
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

133

Manuscript received March 5, 2014
Manuscript revised March 20, 2014

Probabilistic Neural Network in Solving Various Pattern
Classification Problems

Nabha B Nimbhorkar#1, Satish J Alaspurkar*2
Computer Science & Engineering Department,

Amravati University , India

Abstract
A probabilistic neural network (PNN) is a feed forward neural

network, which was derived from the Bayesian network and a
statistical algorithm called Kernel Fisher discriminant analysis.
The feed forward neural network was the first and arguably
simplest type of artificial neural network devised. In this
network, the information moves in only one direction, forward,
from the input nodes, through the hidden nodes (if any) and to
the output nodes. Basically there consists of four layers : input
layer, pattern layer, summation layer and output layer. The
Network structure determination is an important issue in
pattern classification based on a probabilistic neural network.
In this study, a supervised network structure determination
algorithm is proposed. The proposed algorithm consists of two
parts and runs in an iterative way. The first part identifies an
appropriate smoothing parameter using a genetic algorithm,
while the second part determines suitable pattern layer neurons
using a forward regression orthogonal algorithm. The
proposed algorithm is capable of offering a fairly small
network structure with satisfactory classification accuracy.

Keywords
 Genetic Algorithm, orthogonal algorithm, pattern classification,
probabilistic neural network (PNN), Feed forward Regression
Network

I. INTRODUCTION

Probabilistic Neural Network PNN often learn more
quickly than many neural network models such as back
propagation networks and have had success on a variety of
applications. PNNs are a special form of Radial Basis
Function (RBF) network used for classification which is
the major job of this paper. The network learns from a
training set T which is a collection of examples called
instances [1]. Each instance i has an input vector yi and an
output class denoted as class i. During execution, the
network receives additional input vectors denoted as x and
outputs the class that x seems most likely to belong to.
With regards to the real time classification problem which
is the main attention of this paper, PNN has proven to be
more time efficient than conventional back propagation
based networks. In order to classify a feature pattern [2]
vector x € Rm, that is to assign the pattern to one among k

predefined classes, the conditional density P (x¦ Ck) of
each class Ck is estimated since it represents the
uncertainty associated to class attribution; then these
estimates are combined by the rule of Baye’s to yield a
posterior class probabilities P (Ck¦ x) that allow to make
optimal decisions

II. A BRIEF REVIEW OF THE PNNS

Consider a classification problem where the pattern data,
designated by the vector x belong to different classes,
designed by the letters A, B, C,..., etc. The Bayesian
classifier is the classifier that minimizes the probability of
misclassifying the labels of unseen data. The Bayesian
classifier chooses as the predicted label of an unseen
pattern the label l that maximizes the following a-posterior
probability. In order to calculate the above probabilities for
every label l = A, B, C, one needs to compute the class
conditional probabilities p(x | l) for every l , and the a-
priori probabilities P(l) . The a-priori probabilities P(l) can
be estimated from the available training data. The class
conditional probabilities p(x | l) can also be estimated
using the training data, by using an approximation for the
probability density function formula, suggested by Parzen
and depicted below, for the class label l = A.

Fig. 1. Diagram of a PNN.

The PNN was first proposed in . The architecture of a
typical PNN is as shown in Fig. 1. The PNN architecture is
composed of many interconnected processing units or

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Feedforward_neural_network
http://en.wikipedia.org/wiki/Bayesian_network
http://en.wikipedia.org/wiki/Kernel_Fisher_discriminant_analysis

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

134

neurons organized in successive layers. The input layer
unit does not perform any computation and simply
distributes the input to the neurons in the pattern layer. On
receiving a pattern from the input layer, the neuron of the
pattern layer computes its output

III. Determining THE PNN STRUCTURE
USING ORTHOGONAL ALGORITHM
AND THE GENETIC ALGORITHM

In this section, we propose a supervised PNN structure
determination algorithm that incorporates an appropriate
constraint on classification error rate.

