
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

20

Manuscript received May 5, 2014
Manuscript revised May 20, 2014

Fuzzy Shortest Path Algorithm Based on Comparative Relation

V.T.T Huyen1, N.T. Luan2, and L.M. Tuan3

1 University of Economic and Technical Industries, Namdinh, Vietnam
2, 3 Thang Long University, Hanoi, Vietnam

Summary
The problem of finding the shortest path is one problem attracted
attention of many researchers because it is widely used in many
fields such as communication, routing and transportation. In the
traditional problem, the length of the edge is represented by the
exact value and finding the shortest path has solved by Dijkstra’s
algorithm. But in fact, the length of the edge is usually expressed
by the uncertain value and then we have the model of the Fuzzy
Shortest Path Problem. In this paper, we focus on developing an
algorithm to find the shortest path in which the weights of the
edges are represented by triangular fuzzy numbers. The
mathematical basic of the algorithm is based on the concept of
Defined Strict Comparative Relation Function on the set of
Triangular Fuzzy Numbers.
Key words:
Fuzzy shortest path, comparative relation, Dijkstra's algorithm.

1. Introduction

The single-source problem of finding a shortest path from
a source vertex to a destination vertex is one of the
fundamental problems in graph theory and applied in
many practical applications. Suppose there is a shipping
company needs to ship goods from city S to city D. With a
map in hand, the driver has to determine the route from S
to D through the cities A, B, and C ... so that the total cost
is minimal. Typically, the length (weight) of the route is
usually measured by time; cost; … In fact, this length is
not always calculated correctly. For example: time of
travelling from A to B is about 200 minutes. However, in
positive conditions such as the good weather, the good
health, this time can be reduced to 120 minutes. And in the
negative conditions for example: because of the rain, the
road is repairing, traffic jam…time to complete this
distance can be up to 300 minutes or more. Clearly, in
such cases, we must use fuzzy values to represent weights.
The fuzzy shortest path problem (FSPP) was first analysed
by Dubois and Prade in 1980 and solved by Floyd’s and
Ford’s algorithm. Although it is possible to calculate the
length of the shortest path but this cannot correspond in
any way to any reality.
From 1980 to now, there have been many researches
focused on how to solve the FSPP problem. These
methods mentioned in references include:
(1): Using the properties of the network flow for

converting FSPP to the multiple purpose linear

programming problems, Jing-Rung Yu and Tzu-Hao
Wei presented this method in [2].

(2): Find all possible paths from the source vertex s to
vertex t then specify a length 'minimal' and find the
path length similar to the length 'minimal' best.
Sujatha and Elizabeth presented this method in [3].
Tzung Jung Nan Yuan Chuang and Kung [1] also built
algorithm with the same idea but in the case for the
weights are in discrete fuzzy sets

(3): Using 'ranking function' and modifying the labelling
Dijkstra’s algorithm. A ranking function is defined as
a mapping from a fuzzy number set to space R.

RFNg →:(.) is called a ranking function if:

 abgag ~)
~

()~(⇒< is less than b
~

;

 abgag ~)
~

()~(⇒> is greater than b
~

;

 abgag ~)
~

()~(⇒= is equal to b
~

.
(4): Developing the own measurements and algorithms,

Amit Kumar and Manjot Kaur [4] had quoted the
Nayeem and Pal’s algorithm presented in 2005 based
on the concept of acceptability index to the
proposition 'A is inferior to B'.

Overall, in the above methods, method (3) with ‘ranking
function’ is the simplest method. However, as we had
analysed in [6], the disadvantages of using ‘ranking
function’ is not found any satisfactory formula

)
~

()~(bgag = implies a~ = b
~

 in accordance to the
equality definition of fuzzy numbers. This means that, by
the ‘ranking function’ method, the fuzzy shortest paths
don’t have equal of length which is just having the
‘ranking function’ equal of value.
To overcome the drawbacks of the ‘ranking function’
method, in [6] we had introduced a definition of
comparative relation of fuzzy numbers. In this paper, we
propose a new approach to compare two triangular fuzzy
numbers, and on the basic of this notation we solve FSPP
problem by applying Dijkstra’s algorithm based on a strict
comparative relation.
This paper is organized in 5 sections. Section 1 provides a
brief introduction about the problem of finding shortest
path in a graph with the fuzzy weight and some solutions.
Section 2 presents the model and the single-source shortest
path problem and Dijkstra’s algorithm. Section 3
introduces triangular fuzzy numbers, comparative relation

