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Summary 
The problem of finding the shortest path is one problem attracted 
attention of many researchers because it is widely used in many 
fields such as communication, routing and transportation. In the 
traditional problem, the length of the edge is represented by the 
exact value and finding the shortest path has solved by Dijkstra’s 
algorithm. But in fact, the length of the edge is usually expressed 
by the uncertain value and then we have the model of the Fuzzy 
Shortest Path Problem. In this paper, we focus on developing an 
algorithm to find the shortest path in which the weights of the 
edges are represented by triangular fuzzy numbers. The 
mathematical basic of the algorithm is based on the concept of 
Defined Strict Comparative Relation Function on the set of 
Triangular Fuzzy Numbers.  
Key words: 
Fuzzy shortest path, comparative relation, Dijkstra's algorithm. 

1. Introduction 

The single-source problem of finding a shortest path from 
a source vertex to a destination vertex is one of the 
fundamental problems in graph theory and applied in 
many practical applications. Suppose there is a shipping 
company needs to ship goods from city S to city D. With a 
map in hand, the driver has to determine the route from S 
to D through the cities A, B, and C ... so that the total cost 
is minimal. Typically, the length (weight) of the route is 
usually measured by time; cost; … In fact, this length is 
not always calculated correctly. For example: time of 
travelling from A to B is about 200 minutes. However, in 
positive conditions such as the good weather, the good 
health, this time can be reduced to 120 minutes. And in the 
negative conditions for example: because of the rain, the 
road is repairing, traffic jam…time to complete this 
distance can be up to 300 minutes or more. Clearly, in 
such cases, we must use fuzzy values to represent weights. 
The fuzzy shortest path problem (FSPP) was first analysed 
by Dubois and Prade in 1980 and solved by Floyd’s and 
Ford’s algorithm. Although it is possible to calculate the 
length of the shortest path but this cannot correspond in 
any way to any reality. 
From 1980 to now, there have been many researches 
focused on how to solve the FSPP problem. These 
methods mentioned in references include: 
(1): Using the properties of the network flow for 

converting FSPP to the multiple purpose linear 

programming problems, Jing-Rung Yu and Tzu-Hao 
Wei presented this method in [2]. 

(2): Find all possible paths from the source vertex s to 
vertex t then specify a length 'minimal' and find the 
path length similar to the length 'minimal' best. 
Sujatha and Elizabeth presented this method in [3]. 
Tzung Jung Nan Yuan Chuang and Kung [1] also built 
algorithm with the same idea but in the case for the 
weights are in discrete fuzzy sets  

(3): Using 'ranking function' and modifying the labelling 
Dijkstra’s algorithm. A ranking function is defined as 
a mapping from a fuzzy number set to space R. 

RFNg →:(.) is called a ranking function if: 

 abgag ~)
~

()~( ⇒< is less than b
~

; 

 abgag ~)
~

()~( ⇒> is greater than b
~

; 

 abgag ~)
~

()~( ⇒= is equal to b
~

. 
(4): Developing the own measurements and algorithms, 

Amit Kumar and Manjot Kaur [4] had quoted the 
Nayeem and Pal’s algorithm presented in 2005 based 
on the concept of acceptability index to the 
proposition 'A is inferior to B'. 

Overall, in the above methods, method (3) with ‘ranking 
function’ is the simplest method. However, as we had 
analysed in [6], the disadvantages of using ‘ranking 
function’ is not found any satisfactory formula 

)
~

()~( bgag = implies a~ = b
~

 in accordance to the 
equality definition of fuzzy numbers. This means that, by 
the ‘ranking function’ method, the fuzzy shortest paths 
don’t have equal of length which is just having the 
‘ranking function’ equal of value. 
To overcome the drawbacks of the ‘ranking function’ 
method, in [6] we had introduced a definition of 
comparative relation of fuzzy numbers. In this paper, we 
propose a new approach to compare two triangular fuzzy 
numbers, and on the basic of this notation we solve FSPP 
problem by applying Dijkstra’s algorithm based on a strict 
comparative relation.  
This paper is organized in 5 sections. Section 1 provides a 
brief introduction about the problem of finding shortest 
path in a graph with the fuzzy weight and some solutions. 
Section 2 presents the model and the single-source shortest 
path problem and Dijkstra’s algorithm. Section 3 
introduces triangular fuzzy numbers, comparative relation 
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of triangular fuzzy numbers and gives some results about 
the strict comparative relation. Section 4 presents the 
model and how to solve single-source shortest path 
problem for the case, which the weights of the edges are 
triangular fuzzy numbers. Illustration of algorithm is also 
presented in section 4 and some conclusions are drawn in 
section 5. 

