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Abstract 
A probabilistic neural network (PNN) is a feed forward neural 

network, which was derived from the Bayesian network and a 
statistical algorithm called Kernel Fisher discriminant analysis. 
The feed forward neural network was the first and arguably 
simplest type of artificial neural network devised. In this 
network, the information moves in only one direction, forward, 
from the input nodes, through the hidden nodes (if any) and to 
the output nodes. Basically there consists of four layers : input 
layer, pattern layer, summation layer and output layer. The 
Network structure determination is an important issue in 
pattern classification based on a probabilistic neural network. 
In this study, a supervised network structure determination 
algorithm is proposed. The proposed algorithm consists of two 
parts and runs in an iterative way. The first part identifies an 
appropriate smoothing parameter using a genetic algorithm, 
while the second part determines suitable pattern layer neurons 
using a forward regression orthogonal algorithm. The 
proposed algorithm is capable of offering a fairly small 
network structure with satisfactory classification accuracy. 
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I. INTRODUCTION 

Probabilistic Neural Network PNN often learn more 
quickly than many neural network models such as back 
propagation networks and have had success on a variety of 
applications. PNNs are a special form of Radial Basis 
Function (RBF) network used for classification which is 
the major job of this paper. The network learns from a 
training set T which is a collection of examples called 
instances [1]. Each instance i has an input vector yi and an 
output class denoted as class i. During execution, the 
network receives additional input vectors denoted as x and 
outputs the class that x seems most likely to belong to. 
With regards to the real time classification problem which 
is the main attention of this paper, PNN has proven to be 
more time efficient than conventional back propagation 
based networks. In order to classify a feature pattern [2] 
vector x € Rm, that is to assign the pattern to one among k 

predefined classes, the conditional density P (x¦ Ck) of 
each class Ck is estimated since it represents the 
uncertainty associated to class attribution; then these 
estimates are combined by the rule of Baye’s to yield a 
posterior class probabilities P (Ck¦ x) that allow to make 
optimal decisions 

II.   A BRIEF REVIEW OF THE PNNS 

Consider a classification problem where the pattern data, 
designated by the vector x belong to different classes,  
designed by the letters A, B, C,..., etc. The Bayesian 
classifier is the classifier that minimizes the probability of 
misclassifying the labels of unseen data. The Bayesian 
classifier chooses as the predicted label of an unseen 
pattern the label l that maximizes the following a-posterior  
probability. In order to calculate the above probabilities for 
every label l = A, B, C, one needs to compute the class 
conditional probabilities p(x | l) for every l , and the a-
priori probabilities P(l) . The a-priori probabilities P(l) can 
be estimated from the available training data. The class 
conditional probabilities p(x | l) can also be estimated 
using the training data, by using an approximation for the 
probability density function formula, suggested by Parzen 
and depicted below, for the class label l = A. 
 

 
Fig. 1. Diagram of a PNN. 

The PNN was first proposed in . The architecture of a 
typical PNN is as shown in Fig. 1. The PNN architecture is 
composed of many interconnected processing units or 

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Kernel_Fisher_discriminant_analysis
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neurons organized in successive layers. The input layer 
unit does not perform any computation and simply 
distributes the input to the neurons in the pattern layer. On 
receiving a pattern from the input layer, the neuron of the 
pattern layer computes its output 
 

 

 
 

III.   Determining THE PNN STRUCTURE 
USING ORTHOGONAL ALGORITHM 
AND THE GENETIC ALGORITHM 

In this section, we propose a supervised PNN structure 
determination algorithm that incorporates an appropriate 
constraint on classification error rate. 

 

    A.    CONSTRUCT THE PATTERN USING 
FEEDFORWARD NETWORK 
At this stage, it is assumed that the smoothing parameter 
has been chosen. The objective is to select representative 
pattern layer neurons from the training samples. As 
described in the previous section, for the kth training 
pattern in class Ci denoted by vector Xik , the maximum 
likelihood to be classified to is Ci 

 

 

B. Selecting the Smoothing Parameter Using 
Genetic Algorithms 

Typically, a genetic algorithm consists of the following 
operations; encoding, fitness value assignment, 
reproduction, crossover and mutation. Details of the GA-
based PNN structure detection algorithm are described 
below.  
Encoding: GA works with the coding of parameters rather 
than the parameter themself. If samples are normalized, the 
smoothing parameter should be smaller than one, only 
fraction part needs to be coded. A four-bit decimal coding 
is employed in the present study to encode the smoothing 
parameter. For example, one individual is, this value can 
be represented by the following decimal string:. 

 
where bi denote the bit of 10to the power –i 
Fitness Evaluation: Each individual represents a smoothing 
parameter value. With the use of neuron selection 
algorithm developed in Section III-A and smoothing 
parameters defined by all individuals, a number of 
candidate network structures can be obtained. The 
objective is to minimize the neural-network size, therefore 
the fitness function should be inversely proportional to the 
number of selected neurons. The fitness can be computed 
using the following mapping scheme: 

