
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

24

Manuscript received June 5, 2014
Manuscript revised June 20, 2014

Object-Oriented System-on-Network-on-Chip Template and
Implementation

S.ANANDARAJ
St. Joseph University In Tanzania, Tanzania, East Africa

Abstract
Network-on-chip (NoC) technology enables a new system-on-
chip paradigm, the system-on network-on-chip (SoNoC)
paradigm. One of the challenges in designing application-
specific networks is modeling the on-chip system behavior and
determining on-chip traffic characteristics. A universal object
message level model for SoNoC was defined and an object-
oriented methodology was developed to implement this model in
hardware and software. The model supports “object to core”
synthesis and “function invoking to network” mapping. A case
study of an H.263 system verifies the model and methodology.
System prototypes are easily built and on-chip traffic can be
observed using the SoNoC model to provide real benchmarks for
on-chip network design.
Key words:
network-on-chip, system-on-chip, system-on-network-on-chip

1. Introduction

As feature sizes shrink, system-on-chips (SoCs) integrate
more and more cores, and intra-connections between
cores become more complex. Peer-to-peer links utilized in
application specific integrated circuits (ASICs) tightly
couple different parts of a chip and are difficult to route
on two-dimensional silicon surfaces, and bus-based
structures cannot provide scalable communication when
there are too many cores. Global wires cannot be owned
privately or shared publicly, but should be owned or

shared segment ally, which is what networks do.
Network-on-chips (NoCs) enable SoCs to integrate more
cores by providing scalable, flexible, and reliable intra-
connections. In the system-on-chip environment,
application-specific on-chip networks are possible with
the systems providing information to analyze the given
communication requirements, and are necessary with the
chips limiting the resources that NoCs can utilize. One of
the advantages of NoC-based multi-core SoCs is parallel
execution. To develop parallelism and utilize NoC
services, cores in the system on- network-on-chip
(SoNoC) should be enhanced with new features. SoNoC
cores with a single thread model and single message pool
may not work well to send, receive, and reclaim messages
correctly. A new thread model should be applied to
SoNoC cores to avoid deadlocks in execution. The first
step in designing a system is partitioning it and the first
step in designing a network is determining the traffic
pattern. Object-oriented methodology provides human-
written specifications. Within a SoNoC, cores are
regarded as objects with data and function members and
can be synthesized from objects by using some basic
principles; network characteristics are determined by the
function calls between objects and can be generated from
the call map. As Fig. 1 shows, SoNoCs are unified as an
object message model with objects and networks
synthesized from specifications.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014 25

Synthesis-based on-chip network design approaches [1,2]
have been studied in various ways, but one of the
difficulties in NoC synthesis is the on-chip traffic pattern
modeling. Because SoNoCs are much more application-
specific, general synthesized stochastic
Traffic patterns are not suitable for NoC analyses. Several
NoC simulation frameworks have been researched [3-5],
but these works focused on network architectures and
protocols, and the traffic was artificially synthesized. This
paper presents how to build a Real SoNoC prototype to
obtain real traffic patterns, which will facilitate on-chip
topologies and protocol syntheses. For a SoNoC to
succeed in heterogeneous multi-core applications, the
system and network must be considered and integrated
together. A unified component integration flow developed
for multi-core applications in Ref. [6] is a bottom-up flow
that provides wrappers for the hardware and software
components. The mapping of object’s function call into
messages [7] was the inspiration for this paper. Such
research has investigated system modeling using formal
language such as UML and SysML [8,9]. These works
focused on formally describing a system to define its
behavior and architecture requirements. The object
message level (OML) model presents a SoNoC hardware
template enabling a consistent system module synthesis
process.

2. OML Model for SoNoC

The register transfer level (RTL) model provides a
fundamental basis for logic synthesis in ASIC designs. In
the RTL model, circuits are regarded as registers with
combinational logic used to model signals starting from
registers, traveling through logic gates and getting
captured by registers at the next clock edge. In the object
message level (OML) model, systems are regarded as
heterogeneous cores with micro-networks having
messages being transmitted through networks between
cores. The OML model enables a unified SoNoC form,
which can be used to develop object-tocore synthesis and
function call-to-network mapping methodologies.