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

21

of triangular fuzzy numbers and gives some results about
the strict comparative relation. Section 4 presents the
model and how to solve single-source shortest path
problem for the case, which the weights of the edges are
triangular fuzzy numbers. Illustration of algorithm is also
presented in section 4 and some conclusions are drawn in
section 5.

2. The single-source shortest path problem
and Dijkstra’s algorithm

2.1 Graph

Given a directed and connected graph },{ EVG = where
},..,1{ nV = is the set of n vertices, and E is the set of

edges of the graph. The weight of the edge),(ji
connected from vertex i to vertex j and symbols .ijw
A path from vertex u to vertex v of the graph is a
sequence of vertices vvvvu m ,,..,,, 21 such that

Vvvvu m ∈,..,,, 1 and Evvvvvu m ∈),(),...,,(),,(211 . Length of
the path is the sum of the weights of the edges in the path.
The single-source shortest path problem is the problem of
finding shortest paths from source vertex s to all other
vertices in the graph.

2.2 Dijkstra’s algorithm

Dijkstra’s algorithm or Labelling algorithm conceived by
computer scientist Edsger Dijkstra in 1956 and published
in 1959 that solves the single-source shortest path for a
graph with non-negative edges path costs. The idea of the
algorithm is labelling each vertex of the graph
corresponding to the length of the shortest path from
source to considering edge.
Denote][vd is a label of Vv∈ . At the beginning, assign

0][=sd and ∞=][vd for all other nodes where ∞ is a
very big number lies in range of computer representation.
To defined a vertex of the graph that has been reviewed or
not, we use an array []u with falsevu =][means v has
not been reviewed.
The algorithm is in Java language [7]:

for (int i=0; i<n; i++) {

 // finding minimum label among unvisited vertices
 int v = -1;
 for (int j=0; j<n; j++) {
 if (u[j] == false && (v == -1 || d[j]<d[v])) {
 v = j;
 }
 }

 // set as visited
 u[v]=true;

 for (int j=0; j<n; j++) {
 // if there is exists path between v and j
 if (w[v][j]>0) {
 if (d[v] + w[v][j] <d [j]) {
 d[j] = d[v]+w[v][j];
 }
 }
 }
}

Fig. 1 Dijkstra’s algorithm

3. Triangular fuzzy numbers and comparative
relation on it

Definition 3.1 ([4], [5], [6]): Triangular fuzzy number A~
is defined by a triplet),;(βαa with the membership
function defined as:














+<<
−

−

≤<−
−

−

=

otherwise

axaax

axaxa

xA

,0

,1

,1

)(~ β
β

α
α

µ

Let TFN be the set of all Triangular Fuzzy Numbers.