 
                  

 
where  pi Nmin and Nmax denotes the fitness value of the 
th individual. ,,Pmin  and Pmax , are the   minimum   and 
maximum sizeof candidate network structure in the current 
population, and the minimum and maximum fitness values, 
respectively. In this study andPmin and Pax  are set to 0.5 
and 1, respectively 
Reproduction: The roulette wheel approach is employed to 
implement the reproduction procedure. Each string is 
allocated a slot of the roulette wheel subtending an angle 
proportional to its fitness. A random number in the range 
of 0 to 2 is generated. A copy of string goes to the mating 
pool if the random number falls in the slot corresponding 
to the string. The reproduction is repeated to generate a 
mating pool with a prespecified size. 
 Crossover: The purpose of crossover operation is to 
generate new solutions by exchanging bits between 
individuals. Assuming two randomly selected parent 
individuals are given by string  i and string j 
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First, randomly select the bit at which the two strings will 
be changed, for example b2 . Then exchanging the values 
at bit b2 for the two strings yields two offspring strings: 
 

 
Mutation: The purpose of employing mutation is to 
generate an individual that is not easy to achieve by the 
crossover operation. In this study, the mutation is achieved 
by changing the selected bit with a random number 
between zero to nine. For example if the bit b1 of string k  
is supposed to mutate, changing this bit to a random 
generated number, say eight, yields the following string: 

 

iv .PIN Architecture AND THEORY     
OPERATION 

The probabilistic Neural Network used in this paper is 
shown in Fig. 1. The first (leftmost) layer contains one 
input node for each input attribute in an application. All 
connections in the network have a weight of 1, which 
means that the input vector is passed directly to each 
hidden node [1]. A novel PNN (Probabilistic Neural 
Networks) hardware architectureis also as  called 'Sigma 
Parallel Architecture' (SPA). Different values of the 
network parameter are calculated in parallel in the SPA 
and it speeds up the PNN learning as well as recognition 
overcoming the difficulty in the VLSI implementation. The 
hardware prototype is developed using FPGA chips and it 
shows a high speed leaning of about 10 seconds that 
satisfies the requirements in the real world image 
recognition tasks  
In PNN, there is one hidden node for each training instance 
i in the training set. Each hidden node hi has a center point 
yi associated with it, which is the input vector of instance i. 
A hidden node also has a spread factor, si , which 
determines the size of its respective  field. There are a 
variety of ways to set this parameter. Si is equal to the 
fraction f of the distance to the nearest neighbor of each 
instance i. The value of f begins at 0.5 and a binary search 
is performed to fine tune this value. At each of five steps, 
the value of f that results in the highest average confidence 
of classification is chosen [1]. A hidden node receives an 
input vector x and outputs an activation given by the 
Gaussian function g, which returns a value of 1 if x and yi 
are equal and drops to an insignificant value as the distance  
grows [1] 

 
 
 

 
               
   Fig:2  A General Architecture Of PNN 

 
The distance function D determines how far apart the two 
vectors are. By far the most common distance function 
used in PNNs is Euclidean distance. However, in order to 
appropriately handle applications that have  both linear and 
nominal attributes, a heterogeneous  distance function 
HVDM [3,4] is used to normalize Euclidean distance for 
linear attributes and the Value  Difference Metric (VDM) 
[5] for nominal attributes. It is defined as: 

 
Where m is the number of attributes. The function da (x, y) 
returns a distance between the two values x and y for  
attribute a and is defined as: 

 

 
     Fig. 3: Probabilistic neural network architecture 
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Where m is the number of attributes. The function da (x, y) 
returns a distance between the two values x and y for 
attribute a and is defined as: 
1 if          x or y is unknown 
d (x, y) =   vdm if a is nominal 
 diff          if a is linear 
The function da (x, y) uses the following function, based 
on the Value Difference Metric (VDM) [5]for  nominal 
(discrete, unordered) attributes 

   
Where Na, x is the number of times attribute a had value x; 
Na, x, cis the number of times attribute a had  value x and 
the output class was c and C is the number  of output 
classes.  
For linear attributes, the following function is used.   

