
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

8

Manuscript received May 5, 2014
Manuscript revised May 20, 2014

Non Superfluous Time Solutions of the Laplacian Framework

M. E.Wahed

Computer Science department, Suez Canal University, Egypt
M.Abdallah

Computer Science department, Suez Canal University, Egypt

Mohamed Soliman Elkomy

Computer Science department, Suez Canal University, Egypt
Summary
We present fast solutions to geometric mesh processing related to the Laplacian processing framework and differential representation.
We first show how to divide the problem in to miniature problems to save computational time. Then we combine the Laplacian
Framework with sensitivity analysis to answer the question of what if changes occurring on the model subject to solution.

1. Introduction:

We begin by some definitions of what is Geometric
Processing is: Geometric processing can be defined as the
field which is concerned with how geometric objects are
worked upon with a computer [JJFH12].The word
processing indicates that there is an algorithm involved in
the processing action. The data part that the algorithm
works on is the Geometry. On the other hand Geometry
processing is mostly about applying algorithms to
geometric models as stated by [MLMPB10].
Surface representation and processing is one key topic in
computer aided design. The surface representation of a 3D
object may affect the information that we can perceive
about that object. For example the triangular mesh
representation can be used to: display the surface, deduce
some topological information about the object, in addition
to knowing the differential properties of the object that the
model represents.
In this paper we build on work done on mesh processing
and modeling that is based on the Laplacian framework
and differential representations pointed out by [Olg05]
and [ATOM06]. As opposing to dealing with Cartesian
coordinates, the differential representation utilized in the
Laplacian framework results in detail-preserving
operations.
Laplacian operator and differential surface representation
and surface reconstruction:

To understand the work that this paper presents we will
first talk about the Laplacian differential surface
representation.
If is a mesh representing an object with “ ” vertices
and “ ” edges and “ ” faces. For each vertex “ ” we

have three Cartesian coordinated associated with each
vertex: , , and .
The differential or -coordinates of is defined to be the
difference between the absolute coordinates of and the
center of mass of its immediate neighbors in the mesh

 -

Where N(i) = { j |(i, j) E} and di = |N(i)| is the number
of immediate neighbors of i (1-ring of the vertex). The
transformation of the vector of absolute Cartesian
coordinates to the vector of -coordinates can be
represented in matrix form. Starting from the adjacency
matrix A which is a square matrix that has 1 in the cell if
both the row “i” and column “j” of the cell in the matrix
represent an edge between the two vertices i, and j.
Also we have the diagonal matrix D that has Dii =di ,
hence we can write the L matrix
L= I – D-1A
And the symmetric version Ls
Ls=DL=D-A
Then we can write:

We cannot restore the Cartesian coordinates starting from

 –coordinates; because L is singular. In order to restore
the Cartesian coordinates we need to specify the Cartesian
coordinates of one vertex to resolve the translational
degree of freedom. Substituting the coordinates of vertex i
is equivalent to dropping both the ith row and column
from L, which makes the matrix invertible [Olg05].
Usually how this is done is by placing more than one
special constraint of the mesh vertices. We have therefore

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 9

|C| additional constraints (called the positional constraints)
of the form:

If the vertices are ordered from 1 to m, then the linear
system looks like:

 (1)

The additional constraints make the linear system over-
determined (more equations than unknowns) and in
general no exact solution may exist. However, the system
is full-rank and thus has a unique solution in the least-
squares sense:

 Can be written on the following form

 (2)

1. Laplacain Mesh Processing Division:

Figure [1] shows in the upper half solving the Laplacian

framework with the first section of the positional
constraints while the lower half is solving the Laplacian
framework with the last section of positional constraints

i. Dividing the Linear problem
ii. Instead of solving the least squares problem

 we suggest to divide it into two steps as follows
(we refer to figure [1] with m=n/2):

iii. We will first solve the upper linear system with,
this will give us a solution x, which is composed of two
parts, the upper half is a direct result from solving both the
non-positional constraints and the positional constraints,
the lower half comes only from non-positional constraints.

iv. Next we solve the lower linear system, again the
solution x is composed of two parts, the lower is a direct
result from solving both the non-positional constraints and

the positional constraints, the upper half comes only from
non-positional constraints.

v. Then, the final solution will be composed of the
upper half from step one combined with the lower half
from step two.

Figure [2] to the left the original object, to the right the

resulting object

Figure [2] shows the combined solution object. Of course
each divided half takes less time to calculate than the
complete problem in which we solve all the positional and
non-positional constraints as once. In deed this is evident
from [Mic97] who shows that the solution is proportional
to size of the problem.

Parallel processing:

In the previous section we divided the problem into two
halves; we could have assigned each half to a different
processor and solved them in parallel.
We could extend this idea to N processors, were in each
processor we solve a linear system composed of positional
constraints in addition to non-positional constraints.
In this case we will have N-2 linear systems like figure [3],
in addition to the two linear systems in figure [1]. We will
take from each X solution of these systems the part that
corresponds to the “m” positional constraints used in it.

Figure [3] solving the Laplacian framework with a middle

section of the positional constraints

Then we will construct the final solution as the upper part
from the upper linear system in figure [1], followed by N-
2 parts from the linear systems mentioned in figure [3],
and finally the lower part from the lower linear system
from figure [1].
In case of using heterogeneous processors with different
powers the divisions that we make need not be equal, and

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 10

we can assign the more powerful processor a bigger size
problem.