2. The single-source shortest path problem 
and Dijkstra’s algorithm 

2.1 Graph 

Given a directed and connected graph },{ EVG = where 
},..,1{ nV = is the set of n  vertices, and E is the set of 

edges of the graph. The weight of the edge ),( ji  
connected from vertex i to vertex j  and symbols .ijw  
A path from vertex u  to vertex v  of the graph is a 
sequence of vertices vvvvu m ,,..,,, 21  such that 

Vvvvu m ∈,..,,, 1 and Evvvvvu m ∈),(),...,,(),,( 211 . Length of 
the path is the sum of the weights of the edges in the path. 
The single-source shortest path problem is the problem of 
finding shortest paths from source vertex s to all other 
vertices in the graph.  

2.2 Dijkstra’s algorithm 

Dijkstra’s algorithm or Labelling algorithm conceived by 
computer scientist Edsger Dijkstra in 1956 and published 
in 1959 that solves the single-source shortest path for a 
graph with non-negative edges path costs. The idea of the 
algorithm is labelling each vertex of the graph 
corresponding to the length of the shortest path from 
source to considering edge.  
Denote ][vd  is a label of Vv∈ . At the beginning, assign 

0][ =sd  and ∞=][vd for all other nodes where ∞ is a 
very big number lies in range of computer representation. 
To defined a vertex of the graph that has been reviewed or 
not, we use an array []u  with falsevu =][ means v has 
not been reviewed.  
The algorithm is in Java language [7]: 
 
for (int i=0; i<n; i++) { 
   
  // finding minimum label among unvisited vertices 
  int v = -1; 
  for (int j=0; j<n; j++) { 
    if (u[j] == false && (v == -1 || d[j]<d[v])) { 
      v = j; 
    } 
  } 
 
  // set as visited 
  u[v]=true; 
 

  for (int j=0; j<n; j++) { 
    // if there is exists path between v and j 
    if (w[v][j]>0) { 
      if (d[v] + w[v][j] <d [j]) { 
        d[j] = d[v]+w[v][j]; 
      } 
    } 
  } 
} 

Fig. 1 Dijkstra’s algorithm 

3. Triangular fuzzy numbers and comparative 
relation on it 

Definition 3.1 ([4], [5], [6]): Triangular fuzzy number A~  
is defined by a triplet ),;( βαa with the membership 
function defined as: 


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Let TFN be the set of all Triangular Fuzzy Numbers. 
 
