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Abstract 
Network-on-chip (NoC) technology enables a new system-on-
chip paradigm, the system-on network-on-chip (SoNoC) 
paradigm. One of the challenges in designing application-
specific networks is modeling the on-chip system behavior and 
determining on-chip traffic characteristics. A universal object 
message level model for SoNoC was defined and an object-
oriented methodology was developed to implement this model in 
hardware and software. The model supports “object to core” 
synthesis and “function invoking to network” mapping. A case 
study of an H.263 system verifies the model and methodology. 
System prototypes are easily built and on-chip traffic can be 
observed using the SoNoC model to provide real benchmarks for 
on-chip network design. 
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1. Introduction 

As feature sizes shrink, system-on-chips (SoCs) integrate 
more and more cores, and intra-connections between 
cores become more complex. Peer-to-peer links utilized in 
application specific integrated circuits (ASICs) tightly 
couple different parts of a chip and are difficult to route 
on two-dimensional silicon surfaces, and bus-based 
structures cannot provide scalable communication when 
there are too many cores. Global wires cannot be owned 
privately or shared publicly, but should be owned or 

shared segment ally, which is what networks do. 
Network-on-chips (NoCs) enable SoCs to integrate more 
cores by providing scalable, flexible, and reliable intra-
connections. In the system-on-chip environment, 
application-specific on-chip networks are possible with 
the systems providing information to analyze the given 
communication requirements, and are necessary with the 
chips limiting the resources that NoCs can utilize. One of 
the advantages of NoC-based multi-core SoCs is parallel 
execution. To develop parallelism and utilize NoC 
services, cores in the system on- network-on-chip 
(SoNoC) should be enhanced with new features. SoNoC 
cores with a single thread model and single message pool 
may not work well to send, receive, and reclaim messages 
correctly. A new thread model should be applied to 
SoNoC cores to avoid deadlocks in execution. The first 
step in designing a system is partitioning it and the first 
step in designing a network is determining the traffic 
pattern. Object-oriented methodology provides human-
written specifications. Within a SoNoC, cores are 
regarded as objects with data and function members and 
can be synthesized from objects by using some basic 
principles; network characteristics are determined by the 
function calls between objects and can be generated from 
the call map. As Fig. 1 shows, SoNoCs are unified as an 
object message model with objects and networks 
synthesized from specifications. 
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Synthesis-based on-chip network design approaches [1,2] 
have been studied in various ways, but one of the 
difficulties in NoC synthesis is the on-chip traffic pattern 
modeling. Because SoNoCs are much more application-
specific, general synthesized stochastic 
Traffic patterns are not suitable for NoC analyses. Several 
NoC simulation frameworks have been researched [ 3-5], 
but these works focused on network architectures and 
protocols, and the traffic was artificially synthesized. This 
paper presents how to build a Real SoNoC prototype to 
obtain real traffic patterns, which will facilitate on-chip 
topologies and protocol syntheses. For a SoNoC to 
succeed in heterogeneous multi-core applications, the 
system and network must be considered and integrated 
together. A unified component integration flow developed 
for multi-core applications in Ref. [6] is a bottom-up flow 
that provides wrappers for the hardware and software 
components. The mapping of object’s function call into 
messages [7] was the inspiration for this paper. Such 
research has investigated system modeling using formal 
language such as UML and SysML [8,9]. These works 
focused on formally describing a system to define its 
behavior and architecture requirements. The object 
message level (OML) model presents a SoNoC hardware 
template enabling a consistent system module synthesis 
process. 

2. OML Model for SoNoC 

The register transfer level (RTL) model provides a 
fundamental basis for logic synthesis in ASIC designs. In 
the RTL model, circuits are regarded as registers with 
combinational logic used to model signals starting from 
registers, traveling through logic gates and getting 
captured by registers at the next clock edge. In the object 
message level (OML) model, systems are regarded as 
heterogeneous cores with micro-networks having 
messages being transmitted through networks between 
cores. The OML model enables a unified SoNoC form, 
which can be used to develop object-tocore synthesis and 
function call-to-network mapping methodologies. 

2.1 Abstraction of computation and storage:Objects 

An object is a collection of public/private data and 
operations with an object-ID (OID) attached: 
� Public function members: submit tasks or trigger state 
shifts. 
� Private function members: provide a library for public 
functions or conduct initialization and self checking. 
� Private data members: representing the implicit 
configuration and status or temporary data and 
intermediate results. 
� Public data members and property access functions: 
representing explicit configuration and status. Special 

access functions are defined to access these properties by 
messages. 
The only way to access an object is to invoke its member 
functions. Each public function has a function- ID (FID) 
attached to it, to identify different member functions. 

