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Summary 
We present fast solutions to geometric mesh processing related to the Laplacian processing framework and differential representation. 
We first show how to divide the problem in to miniature problems to save computational time. Then we combine the Laplacian 
Framework with sensitivity analysis to answer the question of what if changes occurring on the model subject to solution. 

 
1. Introduction: 

We begin by some definitions of what is Geometric 
Processing is: Geometric processing can be defined as the 
field which is concerned with how geometric objects are 
worked upon with a computer [JJFH12].The word 
processing indicates that there is an algorithm involved in 
the processing action. The data part that the algorithm 
works on is the Geometry. On the other hand Geometry 
processing is mostly about applying algorithms to 
geometric models as stated by [MLMPB10]. 
Surface representation and processing is one key topic in 
computer aided design. The surface representation of a 3D 
object may affect the information that we can perceive 
about that object. For example the triangular mesh 
representation can be used to: display the surface, deduce 
some topological information about the object, in addition 
to knowing the differential properties of the object that the 
model represents. 
In this paper we build on work done on mesh processing 
and modeling that is based on the Laplacian framework 
and differential representations pointed out by [Olg05] 
and [ATOM06]. As opposing to dealing with Cartesian 
coordinates, the differential representation utilized in the 
Laplacian framework results in detail-preserving 
operations. 
Laplacian operator and differential surface representation 
and surface reconstruction: 
 
To understand the work that this paper presents we will 
first talk about the Laplacian differential surface 
representation. 
If  is a mesh representing an object with “ ” vertices 
and “   ” edges and “  ” faces. For each vertex “ ” we 

have three Cartesian coordinated associated with each 
vertex: , , and . 
The differential or -coordinates of   is defined to be the 
difference between the absolute coordinates of  and the 
center of mass of its immediate neighbors in the mesh 

  -    
  
Where N(i) = { j |(i, j)  E} and di = |N(i)| is the number 
of immediate neighbors of i  (1-ring of the vertex). The 
transformation of the vector of absolute Cartesian 
coordinates to the vector of  -coordinates can be 
represented in matrix form. Starting from the adjacency 
matrix A which is a square matrix that has 1 in the cell if 
both the row “i” and column “j” of the cell in the matrix 
represent an edge between the two vertices i, and j. 
Also we have the diagonal matrix D that has Dii =di , 
hence we can write the L matrix 
L= I – D-1A 
And the symmetric version Ls 
Ls=DL=D-A 
Then we can write: 

 
 
 

 
We cannot restore the Cartesian coordinates starting from 

 –coordinates; because L is singular. In order to restore 
the Cartesian coordinates we need to specify the Cartesian 
coordinates of one vertex to resolve the translational 
degree of freedom. Substituting the coordinates of vertex i 
is equivalent to dropping both the ith row and column 
from L, which makes the matrix invertible [Olg05]. 
Usually how this is done is by placing more than one 
special constraint of the mesh vertices. We have therefore 
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|C| additional constraints (called the positional constraints) 
of the form: 

 
 
If the vertices are ordered from 1 to m, then the linear 
system looks like: 

                                      (1) 

 
The additional constraints make the linear system over-
determined (more equations than unknowns) and in 
general no exact solution may exist. However, the system 
is full-rank and thus has a unique solution in the least-
squares sense: 

 
 
 Can be written on the following form 

                                     (2) 

1. Laplacain Mesh Processing Division: 

 
Figure [1] shows in the upper half solving the Laplacian 

framework with the first section of the positional 
constraints while the lower half is solving the Laplacian 
framework with the last section of positional constraints 

 

i. Dividing the Linear problem  
ii. Instead of solving the least squares problem 

 we suggest to divide it into two steps as follows 
(we refer to figure [1] with m=n/2): 

iii. We will first solve the upper linear system with, 
this will give us a solution x, which is composed of two 
parts, the upper half is a direct result from solving both the 
non-positional constraints and the positional constraints, 
the lower half comes only from non-positional constraints. 

iv. Next we solve the lower linear system, again the 
solution x is composed of two parts, the lower is a direct 
result from solving both the non-positional constraints and 

the positional constraints, the upper half comes only from 
non-positional constraints. 

v. Then, the final solution will be composed of the 
upper half from step one combined with the lower half 
from step two. 

 
Figure [2] to the left the original object, to the right the 

resulting object 

 
Figure [2] shows the combined solution object. Of course 
each divided half takes less time to calculate than the 
complete problem in which we solve all the positional and 
non-positional constraints as once. In deed this is evident 
from [Mic97] who shows that the solution is proportional 
to size of the problem. 
 
Parallel processing: 
 
In the previous section we divided the problem into two 
halves; we could have assigned each half to a different 
processor and solved them in parallel. 
We could extend this idea to N processors, were in each 
processor we solve a linear system composed of positional 
constraints in addition to non-positional constraints. 
In this case we will have N-2 linear systems like figure [3], 
in addition to the two linear systems in figure [1]. We will 
take from each X solution of these systems the part that 
corresponds to the “m” positional constraints used in it. 
 