 A. CONSTRUCT THE PATTERN USING
FEEDFORWARD NETWORK
At this stage, it is assumed that the smoothing parameter
has been chosen. The objective is to select representative
pattern layer neurons from the training samples. As
described in the previous section, for the kth training
pattern in class Ci denoted by vector Xik , the maximum
likelihood to be classified to is Ci

B. Selecting the Smoothing Parameter Using
Genetic Algorithms

Typically, a genetic algorithm consists of the following
operations; encoding, fitness value assignment,
reproduction, crossover and mutation. Details of the GA-
based PNN structure detection algorithm are described
below.
Encoding: GA works with the coding of parameters rather
than the parameter themself. If samples are normalized, the
smoothing parameter should be smaller than one, only
fraction part needs to be coded. A four-bit decimal coding
is employed in the present study to encode the smoothing
parameter. For example, one individual is, this value can
be represented by the following decimal string:.

where bi denote the bit of 10to the power –i
Fitness Evaluation: Each individual represents a smoothing
parameter value. With the use of neuron selection
algorithm developed in Section III-A and smoothing
parameters defined by all individuals, a number of
candidate network structures can be obtained. The
objective is to minimize the neural-network size, therefore
the fitness function should be inversely proportional to the
number of selected neurons. The fitness can be computed
using the following mapping scheme:

where pi Nmin and Nmax denotes the fitness value of the
th individual. ,,Pmin and Pmax , are the minimum and
maximum sizeof candidate network structure in the current
population, and the minimum and maximum fitness values,
respectively. In this study andPmin and Pax are set to 0.5
and 1, respectively
Reproduction: The roulette wheel approach is employed to
implement the reproduction procedure. Each string is
allocated a slot of the roulette wheel subtending an angle
proportional to its fitness. A random number in the range
of 0 to 2 is generated. A copy of string goes to the mating
pool if the random number falls in the slot corresponding
to the string. The reproduction is repeated to generate a
mating pool with a prespecified size.
 Crossover: The purpose of crossover operation is to
generate new solutions by exchanging bits between
individuals. Assuming two randomly selected parent
individuals are given by string i and string j

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

135

First, randomly select the bit at which the two strings will
be changed, for example b2 . Then exchanging the values
at bit b2 for the two strings yields two offspring strings:

Mutation: The purpose of employing mutation is to
generate an individual that is not easy to achieve by the
crossover operation. In this study, the mutation is achieved
by changing the selected bit with a random number
between zero to nine. For example if the bit b1 of string k
is supposed to mutate, changing this bit to a random
generated number, say eight, yields the following string:

iv .PIN Architecture AND THEORY
OPERATION

The probabilistic Neural Network used in this paper is
shown in Fig. 1. The first (leftmost) layer contains one
input node for each input attribute in an application. All
connections in the network have a weight of 1, which
means that the input vector is passed directly to each
hidden node [1]. A novel PNN (Probabilistic Neural
Networks) hardware architectureis also as called 'Sigma
Parallel Architecture' (SPA). Different values of the
network parameter are calculated in parallel in the SPA
and it speeds up the PNN learning as well as recognition
overcoming the difficulty in the VLSI implementation. The
hardware prototype is developed using FPGA chips and it
shows a high speed leaning of about 10 seconds that
satisfies the requirements in the real world image
recognition tasks
In PNN, there is one hidden node for each training instance
i in the training set. Each hidden node hi has a center point
yi associated with it, which is the input vector of instance i.
A hidden node also has a spread factor, si , which
determines the size of its respective field. There are a
variety of ways to set this parameter. Si is equal to the
fraction f of the distance to the nearest neighbor of each
instance i. The value of f begins at 0.5 and a binary search
is performed to fine tune this value. At each of five steps,
the value of f that results in the highest average confidence
of classification is chosen [1]. A hidden node receives an
input vector x and outputs an activation given by the
Gaussian function g, which returns a value of 1 if x and yi
are equal and drops to an insignificant value as the distance
grows [1]

 Fig:2 A General Architecture Of PNN

The distance function D determines how far apart the two
vectors are. By far the most common distance function
used in PNNs is Euclidean distance. However, in order to
appropriately handle applications that have both linear and
nominal attributes, a heterogeneous distance function
HVDM [3,4] is used to normalize Euclidean distance for
linear attributes and the Value Difference Metric (VDM)
[5] for nominal attributes. It is defined as:

Where m is the number of attributes. The function da (x, y)
returns a distance between the two values x and y for
attribute a and is defined as:

 Fig. 3: Probabilistic neural network architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

136

Where m is the number of attributes. The function da (x, y)
returns a distance between the two values x and y for
attribute a and is defined as:
1 if x or y is unknown
d (x, y) = vdm if a is nominal
 diff if a is linear
The function da (x, y) uses the following function, based
on the Value Difference Metric (VDM) [5]for nominal
(discrete, unordered) attributes

Where Na, x is the number of times attribute a had value x;
Na, x, cis the number of times attribute a had value x and
the output class was c and C is the number of output
classes.
For linear attributes, the following function is used.

Where sa is the sample standard deviation of the value
occurring for attribute a in the training set. Each hidden
node hi in the network is connected to a single class node.
If the output class of instance i is j, then hi is connected to
class node Cj . Each class node Cj computes the sum of the
activations of the hidden nodes that are connected to it (i.e.,
all the hidden nodes for a particular class) and passes this
sum to a decision node. The decision node outputs the
class with the highest summed activation. One of the
greatest advantages of this network is that it doesn't require
any iterative training and thus can learn quite quickly.
However, one of the main disadvantages of this network is
that it has one hidden node for each training instance and
thus requires more computational resources (storage and
time) during execution than many other models. When
simulated on a serial machine, O(n) time is required to
classify a single input vector. On parallel system, only
O(log n) time is required, but n nodes and nm connections
are still required (where n is the number of instances in the
training set and m is the number of input attributes) .The
most directly way to reduce storage requirement and speed
up execution is to reduce the number of nodes in the
network. One common solution to this problem is to keep
only a randomly selected subset of the original training
data in building thenetwork. However, arbitrary removing
instances can reduce generalization accuracy. In addition,
it is difficult to know how many nodes can be safely
removed without a reasonable stopping criterion. Other
subset selection algorithm exist in linear regression theory,
including forward selection, in which the network starts
with no nodes and nodes are added one at a time to the
network. Another method that has been used is k-means
clustering densities are then used in a Bayes decision rule
to perform the classification. If the probability density
function (pdf) of each of the population is known, then an
unknown x belong to class i if fi (x)>fj (x), for all j¹i.

V. DATABASE PROCESSING

Since the PNN is usually applied on small benchmarking
datasets, handwritten digit recognition represents a
challenge for a standard probabilistic neural network.
There are only few applications of this type of networks on
real world big databases [20]. Both the number of neurons
in the input layer (dimensionality) and the number of
samples (available labeled data) can affect dramatically a
neural network from any type
 In order to test the reduced probabilistic neural
network on a real world big database, the new classifier
was tested on the MNIST database for handwritten digit
recognition. This database is well known in pattern
recognition. It contains a large number of samples (60,000
samples for training and 10,000 samples for test). The
samples are 20×20 pixels black and white images of
handwritten digits (see figure 3). The different Arabic
digits were written by 500 different writers and size
normalized. This is a good database for people who want
to try pattern recognition methods on real-world data while
spending minimal efforts on preprocessing and formatting
of data. Database search post-processing by neural network
was employed in peptide mapping experiments. The
database search was performed using both the known
algorithms and score functions, such as Bayesian,
MOWSE, Z-score, correlations between calculated and
actual peptide length fractional abundance, and, in addition,
the probability of protein digest pattern in peptide
fingerprint, all embedded in locally developed program.
The new signal-processing algorithm based on neural
network improves signal-noise separation and is acceptable
for automatic protein identification in mixtures. Its power
was tested on Helicobacter pylori protein inventory after
preceding protein separation by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE). Increase
in protein identification success rate was observed, and
about 100 proteins were identified with no need of human
participation in database search estimation

 Fig: 4. some samples from the MNIST database.
A. High Level Algorithm:

We are given the exemplar feature vectors that make up
the training set. For each one we know the class to which it
belongs. The following sets up the PNN.