Definition 3.2 ([4],[5],[6]): Assuming that both

),;(~
~~ AAaA βα= and),;(~

~~ BBbB βα= are triangular fuzzy
numbers, the arithmetic operations on triangular fuzzy
numbers are as follows:
-),;(~~

~~~~ BABAbaBA ββαα +++=+   (3.1) 

-






<

≥
=

0,),;(

0,),;(~
~~

~~

kkkka

kkkka
Ak

AA

AA

αβ

βα
  (3.2) 

 
Definition 3.3 ([6]): Two triangular fuzzy numbers 

),;(~
~~ AAaA βα= and ),;(~

~~ BBbB βα=  are said to be 
equivalent if and only if ba =  and BA ~~ αα =  
and BA ~~ ββ = . 

We denote BA ~~
Ψ
< is form of proposition A~ less than 

B~ according to the definition of relation Ψ . 
 
Definition 3.4 ([6]): The relation Ψ  is called a 
comparative relation if and only if it is a complete ordering 
relation and is compatible with the ordering relation on the 
set of real numbers, means that: Rba ∈∀ , , if baΘ then 

ba
Ψ
Θ where },,,,,{ ≥><>=≤<∈Θ . 

Definition 3.5: The comparative relation Γ is called a 
strict comparative relation if Γ is a comparative relation 
and satisfies the following conditions: 
- If BA ~~

Γ
≤  and DC ~~

Γ
≤ then DBCA ~~~~

+≤+
Γ

; 



IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014 
 

 

22 

 

- If BA ~~
Γ
≤  and 0≥k then BkAk ~~

Γ
≤ .  

Definition 3.6: The function f: TFN×TFN → R is called 
Defined Comparative Relation Function (DCRF) on TFN 
if it satisfies the following conditions: 
(i) TFNAAAf ∈∀≥

~0)~,~( ; 

(ii) If 0)~,~( ≥BAf  and 0)~,~( ≥ABf then BA ~~
= ; 

(iii) If 0)~,~( ≥BAf and 0)~,~( ≥CBf then 0)~,~( ≥CAf . 
 
Definition 3.7: The DCRF on TFN is called Defined 
Complete Comparative Relation Function (DCCRF) if it 
satisfies connected conditions: 

TFNBA ∈∀
~,~ either 0)~,~( ≥BAf or 0)~,~( ≥ABf .  

 
Definition 3.8: The DCRF on TFN is called Defined Strict 
Comparative Relation Function (DSCRF) if it satisfies the 
following conditions: 
- If 0)~,~( ≥BAf and 0)~,~( ≥DCf then 0)~~,~~( ≥++ DBCAf ; 

- If 0)~,~( ≥BAf and k ≥ 0 then 0)~,~( ≥BkAkf  
 
Theorem 3.1: Exist the function f is DSCRF on TFN 
Proof: We put  

)(sign

)(sign)sign()~,~(
~~2

~~1

AB

ABabBAf

ααω

ββωω

−+

−+−=
  (3.3) 

where 021 ≥>> ωωω and 12 ωωω +>   (3.4) 

and 








=
<−
>

=
0,0
0,1
0,1

)(sign
x
x
x

x  

• Firstly, we show that f is DCRF.  
(i)  For every TFNA∈∀~ we have 0)~,~( =AAf  
(ii) If 0)~,~( ≥BAf then by (3.3) implies sign(b-a) ≥ 0, 
because if opposite then since 12 ωωω +>  implies 

0)~,~( <BAf . Consequently, b ≥ a. 
Similarly, from 0)~,~( ≥ABf implies a ≥ b. And hence a=b. 
Now value of f according to formula (3.3) becomes: 

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABABBAf ααωββω  
From there we have also 0~~ ≥− AB ββ  , because if 

opposite then since 21 ωω > ⇒ 0)~,~( <BAf , 
implies

AB ~~ ββ ≥ . 
On the other hand, since 0)~,~( ≥ABf  we have

AB ~~ ββ ≤ , 

therefore 
AB ~~ ββ =  

Now, f is simplified:  
0)(sign)~,~( ~~2 ≥−= ABBAf ααω  

And this implies, 
AB ~~ αα ≥  

Likewise, we have 
AB ~~ αα ≤  

Combine two inequalities, we obtain: AB ~~ αα = . 
By the definition 3.3 we have BA ~~

≡ . 
(iii) If 0)~,~( ≥BAf and 0)~,~( ≥CBf then sign(b-a) ≥ 0 and 
from sign(c-b) ≥ 0 implies c ≥ b ≥ a. There are two cases: 
+ Case 1: c > a ⇒ 0)~,~( ≥CAf  
+ Case 2: c = b = c  

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABABBAf ααωββω  
and  

0)(sign)sign()~,~( ~~2~~1 ≥−+−= BCBCCBf ααωββω  
Therefore, we have 

0~~ ≥− AB ββ and 0~~ ≥− BC ββ  or
A~~~ βββ ≥≥ BC

. 
There are two capabilities: 
- Or

A~~ ββ >C
, when 

0)(sign)(sign)~,~( ~~2~~1 ≥−+−= ABACACf ααωββω  

- Or
A~~~ βββ == BC

. 
By the formula (3.6):  

AABABBAf ~B~~~~~2 00)(sign)~,~( ααααααω ≥⇒≥−⇒≥−= and 

BCBCBCCBf ~~~~~~2 00)sign()~,~( ααααααω ≥⇒≥−⇒≥−=  

This implies that: 0)sign()~,~( ~~2 ≥−= ACCAf ααω . 

• Next, we have to prove f is DCRF. Definitely: 

0

))()(())()((

))()(()~,~()~,~(
~~~~2~~~~1