Definition 3.2 ([4],[5],[6]): Assuming that both 

),;(~
~~ AAaA βα= and ),;(~

~~ BBbB βα= are triangular fuzzy 
numbers, the arithmetic operations on triangular fuzzy 
numbers are as follows: 
- ),;(~~

~~~~ BABAbaBA ββαα +++=+   (3.1) 

-






<

≥
=

0,),;(

0,),;(~
~~

~~

kkkka

kkkka
Ak

AA

AA

αβ

βα
  (3.2) 

 
Definition 3.3 ([6]): Two triangular fuzzy numbers 

),;(~
~~ AAaA βα= and ),;(~

~~ BBbB βα=  are said to be 
equivalent if and only if ba =  and BA ~~ αα =  
and BA ~~ ββ = . 

We denote BA ~~
Ψ
< is form of proposition A~ less than 

B~ according to the definition of relation Ψ . 
 
Definition 3.4 ([6]): The relation Ψ  is called a 
comparative relation if and only if it is a complete ordering 
relation and is compatible with the ordering relation on the 
set of real numbers, means that: Rba ∈∀ , , if baΘ then 

ba
Ψ
Θ where },,,,,{ ≥><>=≤<∈Θ . 

Definition 3.5: The comparative relation Γ is called a 
strict comparative relation if Γ is a comparative relation 
and satisfies the following conditions: 
- If BA ~~

Γ
≤  and DC ~~

Γ
≤ then DBCA ~~~~

+≤+
Γ

; 
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- If BA ~~
Γ
≤  and 0≥k then BkAk ~~

Γ
≤ .  

Definition 3.6: The function f: TFN×TFN → R is called 
Defined Comparative Relation Function (DCRF) on TFN 
if it satisfies the following conditions: 
(i) TFNAAAf ∈∀≥

~0)~,~( ; 

(ii) If 0)~,~( ≥BAf  and 0)~,~( ≥ABf then BA ~~
= ; 

(iii) If 0)~,~( ≥BAf and 0)~,~( ≥CBf then 0)~,~( ≥CAf . 
 
Definition 3.7: The DCRF on TFN is called Defined 
Complete Comparative Relation Function (DCCRF) if it 
satisfies connected conditions: 

TFNBA ∈∀
~,~ either 0)~,~( ≥BAf or 0)~,~( ≥ABf .  

 
Definition 3.8: The DCRF on TFN is called Defined Strict 
Comparative Relation Function (DSCRF) if it satisfies the 
following conditions: 
- If 0)~,~( ≥BAf and 0)~,~( ≥DCf then 0)~~,~~( ≥++ DBCAf ; 

- If 0)~,~( ≥BAf and k ≥ 0 then 0)~,~( ≥BkAkf  
 
Theorem 3.1: Exist the function f is DSCRF on TFN 
Proof: We put  

)(sign

)(sign)sign()~,~(
~~2

~~1

AB

ABabBAf

ααω

ββωω

−+

−+−=
  (3.3) 

where 021 ≥>> ωωω and 12 ωωω +>   (3.4) 

and 

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
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=
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)(sign
x
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• Firstly, we show that f is DCRF.  
(i)  For every TFNA∈∀~ we have 0)~,~( =AAf  
(ii) If 0)~,~( ≥BAf then by (3.3) implies sign(b-a) ≥ 0, 
because if opposite then since 12 ωωω +>  implies 

0)~,~( <BAf . Consequently, b ≥ a. 
Similarly, from 0)~,~( ≥ABf implies a ≥ b. And hence a=b. 
Now value of f according to formula (3.3) becomes: 

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABABBAf ααωββω  
From there we have also 0~~ ≥− AB ββ  , because if 

opposite then since 21 ωω > ⇒ 0)~,~( <BAf , 
implies

AB ~~ ββ ≥ . 
On the other hand, since 0)~,~( ≥ABf  we have

AB ~~ ββ ≤ , 

therefore 
AB ~~ ββ =  

Now, f is simplified:  
0)(sign)~,~( ~~2 ≥−= ABBAf ααω  

And this implies, 
AB ~~ αα ≥  

Likewise, we have 
AB ~~ αα ≤  

Combine two inequalities, we obtain: AB ~~ αα = . 
By the definition 3.3 we have BA ~~

≡ . 
(iii) If 0)~,~( ≥BAf and 0)~,~( ≥CBf then sign(b-a) ≥ 0 and 
from sign(c-b) ≥ 0 implies c ≥ b ≥ a. There are two cases: 
+ Case 1: c > a ⇒ 0)~,~( ≥CAf  
+ Case 2: c = b = c  

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABABBAf ααωββω  
and  

0)(sign)sign()~,~( ~~2~~1 ≥−+−= BCBCCBf ααωββω  
Therefore, we have 

0~~ ≥− AB ββ and 0~~ ≥− BC ββ  or
A~~~ βββ ≥≥ BC

. 
There are two capabilities: 
- Or

A~~ ββ >C
, when 

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABACACf ααωββω  

- Or
A~~~ βββ == BC

. 
By the formula (3.6):  

AABABBAf ~B~~~~~2 00)(sign)~,~( ααααααω ≥⇒≥−⇒≥−= and 

BCBCBCCBf ~~~~~~2 00)sign()~,~( ααααααω ≥⇒≥−⇒≥−=  

This implies that: 0)sign()~,~( ~~2 ≥−= ACCAf ααω . 

• Next, we have to prove f is DCRF. Definitely: 

0

))()(())()((

))()(()~,~()~,~(
~~~~2~~~~1

=

−+−+−+−+

−+−=+

BAABBAAB signsignsignsign

basignabsignABfBAf

ααααωββββω

ω

When either 0)~,~( ≥BAf or 0)~,~( ≥ABf .  
 
• Finally, we show that f is DSCRF, clearly, in (3.3), if 

0)~,~( ≥BAf and 0)~,~( ≥DCf then these are following 
changes: 
+ [(b > a) ˄ (d > c)] ⇒ b+d > a+c; 
+ [(b > a) ˄ (d = c)] ⇒ b+d > a+c; 
+ [(b = a) ˄ (d > c)] ⇒ b+d > a+c; 
Therefore 0)~~,~~( ≥++ DBCAf ; 
+ [(b = a) ˄ (d = c)] we have 

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABABBAf ααωββω     

And 0)(sign)(sign)~,~( ~~2~~1 ≥−+−= CDCDDCf ααωββω , 
Similarly: 

- 
CADBCDAB ~~~~~~~~ )]()[( ββββββββ +>+⇒>∧> ; 

- 
CADBCDAB ~~~~~~~~ )]()[( ββββββββ +>+⇒=∧> ; 

- 
CADBCDAB ~~~~~~~~ )]()[( ββββββββ +>+⇒>∧= ; 

i.e. 0)~~,~~( ≥++ DBCAf ; 
- And since )]()[( ~~~~ CDAB ββββ =∧=

 

we have 

also 0)~~,~~( ≥++ DBCAf . 
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If 0)~,~( ≥BAf and k ≥ 0 and then by (3.2) and (3.3): 

0)~,~()sign()~,~( ≥×= BAfkBkAkf . 
 