2.1 Abstraction of computation and storage:Objects

An object is a collection of public/private data and
operations with an object-ID (OID) attached:
� Public function members: submit tasks or trigger state
shifts.
� Private function members: provide a library for public
functions or conduct initialization and self checking.
� Private data members: representing the implicit
configuration and status or temporary data and
intermediate results.
� Public data members and property access functions:
representing explicit configuration and status. Special

access functions are defined to access these properties by
messages.
The only way to access an object is to invoke its member
functions. Each public function has a function- ID (FID)
attached to it, to identify different member functions.

2.2 Abstraction of invoking functions: Messages

When an object source invokes another object sink’s
member function with a group of parameters, the source
calls the function: rtnValue = Sink.Function (Parameters).
In SoNoC, this function invoking will be packed into a
message: (OID=Sink, ID=Function, Parameters,
OID=Source, tag). When the sink object receives the
message and finishes the task, it will send back a return
message to notify the source: (OID=Source, FID=0, tag,
rtn Parameters). Each message is marked by a tag;
therefore, the source can send and wait for many
messages at the same time to achieve parallel execution.
Therefore, all messages are formatted as (OID, FID,
Parameters) and are executed by a member function with
an FID. If the FID=0 the message is defined as a return
message and is handled by a special built-in “wait”
function. A message with an FID≠0 is defined as an
invoking message. Objects that send invoking messages
and receive return messages are called active objects;
objects that only receive invoking messages and send
return messages are called passive objects.

2.3 SoNoC hardware thread model

SoNoCs are multi-thread systems synchronized by
messages and limited-thread systems because each object
has limited thread resources. The sending of an invoking
message forks a thread; receiving a return message joins a
thread. SoNoCs support the simultaneous transmission of
several messages with multi-core execution. Within a core,
tasks can also be executed in parallel with the application
and release of object resources synchronized by
semaphores within objects.
Object A has received message msg1 and triggered
function f1.During this execution object A called object B
function f2 by sending message msg2 and is waiting for it
to return. When B has finished f2, the return message
msg3 is sent back to A, but A is trapped in the execution
of msg1 waiting to receive a message back. Therefore, if
A has only one thread, messages msg1 and msg3 depend
on each other to continue. Active objects should have at
least two threads: one for sending and waiting messages
and one for reclaiming messages. The two threads are
synchronized by message tags which are semaphores
representing the three message states, sent, reclaimed, and
null (used). Tags are attached to messages and follow the
message transmission. In general, objects can have more
than two threads, and this is true even for passive objects.
Each thread extracts messages from the network interface,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

26

executes them, and sends other messages. Threads share
resources that are synchronized by the semaphores.

Figure 2 shows a sequence of messages.

3. SoNoC Hardware Architecture

SoNoCs are heterogeneous multi-core systems with
application-specific network infrastructures. Unified
hardware model design principles were developed for the
synthesis of objects, network interface design, and
network topology generation to develop SoNoC design
methodology.

3.1 Implementation of objects: Object synthesis

Many forms are used to implement objects on silicon.
These forms are generally categorized into hardware and
software + processor.

3.1.1 Hardware implementation

A typical active object consists of storage and
computational resources, several task finite state machines
(FSMs), a reclaiming FSM, and message tags, as shown in
Fig. 4. A hardware core has storage resources including
registers, register files, and embedded RAM or ROM that