=

−+−+−+−+

−+−=+

BAABBAAB signsignsignsign

basignabsignABfBAf

ααααωββββω

ω

When either 0)~,~(≥BAf or 0)~,~(≥ABf .

• Finally, we show that f is DSCRF, clearly, in (3.3), if

0)~,~(≥BAf and 0)~,~(≥DCf then these are following
changes:
+ [(b > a) ˄ (d > c)] ⇒ b+d > a+c;
+ [(b > a) ˄ (d = c)] ⇒ b+d > a+c;
+ [(b = a) ˄ (d > c)] ⇒ b+d > a+c;
Therefore 0)~~,~~(≥++ DBCAf ;
+ [(b = a) ˄ (d = c)] we have

0)(sign)(sign)~,~(~~2~~1 ≥−+−= ABABBAf ααωββω

And 0)(sign)(sign)~,~(~~2~~1 ≥−+−= CDCDDCf ααωββω ,
Similarly:

-
CADBCDAB ~~~~~~~~)]()[(ββββββββ +>+⇒>∧> ;

-
CADBCDAB ~~~~~~~~)]()[(ββββββββ +>+⇒=∧> ;

-
CADBCDAB ~~~~~~~~)]()[(ββββββββ +>+⇒>∧= ;

i.e. 0)~~,~~(≥++ DBCAf ;
- And since)]()[(~~~~ CDAB ββββ =∧=

we have

also 0)~~,~~(≥++ DBCAf .

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

23

If 0)~,~(≥BAf and k ≥ 0 and then by (3.2) and (3.3):

0)~,~()sign()~,~(≥×= BAfkBkAkf .

Theorem 3.2: If f is the DSCRF on an arbitrary linear set
X then can construct a strict comparative relationℑ on X
correlative.
Proof: We definition a relationℑ on X:

0),(≥⇔≤
ℑ

yxfyx

According to the definition 3.6, it is easy to proveℑ is a
comparative relation.

4. Fuzzy Single-Source Shortest Path Problem

4.1 Design data model

Representation triangular fuzzy numbers:
To represent a set of triangular fuzzy numbers, we use
class TFN with properties core, left and right.
class TFN {
 float core;
 float left;
 float right;
}

Representation graph:
Given a directed and connected graph },{ EVGF = where

},..,1{ nV = is a set of n vertices of the graph and E is a
set of edges. The weights of the edges are stored in an
array [][]wf of type TFN where],[jiwf is the weight
of the edges which connected between vertex i and vertex j
of the graph.

4.2 Algorithm

Input: - Graph },{ EVGF = ;
 - Weighted array [][]wf ;
 - Source vertex Vs∈ ;
 - f is the DSCRF.
Output: The length of the shortest paths from source vertex

Vs∈ to all other vertices of the graph.
In this algorithm, we are using two functions:
Function)~,~(BAFAdd where TFNBA ∈

~,~
 returns the

sum of A~ and B~ .
Function)~,~(BAIsLess where TFNBA ∈~,~ returns True

if 0)~,~(>BAf and returns False otherwise.
Like Dijkstra’s algorithm, we use two arrays TFNdf ∈[]
and []u to hold label and status of a vertex which is
reviewed or not reviewed.