Step 1. Read in the file of exemplar vectors and class
numbers

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.3, March 2014

137

Step 2. Sort these into the K sets where each set contains
one class of vectors

Step 3. For each k define a Gaussian function centered on
each exemplar vector in set k define the summed
Gaussian output function

Once the PNN is defined, then we can feed vectors into it
and classify them as follows.

Step 1. Read input vector and feed it to each Gaussian
function in each class

Step 2. For each group of hidden nodes, compute all
Gaussian functional values at the hidden nodes

Step 3. For each group of hidden nodes, feed all its
Gaussian functional values to the single output
node for that group
Step 4. At each class output node, sum all of the inputs and
multiply by constant
Step 5. Find maximum value of all summed functional
values at the output nodes

VI. CONCLUSION

A self adaptive model for probabilistic neural networks
was proposed. The proposed approach incorporates the
Orthogonal Algorithm to _nd an appropriate spread
parameter for the probabilistic neural network with respect
to the resulting classification accuracy. The effectiveness
of the proposed model is assessed on two data sets from
the _eld of bioinformatics (E.coli and Yeast), with
encouraging results. Among the three sampling techniques
considered, strati_ed random sampling proved to yield the
best classification performance despite the fact that the
training sets it produces are smaller in magnitude
compared to 10.fold cross validation. To evaluate further
the capabilities of this model, comparisons with feed
forward neural network models trained using the R.PROP
algorithm were performed. These comparisons showed that
the self adaptive model proposed achieves statistically
signi_cant superior performance on the Yeast data set,
while on the E.coli data set the performance of the two
models is not found to be statistically different. Future
work will include the generalization of the proposed self
adaptive scheme to determine the corresponding matrix of
spread parameters, to further optimize the performance of

PNNs. We also intend to apply different evolutionary
computation techniques on this problem.

ACKNOWLEDGMENT

The author is thankful Mr.S.J.Alaspurkar of Computer
Science Department of G..H.Raisoni College Of
engineering for his perfect logistic support provided for the
neural networks and the pattern classification problems
based on it
REFERENCES
[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization

and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[2] C. Kramer, B. Mckay, and J. Belina, “Probabilistic neural
network arrayarchitecture for ECG classification,” in Proc.
Annu. Int. Conf. IEEE Eng.Medicine Biol., vol. 17, 1995, pp.
807–808.

[3] L. I.Kuncheva and J. C. Bezdek, “Nearest prototype
classification: Clustering, genetic algorithms, or random
search,” IEEE Trans. Syst., Man, Cybern. C, vol. 28, pp.
160–164, Feb. 1998

[4] S. Ma and C. Ji, “Performance and efficiency: Recent
advances in supervised learning,” Proc. IEEE, vol. 87, pp.
1519–1535, 1999.

[5] C.G. Atkeson. (1991) Using locally weighted regression for
robot learning. Proceedings of the 1991 IEEE Conference
on Robotics and Automation, pp. 958{963. Los Alamitos,
CA: IEEE Computer Society Press

[6] D. Goldberg. (1988) Genetic Algorithms in Machine
Learning, Optimization and Search. Redwood City, CA:
Addison-Wesley.

[7] M. T. Musavi, K. H. Chan, D. M. Hummels, and K. Kalantri,
“On the generalization ability of neural-network classifier,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no. 6, pp,
1994.

[8] P. P. Raghu and B. Yegnanarayana, “Supervised texture
classification using a probabilistic neural network and
constraint satisfaction model,” IEEE Trans. Neural
Networks, vol. 9, pp. 516–522, May 1998.

[9] B.V. Dasarathy. (1991) Nearest Neighbor (NN) Norms: NN
Pattern Classi_cation Techniques. Los Alamitos, CA: IEEE
Computer Society Press.

[10] K. Z. Mao, K.-C. Tan, and W. Ser “Probabilistic Neural-
Network Structure Determination for Pattern Classification”
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL.
11, NO. 4, JULY 2000

[11] Maida,Anthony S.”Identifieng causual structure in a
biological neural network” ICTAI 2000 Proceedings 12th
IEEE International Conference.