2.2 Abstraction of invoking functions: Messages 

When an object source invokes another object sink’s 
member function with a group of parameters, the source 
calls the function: rtnValue = Sink.Function (Parameters). 
In SoNoC, this function invoking will be packed into a 
message: (OID=Sink, ID=Function, Parameters, 
OID=Source, tag). When the sink object receives the 
message and finishes the task, it will send back a return 
message to notify the source: (OID=Source, FID=0, tag, 
rtn Parameters). Each message is marked by a tag; 
therefore, the source can send and wait for many 
messages at the same time to achieve parallel execution. 
Therefore, all messages are formatted as (OID, FID, 
Parameters) and are executed by a member function with 
an FID. If the FID=0 the message is defined as a return 
message and is handled by a special built-in “wait” 
function. A message with an FID≠0 is defined as an 
invoking message. Objects that send invoking messages 
and receive return messages are called active objects; 
objects that only receive invoking messages and send 
return messages are called passive objects. 

2.3 SoNoC hardware thread model 

SoNoCs are multi-thread systems synchronized by 
messages and limited-thread systems because each object 
has limited thread resources. The sending of an invoking 
message forks a thread; receiving a return message joins a 
thread. SoNoCs support the simultaneous transmission of 
several messages with multi-core execution. Within a core, 
tasks can also be executed in parallel with the application 
and release of object resources synchronized by 
semaphores within objects.  
Object A has received message msg1 and triggered 
function f1.During this execution object A called object B 
function f2 by sending message msg2 and is waiting for it 
to return. When B has finished f2, the return message 
msg3 is sent back to A, but A is trapped in the execution 
of msg1 waiting to receive a message back. Therefore, if 
A has only one thread, messages msg1 and msg3 depend 
on each other to continue. Active objects should have at 
least two threads: one for sending and waiting messages 
and one for reclaiming messages. The two threads are 
synchronized by message tags which are semaphores 
representing the three message states, sent, reclaimed, and 
null (used). Tags are attached to messages and follow the 
message transmission. In general, objects can have more 
than two threads, and this is true even for passive objects. 
Each thread extracts messages from the network interface, 
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executes them, and sends other messages. Threads share 
resources that are synchronized by the semaphores. 
 

 
Figure 2 shows a sequence of messages. 

3. SoNoC Hardware Architecture 

SoNoCs are heterogeneous multi-core systems with 
application-specific network infrastructures. Unified 
hardware model design principles were developed for the 
synthesis of objects, network interface design, and 
network topology generation to develop SoNoC design 
methodology. 

3.1 Implementation of objects: Object synthesis 

Many forms are used to implement objects on silicon. 
These forms are generally categorized into hardware and 
software + processor. 

3.1.1 Hardware implementation 

A typical active object consists of storage and 
computational resources, several task finite state machines 
(FSMs), a reclaiming FSM, and message tags, as shown in 
Fig. 4. A hardware core has storage resources including 
registers, register files, and embedded RAM or ROM that 

are used to map data members, computational resources 
such as the arithmetic logic unit (ALU), multiplier, and 
divider, and communication resources such as a network 
interface and FIFO. A member function is mapped into a 
sub finite state machine (sub-FSM) with a “start” signal in 
and a “done” signal out. Each sub-FSM commits 
interfaces to the resources as they utilize them. 
Synchronization points within each member function 
provide time constraints for computations with high level 
synthesis techniques for the design. The network interface 
dispatches the messages into two FIFOs, the task FIFO for 
invoking messages and the return FIFO for return 
messages. The task thread is an FSM attached to the task 
FIFO, which monitors the FIFO, triggers the appropriate 
function sub-FSM according to the FID contained in the 
message, switches the resources to the function sub-FSM, 
and waits for termination of the sub-FSM. Function sub-
FSMs share resources under the control of the task thread 
FSM. Message tags are semaphores with sent, reclaimed, 
null (used) states and attached buffers. When function 
sub-FSMs send messages, they apply a null tag first, 
attach it to the message, and switch the tag to the “sent” 
state after the message is sent. Then they wait for the 
message to be sent back, indicated by the tag state 
changed to “reclaimed”. Reclaimed threads are FSMs 
watching the return message FIFO, which changes tag 
states to “reclaimed” according to the tag field of the 
received messages and saves return parameters to buffers 
addressed by the tags. When task FSMs have received 
valid return messages and extracted the return parameters, 
the tag is changed to the “null” state. In this way, message 
tags are semaphores that protect return messages and 
parameter buffers. 
Passive objects do not need reclaimed threads, so this 
discussion about active objects is also true for passive 
objects with some abridgments. 