At the beginning, we assign)0,0;0(][=sdf
and sVvfalsevuvdf −∈∀=∞=][),0,0;(][.
The algorithm is shown in Figure 2:

for (int i=1; i<=n; i++) {

 // finding minimum label among unvisited vertices
 int v = -1;
 for (int j=1; j<=n; j++) {
 if (u[j] == false && (v == -1 || IsLess(df[j],df[v]))
 {
 v = j;
 }
 }

 // set as visited
 u[v]=true;

 for (int j=1; j<=n; j++) {
 if IsLess(0,wf[v][j]) {
 if IsLess(FAdd(df[v],wf[v][j]),df [j])=True {
 df[j] = FAdd(df[v],wf[v][j]);
 }
 }
 }
}

Fig. 2 The algorithm to finding fuzzy shortest path in a graph

4.3 Prove algorithm

Denote U is the set of vertices not yet reviewed.
The algorithm is proved by the mathematical induction. At
step k we have the inductive hypothesis is:

 (i) The label of Uv∉ is the length of the shortest
path from vertex s to vertex v which is found at step k;
 (ii) The label of Uv∈ is the length of the shortest path
from vertex s to vertex v and this path includes only the
vertices (isn’t itself) not belong to U.
- When k=1, U=V-s, the length of the shortest path from
vertex s to all other vertices is infinite and the shortest path
length from vertex s to itself is 0. That is mean basic step
is true.
- Suppose that the inductive hypothesis is true at step k.
Call v is the vertex, review at k+1-th step. Then we have
df[v] is minimum of the labels in the rest of U. From the
inductive hypothesis implies when finish step k then the
labels of vertices not belong to U is the minimum length of
the shortest path from vertex s to it. The label of v is also
the length of the shortest path from s to v. If this is not true
then after k-th iteration, this is a path includes the vertices
in U have a length be less than df[v]. Call t is the first
vertex of the path and t is in U. Such, the length of the path
from vertex s to vertex t is less than df[v] and include also
the vertices not in U. That is a conflict with selection v.
Therefore, at k+1-th iteration, we can confirm (i) is true.
Call r is an arbitrary vertex in U, after k+1-th iteration.
The shortest path from vertex s to vertex r includes only
vertices not in U, and this path includes v or not. If it does
not include v then as the inductive hypothesis the length is

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

24

df[v]. If v belongs to then the path is the path from s to v
and adds edge (v, r). As the properties of a strict
comparative relation, the minimum weighted of this path is
sum df[v] and wf[v,r]. It means that the label of vertex r is
df[v]+wf[v,r]. This confirms (ii) is true.

4.4 Illustrative Example

Consider a real problem: Company X needs to ship goods
from a source point to the 6 other points. The time for
moving from A to B is defined by three statuses: Best
(MO), Normal (ML) and Worst (MP). These values are
given in Table 1:

Table 1: Estimated time between the points

Stretch
of road MO ML MP

1-2 2 6 12
1-4 5 12 20
2-3 7 16 26
2-5 19 30 39
3-5 5 14 19
4-3 2 10 17
4-6 25 33 41
5-6 9 9 10
5-7 15 21 31
6-7 5 12 15

The above problem is converted to the FSPP with the
weights of the edges is the triangular fuzzy numbers.

Fig. 3 Representation of weights of the edges

Where we use the DSCRF is:

)(sign

)(sign)sign()~,~(
~~2

~~1

AB

ABabBAf

ααω

ββωω

−+

−+−=

with ω=0.8; ω1=0.5 and ω2=0.2.

The result of the iterations is represented in Table 2.
Table 2: Show the results of the algorithm

Step Vertices have
reviewed

Vertices have assigned

1 1 df[1]=(0;0,0)

df[2]=(6;4,6)

Step Vertices have
reviewed

Vertices have assigned

df[4]=(12;7,8)
2 1,2 df[1]=(0;0,0)

df[2]=(6;4,6)

df[4]=(12;7,8)

df[3]=(22;13,16)
df[5]=(36,15,15)

3 1,2,4 df[1]=(0;0,0)
df[2]=(6;4,6)
df[4]=(12;7,8)

df[3]=(22;15,15)
df[5]=(36;15,15)
df[6]=(45;15,16)

4 1,2,4,3 df[1]=(0;0,0)
df[2]=(6;4,6)
df[4]=(12;7,8)
df[3]=(22;15,15)

df[5]=(36;15,15)
df[6]=(45;15,16)

5 1,2,4,3,5 df[1]=(0;0,0)
df[2]=(6;4,6)
df[4]=(12;7,8)
df[3]=(22;15,15)
df[5]=(36;15,15)

df[6]=(45;15,16)
df[7]=(57;21,25)

