the MDS replies
with a layout that contains the device number and the
set of extents, i.e. offset and length pair, that comprise
the file.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

55

3. Using the layout received, the client reads the disks
directly based on the logical volume configuration
information.

The write procedure of NFSv4.1 is as follows:
1. The client sends a write request (which includes the

file descriptor, the start address, and length) to the
MDS.

2. The MDS allocates (as consecutively as possible) the
requested size in a minimal number of extents and
sends the layout, which comprises the device number
and the set of extents, to the client.

3. Using the layout received, the client directly writes to
the disks based on the logical volume configuration
information.

4. Upon completion, the client sends a commit to the
MDS.

5. The MDS modifies its meta-data information based
on the commit information.

Table 1: Settings of experimental environment

 Features
Meta-data
Server

Linux 3.3.0, i3 CPU, 8G RAM,
1Gbs Network Adapter,
 HDD(500GB/7200rpm/16M Cache)

Client
Machine

Linux 3.3.0, i7 CPU, 8G RAM,
1Gbs Network Adapter,
HDD(3TB/7200rpm/64M Cache)

E-AD SATA2 Interface ASIC
HDD(3TB/7200rpm/64M Cache)

Network
Switch 10/100/1000Mbps (autosensing)

4. Experimental Platform

In this section, we describe the platform in which all our
experiments were performed. Table 1 shows the hardware
platform with which the experiments were conducted. To
support NFSv4.1, there is one meta-data server (MDS) and
a maximum of 16 E-AD devices. The E-AD devices are
configured in various ways as experiments are
performed as we will describe in the next two sections. A
maximum of 6 client machines, individually an i7 machine
running Linux 3.3.0, generate the workloads to the storage
system. A maximum 1Gbps network switch connects all
the machines. The maximum network bandwidth of the
network switch limits the throughput of the storage system.
The software that we use in our experiments are originally
the pNFS source code of the Linux kernel 3.3 maintained
by Benny Halevy obtained from the kernel NFS git
repository[30]. The downloaded source includes the block-
based pNFS server code that was modified from the file-
based pNFS server code spnfs developed by EMC[31].

However, this block-based server code has not been
patched since kernel 3.4. The downloaded code, which had
a few bugs, was debugged as needed. Specifically, we list a
few significant problems that were corrected.
1) The storage system was not being properly recognized
when two or more disks were configured as RAID0.
2) Originally, when the client requested a file write, the
layout request was made only in 4K page sizes. This
resulted in significant communication overhead between
the MDS and the client that obviated the benefits of
writing directly to the storage devices, especially when the
write size was large. We modified this code to allow layout
requests of any size that we desire.
3) Originally, the client periodically issued commits to the
server during file writes to storage. This was a major bug
that resulted in disastrous consequences. To elaborate, to
write a file to storage, the client requests for a layout for a
write of a particular size from the MDS. The MDS
responses with one, and the client starts to write to disks.
In the middle of writing, the client may decide to commit,
sending the committed layout to the server. Upon receiving
this committed layout, the server takes its own layout that
it had originally sent to the client and modifies it according
to the committed layout. This results in the client and
server layouts being different; the client still has the
original layout and the server has the new (partial)
committed layout.
At this point, if the client tries to commit once again after
writing more, the server simply ignores the request as the
two layouts are not in sync. A similar problem arises when
a read of the written data is requested. To remedy this
problem, we modified the code so that a commit will
happen only after the write is complete.

5. Scalability Experiments

In this section, we look into the scalability aspect of pNFS.
In the following set of experiments, we conduct a series of
copy operations (using the “cp” command) from the local
disk to the E-AD devices, and vice versa. The results are
denoted as “To E-AD” and “From E-AD”, the former
referring to local disk to E-AD and the latter to E-AD to
local disk copies. In the case of more than one E-AD
device, the devices are configured as RAID0 so that the
devices are accessed in parallel.

5.1 Effect of disk parallelism

Figure 4 shows the average throughput results (in MB/sec)
as the number of E-AD devices is increased when copying
10 files each of size 1GB. Contrasting the results of
copying to and from E-AD, we see that writing to E-AD
shows better throughput. The main reason behind this is

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

56

because writes are asynchronous and acknowledgements
arrive at the client even before the data is fully written to
the device. The difference of overhead incurred by
messages exchanged between the server and the client
during read and write operation also influences these
results. The results also show that throughput improves as
the number of devices used, that is, parallelism, is
increased saturating the network bandwidth with an only a
few devices.

5.2 Effect of the number of clients

We repeat the experiments conducted in the previous
subsection as we increase the number of client machines.
Figure 5 shows the (aggregate and average) throughput as
each client copies a 1GB file from (and to) local disk to
(and from) 16 E-AD devices. The results show that the
aggregate throughput scales with increased number of
clients.

5.3 Effect of file size

Figure 6 shows the effect of the file size on performance
when the number of E-AD devices is 16 starting from one
1MB file to one 10000MB file. Each data point is reported
is an average of five executions with the system rebooted
after each execution. We see that the throughput increases
as the file size increases saturating at maximum network
throughput.