3.1.2 Software implementation on a processor 

Objects can also be mapped into software running on 
processors. Processors have larger storage, computational 
and semaphore resources, and the ability to simulate 
multi-thread environments in software. With unlimited 
thread resources, software can allocate multiple threads 
even for the same member function, which is impossible 
for hardware. Therefore, only one input FIFO will satisfy 
message dispatching requirements. Extensions to 
processors include an input FIFO, an output FIFO, and 
network interfaces. Since processors are mega-cells with 
tremendous resources within a chip, this implementation 
approach is not the emphasis of this study. 
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3.2 Implementation of message delivering: NoC 
generation 

Function calls between objects reflect relations and traffic 
constraints of objects. Design of a NoC according to these 
constraints must apply principles and templates to 
network interfaces, protocols, routing algorithms, and 
topologies. Ma and Sun proposed designing a NoC using 
an evolutionary method based on the information from the 
OML. Variable length messages, a source-based routing 
scheme, arbitrary topologies, and configurable switches 
can be used to evolve the NoC for specific applications. 

3.2.1 Implementation of network interface 

Network interfaces send messages in order, handle 
variable length messages, and translate object IDs 
into network addresses. A network interface includes 
several signals as shown in Fig. 5: req, ack, tail, and data. 
The “req” signal indicates that the data is valid, and the 
“tail” signal, used in wormhole routing, indicates the last 
flip being sent, so these two signals can be used to build 
and remove a virtual circuit and to transmit flip sequences 
of any length. The signal “data [BW−1:0]” is BW bits 
wide, and contains the routing information and/or data 
payloads. The signal“ ack” is an acknowledge signal that 
when true, indicates that “data[ ]” is allowed to be 
updated. Figure 5 shows a possible sequential pattern 
when sending a message “12345”. The object ID must be 
translated into a network addressable ID to apply routing 
algorithms. The source-based routing scheme takes the 
path from the source object to the sink as the sink’s ID to 
the source. Therefore, one object has different network 
IDs for different objects. The two methods to resolve this 
translation are equipping a ROM addressed by an OID to 

get its network ID or taking the network ID as the OID at 
the very start.  
 

 

3.2.2 NoC topology design 

Topologies dominate the performance of NoC systems. 
Many specific applications demand arbitrary topology 
design methods. Arbitrary automatic network generation 
automation has been developed to quickly explore the 
design space[11]. The source-based routing scheme 
supports arbitrary topologies, simplifies switch structures 
by known routing results, and regulates switch templates. 
The wormhole scheme is employed to transmit arbitrary 
sequence lengths. Figure 6 shows a typical 2×2 switch 
generated from a parameterized template. Interfaces 
between switches are the same as described in Section 
2.2.1. The template parameters can be graded into 
network, switch, and port (input port or output port) 
hierarchies. At the network level, the parameters include 
the number of input ports, the number of output ports, the 
number of switches, and the connection edges. At the 
switch level, parameters include the number of input ports, 
the number of output ports, and a virtual circuit mapping 
table. More detailed parameters are attached to ports. 
Simulation and logic synthesis experiments have shown 
the impacts of these parameters. 
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4. SoNoC Software Prototype Framework 

The OML model for SoNoC can be mapped into hardware 
and is also suitable for software prototypes. SystemC, a 
hardware description language based on C++ for system 
modeling, was used here to construct a SoNoC software 
framework. 

4.1 Proposed modeling stages 

There are four modeling stages or thread models for 
SoNoCs.  
� For the no-thread model, systems are modeled as 
collections of objects. Functions called and parameters 
returned are processed on the program stack. 
� For the single-thread model, only one message is 
transmitted on the network and only one module 
is active. Each function call transmits the active state from 
one module to another. 
� For the unlimited thread model, messages are spread 
over the network and modules run in the 
unlimited multi-thread mode for the software simulation. 
� For the limited thread model, networks work in the 
multi-message mode but modules run in the 
limited multi-thread mode, which coincides with the real 
SoC hardware model. 

4.2 C++ program framework for SoNoC 

Base classes are defined including network, module, 
functor, and message classes. A functor is a C++ structure 
recording a function’s parameters and returned values, 
which is equipped for each member function. When other 
objects call this object’s function, a message is created 
recording the source, sink, and functor, which is sent to 
the network and dispatched to the sink. The sink invokes 
functors to trigger appropriate tasks. Figure 7 shows the 
code to translate a function call into a message 
transmission. All objects are derived from the module 
class to provide message sending, waiting, 

and reclaiming abilities. The module also defines the 
interface to network; therefore, all message activities are 
managed and monitored by the network. The times are 
managed in the SystemC scheme; therefore, traffic 
patterns in the time domain can also be analyzed. 
 