are used to map data members, computational resources
such as the arithmetic logic unit (ALU), multiplier, and
divider, and communication resources such as a network
interface and FIFO. A member function is mapped into a
sub finite state machine (sub-FSM) with a “start” signal in
and a “done” signal out. Each sub-FSM commits
interfaces to the resources as they utilize them.
Synchronization points within each member function
provide time constraints for computations with high level
synthesis techniques for the design. The network interface
dispatches the messages into two FIFOs, the task FIFO for
invoking messages and the return FIFO for return
messages. The task thread is an FSM attached to the task
FIFO, which monitors the FIFO, triggers the appropriate
function sub-FSM according to the FID contained in the
message, switches the resources to the function sub-FSM,
and waits for termination of the sub-FSM. Function sub-
FSMs share resources under the control of the task thread
FSM. Message tags are semaphores with sent, reclaimed,
null (used) states and attached buffers. When function
sub-FSMs send messages, they apply a null tag first,
attach it to the message, and switch the tag to the “sent”
state after the message is sent. Then they wait for the
message to be sent back, indicated by the tag state
changed to “reclaimed”. Reclaimed threads are FSMs
watching the return message FIFO, which changes tag
states to “reclaimed” according to the tag field of the
received messages and saves return parameters to buffers
addressed by the tags. When task FSMs have received
valid return messages and extracted the return parameters,
the tag is changed to the “null” state. In this way, message
tags are semaphores that protect return messages and
parameter buffers.
Passive objects do not need reclaimed threads, so this
discussion about active objects is also true for passive
objects with some abridgments.

3.1.2 Software implementation on a processor

Objects can also be mapped into software running on
processors. Processors have larger storage, computational
and semaphore resources, and the ability to simulate
multi-thread environments in software. With unlimited
thread resources, software can allocate multiple threads
even for the same member function, which is impossible
for hardware. Therefore, only one input FIFO will satisfy
message dispatching requirements. Extensions to
processors include an input FIFO, an output FIFO, and
network interfaces. Since processors are mega-cells with
tremendous resources within a chip, this implementation
approach is not the emphasis of this study.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014 27

3.2 Implementation of message delivering: NoC
generation

Function calls between objects reflect relations and traffic
constraints of objects. Design of a NoC according to these
constraints must apply principles and templates to
network interfaces, protocols, routing algorithms, and
topologies. Ma and Sun proposed designing a NoC using
an evolutionary method based on the information from the
OML. Variable length messages, a source-based routing
scheme, arbitrary topologies, and configurable switches
can be used to evolve the NoC for specific applications.

3.2.1 Implementation of network interface

Network interfaces send messages in order, handle
variable length messages, and translate object IDs
into network addresses. A network interface includes
several signals as shown in Fig. 5: req, ack, tail, and data.
The “req” signal indicates that the data is valid, and the
“tail” signal, used in wormhole routing, indicates the last
flip being sent, so these two signals can be used to build
and remove a virtual circuit and to transmit flip sequences
of any length. The signal “data [BW−1:0]” is BW bits
wide, and contains the routing information and/or data
payloads. The signal“ ack” is an acknowledge signal that
when true, indicates that “data[]” is allowed to be
updated. Figure 5 shows a possible sequential pattern
when sending a message “12345”. The object ID must be
translated into a network addressable ID to apply routing
algorithms. The source-based routing scheme takes the
path from the source object to the sink as the sink’s ID to
the source. Therefore, one object has different network
IDs for different objects. The two methods to resolve this
translation are equipping a ROM addressed by an OID to

get its network ID or taking the network ID as the OID at
the very start.

3.2.2 NoC topology design

Topologies dominate the performance of NoC systems.
Many specific applications demand arbitrary topology
design methods. Arbitrary automatic network generation
automation has been developed to quickly explore the
design space[11]. The source-based routing scheme
supports arbitrary topologies, simplifies switch structures
by known routing results, and regulates switch templates.
The wormhole scheme is employed to transmit arbitrary
sequence lengths. Figure 6 shows a typical 2×2 switch
generated from a parameterized template. Interfaces
between switches are the same as described in Section
2.2.1. The template parameters can be graded into
network, switch, and port (input port or output port)
hierarchies. At the network level, the parameters include
the number of input ports, the number of output ports, the
number of switches, and the connection edges. At the
switch level, parameters include the number of input ports,
the number of output ports, and a virtual circuit mapping
table. More detailed parameters are attached to ports.
Simulation and logic synthesis experiments have shown
the impacts of these parameters.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

28

4. SoNoC Software Prototype Framework

The OML model for SoNoC can be mapped into hardware
and is also suitable for software prototypes. SystemC, a
hardware description language based on C++ for system
modeling, was used here to construct a SoNoC software
framework.