5.4 Effect of the number of files

We now take a 1MB file and increase the number of files
to see the effect of the number of files on performance. In
this experiment the lone client sequentially copies the
specified number of 1MB files to (from) the 16 E-AD
devices from (to) the local disk. The results are presented
in Figure 7. We see that with the increase of the number of
files, there is no deterioration of performance even though
the MDS is consulted for each data service request.
However, we also see that the performance does not
saturate the network bandwidth as each file is only 1MB.

6. Benchmark Performance

In this section, we present results for the Filebench and
FIO benchmarks. We present results comparing NFSv4.1
with NFSv4.0. The experimental environment is the same
as the scalability experiments, except that there is only one
client.

Fig. 4 Disk scalability

Fig. 5 Client scalability

Fig. 6 File size scalability

Fig. 7 Number of files scalability

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

57

6.1 Filebench

Filebench is a file system and storage benchmark that
generates a large variety of workloads. Table 2 shows the
feature of the workloads used in our experiments.
Figure 8 shows substantial performance improvements
with NFSv4.1 on fileserver and videoserver workloads
using mass data. This result shows that the bigger I/O unit
allows for greater benefits for pNFS as it increases the
effectiveness of direct disk access. The results for
workloads with many small reads are different in that
NFSv4.0 performs better or in par with NFSv4.1. The first
reason for this is that in case of NFSv4.0, most I/O
requests are serviced through the cache of the local file
system in the NFS server because the I/O unit is small.
Another reason is that the effectiveness of direct disk
access in NFSv4.1 is small because the I/O unit is small.

Table 2: Filebench workloads
Workload Mean file size Read: write ratio

Fileserver 128K 1:2

Varmail 16K 1:1

Webserver 16K 10:1
Videoserver 1G Read only

Fig. 8 Filebench benchmark

6.2 FIO

FIO is an I/O tool meant to be used both as a benchmark
and for stress/hardware verification. In this benchmark, we
conducted sequential write/read and random write/read.
Figures 9, 10, 11 and 12 show that the performance of
NFSv4.1 is better than NFSv4.0, except for random read
requests smaller than 128Kbytes. The reason is similar to
the case of workloads with many small reads for the
Filebench benchmark.

Fig. 9 FIO benchmark: sequential write

Fig. 10 FIO benchmark: random write

Fig. 11 FIO benchmark: sequential read

Fig. 12 FIO benchmark: random read

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

58

7. Summary and Conclusion

In this work, we implemented and studied the feasibility of
a cost effective large scale disk storage system with E-AD
and pNFS technology. E-AD device has the feature of
cheaper and easier installation than other network disk
devices such as NAS and SAN. The scalability and
performance of our storage system was shown through
experiments. The results showed that NFSv4.1 has
substantial benefits for large I/O units due to direct disk
access and parallelism. In other words, the results show
that the NFSv4.1 server is more suitable for large scale I/O
servers such as video streaming servers and cloud storage
servers.
For future work, we plan to reinforce the NFSv4.1 protocol.
The first reinforcement is to have NFSv4.1 act as NFSv4.0
for small sized requests. Through this study, we found that
the weakness of NFSv4.1 is in servicing small requests.
We plan to modify NFSv4.1 so that the client is able to
select NFSv4.0 or NFSv4.1 depending on the request size.
The second reinforcement is to have NFSv4.1 work for
various disk array configurations. The main feature of
NFSv4.1 is direct disk access and parallelism. The disk
configuration of current NFSv4.1 can only use RAID0. We
plan to modify NFSv4.1 so that it can work on various disk
array configurations.

Acknowledgments

This work was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (No. 2012R1A2A2A01045733).

References
[1] S. Shepler, M. Eisler, and D. Noveck, “Network File System

(NFS) Version 4 Minor Version 1 Protocol,” 2010.
RFC5661.

[2] S. Shepler, M. Eisler, and D. Noveck, “Network File System
(NFS) Version 4 Minor Version 1 External Data
Representation (XDR) Description,” 2010. RFC5662.

[3] D. Black, S. Fridella, and J. Glasgow, “Parallel NFS (pNFS)
Block/Volume Layout,” 2010. RFC5663.

[4] B. Halevy, B. Welch, and J. Zelenka, “Object based Parallel
NFS (pNFS) Operations,” 2010. RFC5664.

[5] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.
Beame, M. Eisler, and D. Noveck, “Network File System
(NFS) Version 4 Protocol,” 2003. RFC3530.

[6] D. Hildebrand, L. Ward, and P. Honeyman, “Large files,
small writes, and pNFS,” in Proceedings of the 20th Annual
International Conference on Supercomputing, ICS ’06,
(New York, NY,USA), pp. 116-124, ACM, 2006.