Message msg( 
Sink, new Sink::Funtor(parameters), 

*this, new WaitFunctor( ) ); 
post(msg); 

// time elapsing. 
WaitFunctor fs = waitmsg(msg); 

Sink::Functor* ft = fs.callee; 
rtn = ft->rtn. 

 
Fig. 7 C++ pseudo-code for source sending and waiting 
for messages. Constructing, posting, waiting for, and 
using a message are formatted and recorded. 

5. Case Study: H.263 Codec 

An H.263 coder and decoder system was studied to verify 
this object-oriented methodology for SoNoC. This 
example shows that multi-core execution in SoC and 
traffic on NoC can be organized, managed, and optimized 
in both the time domain and the space domain. 

5.1 System object message model 

H.263 is a video communication standard. As Fig. 8 
shows, the H.263 codec is composed of 17 objects. Since 
this is a system simulation, the codec includes virtual 
objects such as “Display” and “Camera” that are not 
integrated into the real chip, but with real traffic of virtual 
objects across the chip’s boundary. The encoder and 
decoder integrate objects instanced from the same classes 
such as Display, PM, and ME, and they also share the 
object DctQuan, which illustrates object reuse methods. 
The arrows in Fig. 8 indicate the function call direction. 
Actually, all messages appear in pairs in this application 
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although SoNoCs support nonreturn messages. Some 
messages include hundreds of parameters and some take 
none. Packing function calling into one message means 
that control (FID) and data (parameters) information are 
packed together, so long or short messages are of the 
same importance. Gray objects that only receive arrows 
are passive objects while others are designed as active 
objects. All activities are authorized from the control 
module—ENC or DEC. The Display class plays different 
roles in the encoder and decoder with the encoder 
authorizing PM to show pictures while the decoder 
authorizes Display. 
 

 

5.2 Design pattern analysis 

The encoder and decoder run simultaneously. Inside the 
encoder, several tasks are also executed in parallel. For 
example, at the group of blocks (GOB) level, a new GOB 
is filled from Camera to PM, and the current GOB is 
encoded while the old GOB is shown at the same time. In 
this case study, when, where, and how messages enter the 
network is controlled by system execution so that the 
parallelism does not result in chaos. DctQuan is a passive 
object employed by both the encoder and decoder which 
is an example of a passive object having two threads. A 
semaphore named “busy” that resides in DctQuan 
synchronizes the two masters. The encoder or decoder 
must first apply for permission before utilizing DctQuan 
and release DctQuan after utilization. The DctQuan apply 
function is separated from other members and resides in a 
different thread. When DctQuan is occupied, subsequent 
apply messages will be processed by the thread. Thus, 
system multi-threading is based on object multithreading 
and synchronization of messages is based on semaphores 
within objects. 

5.3 Simulation results 

The simulation ran for 15 frames of the quarter common 
intermediate format (QCIF, Foreman) in 0.6 s of 
simulation time and then dumped traffic patterns over the 
space and time domains. Figure 9a shows the quantities of 
messages between objects, which is a symmetric matrix 
because messages appear in pairs. Figure 9b shows the 
bandwidth which varies since some objects send large 
numbers of small messages and some send small numbers 
of large messages. The network also recorded the 
bandwidth with time, as shown in Fig. 10. The task 
execution time estimates were referenced from the 
simulation on the very long instruction word (VLIW) 
processor[12]. In this example system, the number of peak 
parallel concurrent messages was about 5. Only 
concurrent messages compete for network resources, so 
the concurrent bandwidth not the overall bandwidth over 
the space domain influences network congestion. The 
design process and the simulation results show that traffic 
on a chip can be recognized and controlled. Analysis of 
the distribution over the space and time domains shows 
that the optimization space of on-chip networks for 
specific applications is quite large. 
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6. Conclusions and Future Work 

The NoC is triggering complex SoC that challenges 
current SoC design methodologies. NoC designs for SoCs 
must recognize applications, define slips between objects, 
and automatically synthesize optimized networks. This 
paper focuses on the first two issues using an OML model 
for SoNoC with an object-oriented SoNoC modeling and 
implementation method which was easily built to analyze 
real on-chip traffic. An example application using the 
H.263 codec was studied with this methodology, and the 
results show that traffic on a chip can be managed. Future 
work will be focused 
on network topology optimization for a given SoNoC 
OML prototype. 
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