6 1,2,4,3,5,6 df[1]=(0;0,0)
df[2]=(6;4,6)
df[4]=(12;7,8)
df[3]=(22;15,15)
df[5]=(36;15,15)
df[6]=(45;15,16)

df[7]=(57;22,19)

7 1,2,4,3,5,6,7 df[1]=(0;0,0)
df[2]=(6;4,6)
df[4]=(12;7,8)
df[3]=(22;15,15)
df[5]=(36;15,15)
df[6]=(45;15,16)
df[7]=(57;22,19)

The lengths of the shortest paths from vertex 1 to all other
vertices are shown in Table 3.

Table 3: The Fuzzy Shortest Paths from vertex 1 to all other vertices

Destination Length of path Road
1 (0;0,0) 1-1
2 (6;4,6) 1-2
3 (22;15,15) 1-4-3
4 (12;7,8) 1-4
5 (36;15,15) 1-2-5
6 (45;15,16) 1-2-5-6
7 (57;22,19) 1-2-5-6-7

1

2

4

3

5

6

7

(6;4,6)

(12;7,8)

(30;11,9)

(16;9,10)

(10;8,7)

(14;9,5)

(33;8,8)

(9;0,1)

(21;6,10)

(12;7,3)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.5, May 2014

25

5. Conclusion

This paper focuses on solving the single-source shortest
path problem in the case of the weights of the edges are
non-negative and are represented by triangular fuzzy
numbers. Here we use new concept is called the Defined
Strict Comparative Relation Function (DSCRF) on the set
of triangular fuzzy numbers and apply expanded Dijkstra’s
algorithm for this case.

References
[1] D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory

and Applications, New York: Academic Press, 1980.
[2] S.Okada and T. Soper, “A shortest path problem on a

network with fuzzy arc lengths,” Fuzzy Sets and Systems,
109, 2000, pp. 129-140.

[3] Tzung-Nan Chuang and Jung-Yuan Kung, "A new algorithm
for the discrete fuzzy shortest path problem in a network",
Applied Mathematics and Computation, 174, 2006, pp.
660-668.

[4] L. Sujatha and S. Elizabeth, "Fuzzy Shortest Path Problem
Based on Similarly Degree", Applied Mathematical Sciences,
Vol. 5, No. 66, 2011, pp.3263-3276.

[5] Amit Kumar and Manjot Kaur, "A New Algorithm for
Solving Shortest Path Problem on a Network with Imprecise
Edge Weight", Applications and Applied Mathematics: An
International Journal, Vol.6, Issue 2, 2011, pp. 602-619.

[6] N.T.Luan and V.T.T Huyen, "The Comparative Relation and
Its Application in solving Fuzzy Linear Programming
Problem", International Journal of Computer Science Issues,
Vol. 9, Issue 4, No. 2, 2012, pp. 167-174.

[7] Kairanbay Magzhan and Hajar Mat Jani, "A Review and
Evaluations of Shortest Path Algorithms", International
Journal of Scientific and Technology Research, Vol. 2, Issue
6, 2013, pp. 99-104.

Vu Thi Thu Huyen is a lecturer in the
Department of Information Technology at the
University of Economic and Technical
Industries, Vietnam. She received the Master
of IT in 2009 at Le Qui Don Technical
University, Vietnam where she is now a
student of doctor course. Her area of research
is fuzzy optimization.

Nguyen Thien Luan is a lecturer of the
Thang Long University, Hanoi, Vietnam. His
research interests include fuzzy logic, fuzzy
optimization, image processing,
communications and network security. He
has authored or co-authored of more than 30
scientific articles, book chapters and chaired
many scientific research projects, in areas of
his research. He received his Ph.D. (1989)
and Associate Professor (2003).

Le Minh Tuan is a lecturer of Thang Long
University, Hanoi, Vietnam. He received
Bachelor degree in Mathematics and
Informatics at Thang Long University and
Master degree in Computer Science at Le
Qui Don Technical University, Vietnam in
2004 and 2008 respectively. His research
related to artificial intelligent, data mining,
and fuzzy logic.