[7] D. Hildebrand and P. Honeyman, “Exporting Storage
Systems in a Scalable Manner with pNFS,” in Proceedings
of the 22nd IEEE/13th NASA Goddard Conference on Mass

Storage Systems and Technologies, MSST ’05,
(Washington, DC, USA), pp. 18-27,IEEE Computer Society,
2005.

[8] D. Hildebrand, P. Honeyman, and W. A. A. Adamson,
“pNFS and Linux: Working Towards a Heterogeneous
Future,” in Proceedings of 8th LCI International Conference
on High-Performance Cluster Computing, 2007.

[9] D. Hildebrand and P. Honeyman, “Direct-pNFS: scalable,
transparent, and versatile access to parallel file systems,” in
Proceedings of the 16th International Symposium on High
Performance Distributed Computing, HPDC ’07, (New
York, NY, USA), pp. 199-208, ACM, 2007.

[10] L. Chai, X. Ouyang, R. Noronha, and D. K. Panda,
“pNFS/PVFS2 over Infiniband: early experiences,” in
Proceedings of the 2nd International Workshop on Petascale
Data Storage: held in conjunction with Supercomputing ’07,
PDSW ’07, (New York, NY, USA), pp. 5-11, ACM, 2007.

[11] NAS.
http://en.wikipedia.org/wiki/Network-attached_storage.

[12] SAN. http://en.wikipedia.org/wiki/Storage_area_network.
[13] B. Welch, B. Halevy, D. Black, A. Adamson, and D.

Noveck, “pNFS Operations Summary.” Internet Draft, draft-
welch-pnfsops-00.txt, 2004.

[14] G. Gibson, B. Welch, G. Goodson, and P. Corbett, “Parallel
NFS Requirements and Design Considerations.” Internet
Draft, draftgibson-pnfs-reqs-00.txt, 2004.

[15] Parallel Network File System. http://www.pnfs.com/.
[16] H.-K. Lim, J.-H. Han, and D.-K. Jeong, “A Network Storage

LSI Suitable for Home Network,” IEEE Communications
Magazine, vol. 43, no. 5, pp. 141-148, 2005.

[17] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), MSST ’10, (Washington, DC, USA),
pp. 1-10, IEEE Computer Society, 2010.

[18] Sun Microsystems Inc., NFS: Network File System Protocol
Specification, 1989. RFC1094.

[19] Common Internet File System.
http://technet.microsoft.com/en-us/library/cc939973.aspx.

[20] FC. http://en.wikipedia.org/wiki/Fibre_Channel.
[21] Lustre a network clustering FS. http://wiki.lustre.org/.
[22] Parallel Virtual File System -Version2.”

http://www.pvfs.org/pvfs2.
[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google

file system,” in Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03,
(New York, NY, USA), pp. 29-43, ACM, 2003.

[24] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C.
Maltzahn, “Ceph: a scalable, high-performance distributed
file system,” in Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, OSDI ’06,
(Berkeley, CA, USA), pp. 307-320, USENIX Association,
2006.

[25] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters,” in Proceedings of
the 1st USENIX Conference on File and Storage
Technologies, FAST ’02, (Berkeley, CA, USA), USENIX
Association, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

59

[26] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner, “Internet Small Computer Systems Interface
(iSCSI),” 2004. RFC3720.

[27] G. A. Gibson, D. Nagle, K. Amiri, F. W. Chang, E. M.
Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D.
Rochberg, and J. Zelenka, “File Server Scaling with
Network-Attached Secure Disks,” in SIGMETRICS, pp.
272-284, 1997.

[28] AoE. http://en.wikipedia.org/wiki/ATA_over_Ethernet.
[29] FCoE.

http://en.wikipedia.org/wiki/Fibre_Channel_over_Ethernet.
[30] B. Halevy, “Linux pNFS server development.”

git://git.linux-nfs.org/projects/bhalevy/linux-pnfs.git.
[31] D. Muntz, M. Sager, and R. Labiaga, “spNFS: A Simple

pNFS Server.” http://www.con-nectathon.org/talks08/
dmuntz-spnfs-cthon08.pdf.

[32] Filebench benchmark.
http://sourceforge.net/apps/mediawiki/filebench/index.php?t
itle=Main_Page.

[33] FIO benchmark. http://git.kernel.dk/?p=fio.git;a=summary/.

Taejin Kim received the B.S. degree
in computer engineering from Hongik
University in 1998, and the M.S.
degree in computer science from
Hongik University in 2000. He has
been in the Ph.D. program at Hongik
University since 2010. His areas of

research include networked storage systems and high speed
large scale big data systems.

Sam H.(Hyuk) Noh received the BS
degree in computer engineering from
the Seoul National University, Korea
in 1986, and the PhD degree from the
Department of Computer Science,
University of Maryland at College
Park in 1993. He is a Professor in the

School of Information and Computer Engineering. His
current research interests are in operating system issues
pertaining to embedded/computer systems. (Refer to
http://next.hongik.ac.kr for details.) Dr. Noh is a member
of the IEEE, the ACM, USENIX, and KIISE.