Theorem 3.2: If f is the DSCRF on an arbitrary linear set 
X then can construct a strict comparative relationℑ on X 
correlative. 
Proof: We definition a relationℑ on X: 

0),( ≥⇔≤
ℑ

yxfyx  

According to the definition 3.6, it is easy to proveℑ is a 
comparative relation. 

4. Fuzzy Single-Source Shortest Path Problem 

4.1 Design data model 

Representation triangular fuzzy numbers: 
To represent a set of triangular fuzzy numbers, we use 
class TFN with properties core, left and right. 
class TFN { 
  float core; 
  float left; 
  float right; 
} 
 
Representation graph:  
Given a directed and connected graph },{ EVGF = where 

},..,1{ nV = is a set of n  vertices of the graph and E is a 
set of edges. The weights of the edges are stored in an 
array [][]wf  of type TFN where ],[ jiwf  is the weight 
of the edges which connected between vertex i and vertex j 
of the graph.  

4.2 Algorithm 

Input:  - Graph },{ EVGF = ;  
 - Weighted array [][]wf ;  
 - Source vertex Vs∈ ; 
 - f is the DSCRF. 
Output: The length of the shortest paths from source vertex 

Vs∈ to all other vertices of the graph. 
In this algorithm, we are using two functions: 
Function )~,~( BAFAdd where TFNBA ∈

~,~
 returns the 

sum of A~ and B~ .  
Function )~,~( BAIsLess where TFNBA ∈~,~ returns True 

if 0)~,~( >BAf and returns False otherwise. 
Like Dijkstra’s algorithm, we use two arrays TFNdf ∈[]  
and []u  to hold label and status of a vertex which is 
reviewed or not reviewed. 
 

At the beginning, we assign )0,0;0(][ =sdf  
and sVvfalsevuvdf −∈∀=∞= ][),0,0;(][ .  
The algorithm is shown in Figure 2: 
 
for (int i=1; i<=n; i++) { 
   
  // finding minimum label among unvisited vertices 
  int v = -1; 
  for (int j=1; j<=n; j++) { 
    if (u[j] == false && (v == -1 || IsLess(df[j],df[v]))    
    { 
      v = j; 
    } 
  } 
 
  // set as visited 
  u[v]=true; 
 
  for (int j=1; j<=n; j++) { 
    if IsLess(0,wf[v][j]) { 
      if IsLess(FAdd(df[v],wf[v][j]),df [j])=True { 
        df[j] = FAdd(df[v],wf[v][j]); 
      } 
    } 
  } 
} 

Fig. 2 The algorithm to finding fuzzy shortest path in a graph 
 

4.3 Prove algorithm 

Denote U is the set of vertices not yet reviewed. 
The algorithm is proved by the mathematical induction. At 
step k we have the inductive hypothesis is:   

 (i) The label of Uv∉  is the length of the shortest 
path from vertex s to vertex v which is found at step k; 
   (ii) The label of Uv∈ is the length of the shortest path 
from vertex s to vertex v and this path includes only the 
vertices (isn’t itself) not belong to U. 
- When k=1, U=V-s, the length of the shortest path from 
vertex s to all other vertices is infinite and the shortest path 
length from vertex s to itself is 0. That is mean basic step 
is true. 
- Suppose that the inductive hypothesis is true at step k.  
Call v is the vertex, review at k+1-th step. Then we have 
df[v] is minimum of the labels in the rest of U. From the 
inductive hypothesis implies when finish step k then the 
labels of vertices not belong to U is the minimum length of 
the shortest path from vertex s to it. The label of v is also 
the length of the shortest path from s to v. If this is not true 
then after k-th iteration, this is a path includes the vertices 
in U have a length be less than df[v]. Call t is the first 
vertex of the path and t is in U. Such, the length of the path 
from vertex s to vertex t is less than df[v] and include also 
the vertices not in U. That is a conflict with selection v. 
Therefore, at k+1-th iteration, we can confirm (i) is true. 
Call r is an arbitrary vertex in U, after k+1-th iteration. 
The shortest path from vertex s to vertex r includes only 
vertices not in U, and this path includes v or not. If it does 
not include v then as the inductive hypothesis the length is 
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df[v]. If v belongs to then the path is the path from s to v 
and adds edge (v, r). As the properties of a strict 
comparative relation, the minimum weighted of this path is 
sum df[v] and wf[v,r]. It means that the label of vertex r is 
df[v]+wf[v,r]. This confirms (ii) is true.  