4.1 Proposed modeling stages

There are four modeling stages or thread models for
SoNoCs.
� For the no-thread model, systems are modeled as
collections of objects. Functions called and parameters
returned are processed on the program stack.
� For the single-thread model, only one message is
transmitted on the network and only one module
is active. Each function call transmits the active state from
one module to another.
� For the unlimited thread model, messages are spread
over the network and modules run in the
unlimited multi-thread mode for the software simulation.
� For the limited thread model, networks work in the
multi-message mode but modules run in the
limited multi-thread mode, which coincides with the real
SoC hardware model.

4.2 C++ program framework for SoNoC

Base classes are defined including network, module,
functor, and message classes. A functor is a C++ structure
recording a function’s parameters and returned values,
which is equipped for each member function. When other
objects call this object’s function, a message is created
recording the source, sink, and functor, which is sent to
the network and dispatched to the sink. The sink invokes
functors to trigger appropriate tasks. Figure 7 shows the
code to translate a function call into a message
transmission. All objects are derived from the module
class to provide message sending, waiting,

and reclaiming abilities. The module also defines the
interface to network; therefore, all message activities are
managed and monitored by the network. The times are
managed in the SystemC scheme; therefore, traffic
patterns in the time domain can also be analyzed.

Message msg(
Sink, new Sink::Funtor(parameters),

*this, new WaitFunctor());
post(msg);

// time elapsing.
WaitFunctor fs = waitmsg(msg);

Sink::Functor* ft = fs.callee;
rtn = ft->rtn.

Fig. 7 C++ pseudo-code for source sending and waiting
for messages. Constructing, posting, waiting for, and
using a message are formatted and recorded.

5. Case Study: H.263 Codec

An H.263 coder and decoder system was studied to verify
this object-oriented methodology for SoNoC. This
example shows that multi-core execution in SoC and
traffic on NoC can be organized, managed, and optimized
in both the time domain and the space domain.

5.1 System object message model

H.263 is a video communication standard. As Fig. 8
shows, the H.263 codec is composed of 17 objects. Since
this is a system simulation, the codec includes virtual
objects such as “Display” and “Camera” that are not
integrated into the real chip, but with real traffic of virtual
objects across the chip’s boundary. The encoder and
decoder integrate objects instanced from the same classes
such as Display, PM, and ME, and they also share the
object DctQuan, which illustrates object reuse methods.
The arrows in Fig. 8 indicate the function call direction.
Actually, all messages appear in pairs in this application

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014 29

although SoNoCs support nonreturn messages. Some
messages include hundreds of parameters and some take
none. Packing function calling into one message means
that control (FID) and data (parameters) information are
packed together, so long or short messages are of the
same importance. Gray objects that only receive arrows
are passive objects while others are designed as active
objects. All activities are authorized from the control
module—ENC or DEC. The Display class plays different
roles in the encoder and decoder with the encoder
authorizing PM to show pictures while the decoder
authorizes Display.

5.2 Design pattern analysis

The encoder and decoder run simultaneously. Inside the
encoder, several tasks are also executed in parallel. For
example, at the group of blocks (GOB) level, a new GOB
is filled from Camera to PM, and the current GOB is
encoded while the old GOB is shown at the same time. In
this case study, when, where, and how messages enter the
network is controlled by system execution so that the
parallelism does not result in chaos. DctQuan is a passive
object employed by both the encoder and decoder which
is an example of a passive object having two threads. A
semaphore named “busy” that resides in DctQuan
synchronizes the two masters. The encoder or decoder
must first apply for permission before utilizing DctQuan
and release DctQuan after utilization. The DctQuan apply
function is separated from other members and resides in a
different thread. When DctQuan is occupied, subsequent
apply messages will be processed by the thread. Thus,
system multi-threading is based on object multithreading
and synchronization of messages is based on semaphores
within objects.