 
Figure [3] solving the Laplacian framework with a middle 

section of the positional constraints 

 
Then we will construct the final solution as the upper part 
from the upper linear system in figure [1], followed by N-
2 parts from the linear systems mentioned in figure [3], 
and finally the lower part from the lower linear system 
from figure [1].  
In case of using heterogeneous processors with different 
powers the divisions that we make need not be equal, and 
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we can assign the more powerful processor a bigger size 
problem.    

 
In table [1] we can see some statistical data 

 
Metric Dividing problem into two halves 

Mean Normalized Cross-Correlation 

 

0.9635 

Average Difference 

 

2.7472 

Normalized Absolute Error 

 

0.0701 

Table [1] statistical data 

 
In the graph [1], we can see that to solve the problem into 
four parts, each time we solve the Laplacian framework 
with the non-positional constraints and one quarter of the 
positional constraints. As can be seen when we divide the 
problem on four processors the time is almost halved (max 
time=57% of complete solution).  
 

 
 

Graph [1] time taken after dividing the positional 
constraints into four parts 

2. Least squares Perturbation and Laplacain 
Mesh Processing: 

vi. The Effect of delta Changes on Relative 
Error 

vii. The Effect of Changes in b on Relative Error 

In this section we consider what if questions applied to 
equation (2). For example what if want to make changes 
on the model under investigation, the question that arises 
do we need to solve the new problem from the beginning. 
[Fas13] states that the liner system  may be 
perturbed as  this implies 
that , and hence we can solve this linear equation 
to get  and add to solution of the original problem and 
get , i.e the solution of the perturbed problem. 

1. The Effect of Changes in A, and b on 
Relative Error 

If we solve (1) without including all the positional 
constraints we will have a deformed object of the original 
object. So what if we want to add more constraints to our 
problem latter. Again the question arises: Do we need to 
solve a new problem from the beginning? The answer is 
no, we can work on the perturbed system 

 to find: 
   
 
Implementation details and Results 
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We have used Matlab, and Graph tool box created by 
“Gabriel Peyre”. To calculate the least squares solution 
“mldivide” command was used. Due to the nature of the 
problem the solver used is Sparse QR Factorization via 
“SuiteSparseQR”. 
 
The Effect of Changes in b on Relative Error 
The changes in b can result from multiple factors: aging 
that occurred on an object, or simply because we want to 
make a change on the object replacing a piece by another 
piece. 
In figure (4) we see the effect of modifying part of the 
model 
The Implementation details go as follows: 
Solve the original problem  
Introduce a delta change on the b part in a limited number 
of vertices ( about 10% of the total number) 
Calculate   
Calculate  from   
Add  

 
Figure (4), on the left the original object, on the right the 

perturbed object 

3. The Effect of Changes in A, and b on 
Relative Error 

 If we don’t include all the positional constraints 
the solution will be deformed as can be seen in figure (5). 
In this figure only half of the positional constraints were 
used. 
 If we now create  that has the remaining 
positional constraints and also .  
 Note by that the size of  is different from , 
this also applies for , and we need to modify both 
the size of  and . 
 [HL95] suggests a method to modify . 
What we need to do is to add rows to both   to 
represent the remaining positional constraints, so we can 
pretend that theses rows were actually in the original 
model and that they are filled with zeros. 

 The Implementation details go as follows: 
 Solve the original problem  to get . Note 
by that this x is a result of only including half of the 
positional constraint 
 Create  and  that account for the remaining 
positional constraints 
 Modify  and  of the original problem to have 
the perturbed problem size 
 Calculate  from   
 Add  to get the solution 

 
Figure (5) on the left the original object, on the right only 

half of the positional constraints were used 

 
Figure (6) on the left the original object, the right image 
represents the solution after adding all the positional 

constraints and solving using the perturbation method 
 
As can be seen from graph [2] that there is always time 
saving –the execution time varies from run to sun but 
always less from solving the complete problem from 
scratch- if we calculate the solution using the previous 
method due to changes in (  and ) rather than solving 
a new problem with new . 
This sounds reasonable, since for small  and  the 
linear system is sparser, this means that having a smaller 
change leads to a faster solution. 
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Graph (4): Percentage Time saving 

 
 

Table [2] statistical Metrics 

Metric 
Changes in A, and 

b on Relative 
Error 

Changes in b 
on Relative 

Error 
Mean Normalized Cross-Correlation 

 

0.9820 0.9600 

Average Difference 

 

0.3649 3.0639 

Normalized Absolute Error 

 

0.0448 0.0768 

 
We can also see in table [2] that if we compare the images 
of the generated objects with the image of the original 
object that: in case of changes in A, and b on Relative 
Error that Average Difference is small, and also the cross 
correlation and the Absolute error are very small which 
means that our method was successful. 
While in the case of changes in b on Relative Error, the 
average error is large which is reasonable since we have 
modified the original image and made changes to it, while 
the cross correlation and the Absolute error are very small.  
Conclusion 

We have presented two time saving techniques to find the 
solution of the Linear equation resulting from the 
Laplacian Framework. It was shown that time execution 

drops dramatically when dividing the problem to multiple 
processors. Also we can find solutions to delta changes of 
the linear system in less time required to solve a new 
problem. 
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