4.4 Illustrative Example 

Consider a real problem: Company X needs to ship goods 
from a source point to the 6 other points. The time for 
moving from A to B is defined by three statuses: Best 
(MO), Normal (ML) and Worst (MP). These values are 
given in Table 1: 

Table 1: Estimated time between the points 

Stretch 
of road MO ML MP 

1-2 2 6 12 
1-4 5 12 20 
2-3 7 16 26 
2-5 19 30 39 
3-5 5 14 19 
4-3 2 10 17 
4-6 25 33 41 
5-6 9 9 10 
5-7 15 21 31 
6-7 5 12 15 

 
The above problem is converted to the FSPP with the 
weights of the edges is the triangular fuzzy numbers. 

 
Fig. 3 Representation of weights of the edges 

Where we use the DSCRF is: 

)(sign

)(sign)sign()~,~(
~~2

~~1

AB

ABabBAf

ααω

ββωω

−+

−+−=

 
with ω=0.8; ω1=0.5 and ω2=0.2.

 

The result of the iterations is represented in Table 2. 
Table 2: Show the results of the algorithm 

Step Vertices have 
reviewed 

Vertices have assigned 

1 1 df[1]=(0;0,0) 
 
df[2]=(6;4,6) 

Step Vertices have 
reviewed 

Vertices have assigned 

df[4]=(12;7,8) 
2 1,2 df[1]=(0;0,0) 

df[2]=(6;4,6) 
 
df[4]=(12;7,8) 
 
df[3]=(22;13,16) 
df[5]=(36,15,15) 

3 1,2,4 df[1]=(0;0,0) 
df[2]=(6;4,6) 
df[4]=(12;7,8) 
 
df[3]=(22;15,15) 
df[5]=(36;15,15) 
df[6]=(45;15,16) 

4 1,2,4,3 df[1]=(0;0,0) 
df[2]=(6;4,6) 
df[4]=(12;7,8) 
df[3]=(22;15,15) 
 
df[5]=(36;15,15) 
df[6]=(45;15,16) 

5 1,2,4,3,5 df[1]=(0;0,0) 
df[2]=(6;4,6) 
df[4]=(12;7,8) 
df[3]=(22;15,15) 
df[5]=(36;15,15) 
 
df[6]=(45;15,16) 
df[7]=(57;21,25) 

6 1,2,4,3,5,6 df[1]=(0;0,0) 
df[2]=(6;4,6) 
df[4]=(12;7,8) 
df[3]=(22;15,15) 
df[5]=(36;15,15) 
df[6]=(45;15,16) 
 
df[7]=(57;22,19) 

7 1,2,4,3,5,6,7 df[1]=(0;0,0) 
df[2]=(6;4,6) 
df[4]=(12;7,8) 
df[3]=(22;15,15) 
df[5]=(36;15,15) 
df[6]=(45;15,16) 
df[7]=(57;22,19) 

 
The lengths of the shortest paths from vertex 1 to all other 
vertices are shown in Table 3.   

Table 3: The Fuzzy Shortest Paths from vertex 1 to all other vertices 

Destination Length of path Road 
1 (0;0,0) 1-1 
2 (6;4,6) 1-2 
3 (22;15,15) 1-4-3 
4 (12;7,8) 1-4 
5 (36;15,15) 1-2-5 
6 (45;15,16) 1-2-5-6 
7 (57;22,19) 1-2-5-6-7 

1 

2 

4 

3 

5 

6 

7 

(6;4,6) 

(12;7,8) 

(30;11,9) 

(16;9,10) 

(10;8,7) 

(14;9,5) 

(33;8,8) 

(9;0,1) 

(21;6,10) 

(12;7,3) 
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5. Conclusion 

This paper focuses on solving the single-source shortest 
path problem in the case of the weights of the edges are 
non-negative and are represented by triangular fuzzy 
numbers. Here we use new concept is called the Defined 
Strict Comparative Relation Function (DSCRF) on the set 
of triangular fuzzy numbers and apply expanded Dijkstra’s 
algorithm for this case. 
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