5.3 Simulation results

The simulation ran for 15 frames of the quarter common
intermediate format (QCIF, Foreman) in 0.6 s of
simulation time and then dumped traffic patterns over the
space and time domains. Figure 9a shows the quantities of
messages between objects, which is a symmetric matrix
because messages appear in pairs. Figure 9b shows the
bandwidth which varies since some objects send large
numbers of small messages and some send small numbers
of large messages. The network also recorded the
bandwidth with time, as shown in Fig. 10. The task
execution time estimates were referenced from the
simulation on the very long instruction word (VLIW)
processor[12]. In this example system, the number of peak
parallel concurrent messages was about 5. Only
concurrent messages compete for network resources, so
the concurrent bandwidth not the overall bandwidth over
the space domain influences network congestion. The
design process and the simulation results show that traffic
on a chip can be recognized and controlled. Analysis of
the distribution over the space and time domains shows
that the optimization space of on-chip networks for
specific applications is quite large.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

30

6. Conclusions and Future Work

The NoC is triggering complex SoC that challenges
current SoC design methodologies. NoC designs for SoCs
must recognize applications, define slips between objects,
and automatically synthesize optimized networks. This
paper focuses on the first two issues using an OML model
for SoNoC with an object-oriented SoNoC modeling and
implementation method which was easily built to analyze
real on-chip traffic. An example application using the
H.263 codec was studied with this methodology, and the
results show that traffic on a chip can be managed. Future
work will be focused
on network topology optimization for a given SoNoC
OML prototype.

References
[1] Bertozzi D, Jalabert A, Murali S, et al. NoC synthesis

flow for customized domain specific multiprocessor
systemson- chip. IEEE Transactions on Parallel and
Distributed Systems, 2005, 16(2): 113-129.

[2] Goossens K, Dielissen J, Gangwal O, et al. A design
flow for application-specific networks on chip with
guaranteed performance to accelerate SoC design and
verification. In: Proceedings of Design, Automation

and Test in Europe. Los Alamitos, CA, USA: IEEE,
2005: 1182-1187.

[3] Coppola M, Curaba S, Grammatikakis M, et al.
OCCN: A network-on-chip modeling and simulation
framework. In: Proceedings of Design, Automation
and Test in Europe. Los Alamitos, CA, USA: IEEE,
2004, 3: 174-179.

[4] Mahadevan S, Angiolini F, Storoaard M, et al.
Network traffic generator model for fast network-on-
chip simulation. In: Proceedings of Design,
Automation and Test in Europe. Los Alamitos, CA,
USA: IEEE, 2005, 2: 780-785.

[5] Wiklund D, Sathe S, Liu D. Network on chip
simulations for benchmarking. In: Proceedings of
System-on-Chip for Real-Time Applications. Los
Alamitos, CA, USA: IEEE, 2004: 269-274.

[6] Dziri M A, Cesario W, Wagner F, et al. Unified
component integration flow for multi-processor SoC
design and validation. In: Proceedings of Design,
Automation and Test in Europe. Los Alamitos, CA,
USA: IEEE, 2004, 2: 1132-1137.

[7] Goudarzi M, Hessabi S, Mycroft A. Overhead-free
polymorphism in network-on-chip implementation of
objectoriented models. In: Proceedings of Design,
Automation and Test in Europe. Los Alamitos, CA,
USA: IEEE, 2004, 2: 1380-1381.

[8] Vanderperren Y, Dehaene W. UML 2 and SysML:
An approach to deal with complexity in SoC/NoC
design. In: Proceedings of Design, Automation and
Test in Europe. Los Alamitos, CA, USA: IEEE, 2005,
2: 716-717.

[9] Sys ML. SysML
specifications. http://www.sysml.org/ specs.htm,
2007-09-03.

[10] Ma Liwei, Sun Yihe. On-chip network evolution
using NetC. In: Proceedings of VLSI Design,
Automation and Test. Hsinchu, China: IEEE, 2005:
249-252.

[11] Ma Liwei, Sun Yihe. On-chip networks design
automation with source routing switches. Tsinghua
Science and Technology, 2007, 12(1): 77-85.

[12] Zhang Yanjun, He Hu, Sun Yihe. A new register file
access architecture for software pipelining in VLIW
processors. In: Proceedings of Asia and South Pacific
Design Automation Conference. Shanghai, China:
IEEE, 2005, 1: 627-630.

http://www.sysml.org/