In table [1] we can see some statistical data

Metric Dividing problem into two halves

Mean Normalized Cross-Correlation

0.9635

Average Difference

2.7472

Normalized Absolute Error

0.0701

Table [1] statistical data

In the graph [1], we can see that to solve the problem into
four parts, each time we solve the Laplacian framework
with the non-positional constraints and one quarter of the
positional constraints. As can be seen when we divide the
problem on four processors the time is almost halved (max
time=57% of complete solution).

Graph [1] time taken after dividing the positional
constraints into four parts

2. Least squares Perturbation and Laplacain
Mesh Processing:

vi. The Effect of delta Changes on Relative
Error

vii. The Effect of Changes in b on Relative Error

In this section we consider what if questions applied to
equation (2). For example what if want to make changes
on the model under investigation, the question that arises
do we need to solve the new problem from the beginning.
[Fas13] states that the liner system may be
perturbed as this implies
that , and hence we can solve this linear equation
to get and add to solution of the original problem and
get , i.e the solution of the perturbed problem.

1. The Effect of Changes in A, and b on
Relative Error

If we solve (1) without including all the positional
constraints we will have a deformed object of the original
object. So what if we want to add more constraints to our
problem latter. Again the question arises: Do we need to
solve a new problem from the beginning? The answer is
no, we can work on the perturbed system

 to find:

Implementation details and Results

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 11

We have used Matlab, and Graph tool box created by
“Gabriel Peyre”. To calculate the least squares solution
“mldivide” command was used. Due to the nature of the
problem the solver used is Sparse QR Factorization via
“SuiteSparseQR”.

The Effect of Changes in b on Relative Error
The changes in b can result from multiple factors: aging
that occurred on an object, or simply because we want to
make a change on the object replacing a piece by another
piece.
In figure (4) we see the effect of modifying part of the
model
The Implementation details go as follows:
Solve the original problem
Introduce a delta change on the b part in a limited number
of vertices (about 10% of the total number)
Calculate
Calculate from
Add

Figure (4), on the left the original object, on the right the

perturbed object

3. The Effect of Changes in A, and b on
Relative Error

 If we don’t include all the positional constraints
the solution will be deformed as can be seen in figure (5).
In this figure only half of the positional constraints were
used.
 If we now create that has the remaining
positional constraints and also .
 Note by that the size of is different from ,
this also applies for , and we need to modify both
the size of and .
 [HL95] suggests a method to modify .
What we need to do is to add rows to both to
represent the remaining positional constraints, so we can
pretend that theses rows were actually in the original
model and that they are filled with zeros.

 The Implementation details go as follows:
 Solve the original problem to get . Note
by that this x is a result of only including half of the
positional constraint
 Create and that account for the remaining
positional constraints
 Modify and of the original problem to have
the perturbed problem size
 Calculate from
 Add to get the solution

Figure (5) on the left the original object, on the right only

half of the positional constraints were used

Figure (6) on the left the original object, the right image
represents the solution after adding all the positional

constraints and solving using the perturbation method

As can be seen from graph [2] that there is always time
saving –the execution time varies from run to sun but
always less from solving the complete problem from
scratch- if we calculate the solution using the previous
method due to changes in (and) rather than solving
a new problem with new .
This sounds reasonable, since for small and the
linear system is sparser, this means that having a smaller
change leads to a faster solution.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 12

Graph (4): Percentage Time saving

Table [2] statistical Metrics

Metric
Changes in A, and

b on Relative
Error

Changes in b
on Relative

Error
Mean Normalized Cross-Correlation

0.9820 0.9600

Average Difference

0.3649 3.0639

Normalized Absolute Error

0.0448 0.0768

We can also see in table [2] that if we compare the images
of the generated objects with the image of the original
object that: in case of changes in A, and b on Relative
Error that Average Difference is small, and also the cross
correlation and the Absolute error are very small which
means that our method was successful.
While in the case of changes in b on Relative Error, the
average error is large which is reasonable since we have
modified the original image and made changes to it, while
the cross correlation and the Absolute error are very small.
Conclusion

We have presented two time saving techniques to find the
solution of the Linear equation resulting from the
Laplacian Framework. It was shown that time execution

drops dramatically when dividing the problem to multiple
processors. Also we can find solutions to delta changes of
the linear system in less time required to solve a new
problem.

References:
[BGAA12] Baerentzen J., Gravesen J., Anton F., Aanaes H.:
Guide to Computational Geometry Processing. Springer (2012)
[BKPAL 10] Botsch M., Kobbelt L., Pauly M., Alliez P., Levy
B.: Polygon Mesh Processing. AK Peters,Wellesley (2010)
[Fas13] Fasshauer G.: online notes for course MATH 477/577 at
IIT
[Hea97] Heath M.: Scientific Computing An Introductory
Survey. McGraw-Hill (1997)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 13

[HL95] Hillier F., Lieberman G.: Introduction to Operations
Research. McGraw hill (1995)
[Mey00] Meyer C. Matrix Analysis and Applied Linear Algebra.
SIAM (2000)
[NISA06] Nealen A., Igarashi T., Sorkine O., Alexa M.:
Laplacian mesh optimization. Proceedings of ACM GRAPHITE
(2006)
[Pey04] Peyre G.: Toolbox Graph Mathworks (2004)
[Sor05] Sorkine O.: Laplacian Mesh Processing. Proceedings of
EUROGRAPHICS 2005, STAR Volume.
[TB97] Trefethen L., Bau D. : Numerical Linear Algebra. SIAM
(1997)

Mohamed Elkomy received his B.Sc.
in Electrical Engineering from Ain
Shams University in 2001. After
working as a teaching Assistant (from
2006 to 2007) he has received his
Master in Computing from the
American university in Cairo in 2009.
His research interest includes
Computational Geometry, Geometric
Processing, and Electrical CAD
design.