               
Where sa is the sample standard deviation of the  value 
occurring for attribute a in the training set. Each hidden 
node hi in the network is connected to a single class node. 
If the output class of instance i is j, then hi is connected to 
class node Cj . Each class node Cj computes the sum of the 
activations of the hidden nodes that are connected to it (i.e., 
all the hidden nodes for a particular class) and passes this 
sum to a decision node. The decision node outputs the 
class with the highest summed activation. One of the 
greatest advantages of this network is that it doesn't require 
any iterative training and thus can learn quite quickly. 
However, one of the main disadvantages of this network is 
that it has  one hidden node for each training instance and 
thus requires more computational resources (storage and 
time) during execution than many other models. When 
simulated on a serial machine, O(n) time is required to 
classify a single input vector. On parallel system, only 
O(log n) time is required, but n nodes and nm connections 
are still required (where n is the number of  instances in the 
training set and m is the number of input attributes) .The 
most directly way to reduce storage requirement and speed 
up execution is to reduce the number of nodes in the 
network. One common solution to this problem is to keep 
only a randomly selected subset of the original training 
data in building thenetwork. However, arbitrary removing 
instances can reduce generalization accuracy. In addition, 
it is difficult to know how many nodes can be safely 
removed without a reasonable stopping criterion. Other 
subset selection algorithm exist in linear regression  theory, 
including forward selection, in which the network starts 
with no nodes and nodes are added one  at a time to the 
network. Another method that has been used is k-means 
clustering densities are then used in a Bayes decision rule 
to perform the classification. If the probability density 
function (pdf) of each of the population is known, then an 
unknown x belong to class i if  fi (x)>fj (x), for all j¹i. 

V.  DATABASE PROCESSING 

Since the PNN is usually applied on small benchmarking 
datasets, handwritten digit recognition represents a 
challenge for a standard probabilistic neural network. 
There are only few applications of this type of networks on 
real world big databases [20]. Both the number of neurons 
in the input layer (dimensionality) and the number of 
samples (available labeled data) can affect dramatically a 
neural network from any type  
        In order to test the reduced probabilistic neural 
network on a real world big database, the new classifier 
was tested on the MNIST database for handwritten digit 
recognition. This database is well known in pattern 
recognition. It contains a large number of samples (60,000 
samples for training and 10,000 samples for test). The 
samples are 20×20 pixels black and white images of 
handwritten digits (see figure 3). The different Arabic 
digits were written by 500 different writers and size 
normalized. This is a good database for people who want 
to try pattern recognition methods on real-world data while 
spending minimal efforts on preprocessing and formatting 
of data. Database search post-processing by neural network 
was employed in peptide mapping experiments. The 
database search was performed using both the known 
algorithms and score functions, such as Bayesian, 
MOWSE, Z-score, correlations between calculated and 
actual peptide length fractional abundance, and, in addition, 
the probability of protein digest pattern in peptide 
fingerprint, all embedded in locally developed program. 
The new signal-processing algorithm based on neural 
network improves signal-noise separation and is acceptable 
for automatic protein identification in mixtures. Its power 
was tested on Helicobacter pylori protein inventory after 
preceding protein separation by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Increase 
in protein identification success rate was observed, and 
about 100 proteins were identified with no need of human 
participation in database search estimation  

 
 Fig: 4. some samples from the MNIST database. 
A. High Level Algorithm: 

We are given the exemplar feature vectors that make up 
the training set. For each one we know the class to which it 
belongs. The following sets up the PNN. 

Step 1. Read in the file of exemplar vectors and class 
numbers 
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Step 2. Sort these into the K sets where each set contains 
one class of vectors 

Step 3. For each k define a Gaussian function centered on 
each exemplar vector in set k define the summed 
Gaussian output function 

Once the PNN is defined, then we can feed vectors into it 
and classify them as follows. 

Step 1. Read input vector and feed it to each Gaussian 
function in each class 

Step 2. For each group of hidden nodes, compute all 
Gaussian functional values at the hidden nodes 

Step 3. For each group of hidden nodes, feed all its 
Gaussian functional values to the single output 
node for that group 
Step 4. At each class output node, sum all of the inputs and 
multiply by constant 
Step 5. Find maximum value of all summed functional 
values at the output nodes 

VI.   CONCLUSION 

A self adaptive model for probabilistic neural networks 
was proposed. The proposed approach incorporates the 
Orthogonal  Algorithm to _nd an appropriate spread 
parameter for the probabilistic neural network with respect 
to the resulting classification accuracy. The effectiveness 
of the proposed model is assessed on two data sets from 
the _eld of bioinformatics (E.coli and Yeast), with 
encouraging results. Among the three sampling techniques 
considered, strati_ed random sampling proved to yield the 
best classification performance despite the fact that the 
training sets it produces are smaller in magnitude 
compared to 10.fold cross validation. To evaluate further 
the capabilities of this model, comparisons with feed 
forward neural network models trained using the R.PROP 
algorithm were performed. These comparisons showed that 
the self adaptive model proposed achieves statistically 
signi_cant superior performance on the Yeast data set, 
while on the E.coli data set the performance of the two 
models is not found to be statistically different. Future 
work will include the generalization of the proposed self 
adaptive scheme to determine the corresponding matrix of 
spread parameters, to further optimize the performance of 

PNNs. We also intend to apply different evolutionary 
computation techniques on this problem. 
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