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Abstract 
Image processing computing time is an issue for research from 
the beginning and different method has been used but no one 
gives the efficiently result with different method. Our research in 
this paper calculates the image processing computation time. 
Using parallel processing and overlap segment technique. It can 
reduce the computation time. Discussing in this paper divided 
image frame into a number of sections by overlap technique. 
Using DSP resources and keeping high accuracy and speed main 
target. It is avoiding a traditional segment technique. It uses an 
Overlap segment technique is best for sectioning and grouping. 
Overlap segmentation technique remove problem of filtering 
operation. This technique implemented with parallel processing 
for computation time and enhances output data. Parallel 
computing is very useful for performance evaluation and design 
time calculation as well as advantages of not using data bus as a 
common data bus transfer. This parallel design gives the 
advantages of applying different algorithm on image frame. 
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I. INTRODUCTION 

Researchers main aim from long time ago was reducing 
processing time and increasing data computation speed, 
reaching real time or even real time still the main goal. 
Two different trends tried to achieve the same target; first 
method tried by increasing clocking frequency for the 
operating processor as maximum as possible, other trend 
took another methodology by using parallelism. 
Increasing clock frequency drawback were power 
consumption and high temperature, researchers eyes went 
again to parallel computation. Concurrent advantage of 
VLSI technology is allowing very large number of 
components to fit chip. Changing computing architecture 
for parallelism is one of the method for parallel processing 
technique. 
Our contribution in this paper is: defining a loosed 
coupled parallel computing design method for fast image 
processing in which processing time will not exceed for 

image frame size. It can get computing time with different 
kernel size and using different filtering algorithm. 
Studying parallel computation capabilities: Defining 
parallel computing as many calculations are carried out 
simultaneously each is a processing element considering 
in principle that large problems can often be divided into 
independent smaller ones and each processing element can 
execute its parts, which are then solved concurrently (in 
parallel). Also processing element can be diverse and 
included resource such as single computer with multiple 
processor, several networked computer specialized 
hardware, or any combination of the above. Concluding of 
the above in other words would say that, parallel 
computing is a “collection of processing elements that 
communicating and cooperate to solve large problems 
fast”  
Studying overlap segment technique: The Overlap-Add 
method is based on the observation that when we consider 
two discrete-time signals, say xk(n) and h(n), with support 
L and support M, respectively (note: the support is the 
length of the smallest consecutive stretch of points that 
contains all non-zero signal elements), the resulting 
convolution yk(n) = xk(n) * h(n), has a support of L+M-1. 
For example, say the support for xk(n) is n = 0,…, L-1 and 
the support for h(n) is n = 0, …, M-1, then the support for 
yk(n) is at n = 0, …, L+M-2. The questions at the end of 
this lab will elucidate this concept. 

 
Using this idea suppose our input stream x(n) is an infinite 
sequence starting at time n = 0. Divide x(n) into L-length 
blocks and convolve each L-block with h(n) (using linear 
convolution). Then sum all the convolution outcomes 
along the L-boundaries (we elaborate more soon). This 
works because of the additive property of convolution 
which states (x1(n) + x2(n)) * h(n) = x1(n) * h(n) + x2(n) 
* h(n), and is visually depicted in Figure 1. 
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Figure 1: Basic Idea Behind Overlap Method. The kth L-block of x(n) is 
denoted xk(n). 

In Figure 1, the operation of convolving a very long x(n) 
with h(n) is equivalent to the operation of convolving each 
L-block of x(n), denoted xk(n) for the kth block, with h(n) 
and then conducting addition judiciously to deal with the 
“tail” region from each block convolution as we discuss 
next. An important aspect is that after convolving each 
block with h(n), the resulting intermediate signal is L+M-
1 samples in length as discussed earlier, and thus the extra 
M-1 samples at the end due to convolution expanding the 
support (called the “tail”) must be added to the first M-1 
samples of the next convolved block. This is illustrated in 
Figure 2, where the right hand side (RHS) of the equality 
shows the result (graphically) after convolution. 
Specifically, the kth output block is given by: yk(n) = 
xk(n) * h(n) and the last M-1 samples of yk(n) must be 
added to the first M-1 samples of yk+1(n) to produce the 
appropriate output signal y(n) = x(n) * h(n). 
One main challenge in a real-time processing scenario is 
that the timing of completing a block convolution needs to 
be appropriately synchronized with the overall output 
speed so that that tail region 
may be added to the next block at the right time. If the 
process of convolving each block is slower than outputting 
the samples of blocks already convolved, then the tail 
region will not have the opportunity to be added to the 
next block (because the next block is still in the process of 
going through convolution), resulting in the erroneous 
output of the samples 0 to M-2 and L to L+M-2 for each 

block. One way to deal with this is to slow down the rate 
of output, which may fail to meet the timing requirements 
for a given application. Another, more attractive approach, 
is to speed up the process of convolution. This can be 
achieved through the use of the FFT for convolution. A 
reminder of how to use the FFT algorithm to filter a block 
of input to perform convolution is summarized here (note: 
this is not the entire Overlap-Add algorithm as the output 
blocks must be combined at the end of this 

 
It is a fast convolution While implemented linear 
convolution in FIR filters, the input signal sequence x(n) 
is much longer than the impulse response sequence  h(n) 
of a DSP system. Circular convolution can also be used to 
implement linear convolution by padding zeros. The 
output cannot be obtained until the entire input signal is 
received and hence there will be characteristic delays. 
Also, as the signal N1+N2-1 gets longer, implementation 
and the size of the memory needed become impractical. In 
order to eliminate These problems while performing 
filtering operation in the frequency domain, two signal 
segmentation methods, namely the overlap add and 
overlap save segments method can be used to perform fact 
convolution by sectioning and grouping the long input 
sequence into block or batches of samples and the final 
convolution output sequence can be obtained by 
combining the partial convolution result generated from 
each block.  
Studying FFT Algorithm: There are a number of FFT 
algorithms that can be used for Implementation of the fast 
convolution, most of which have limitations on the sizes 
of image  they  can  operate on.  The particular FFT 
algorithm used for this implementation was a variation of 
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the mixed-radix FF T transform algorithm [8].  This 
algorithm, while not the Fastest, is capable of processing a 
wide variety of different sized images.    It operates by 
breaking the   width and height of the images down into 
their prime factors to arrange the image into groups of 
pixels to operate on . The largest prime factor that can be 
used is 19.  Any image which has a height or width with a 
prime factor greater than 19 or that is odd, must be 
increased in size until they are even with prime factors 
less than 19.   If an image has to have its dimensions 
increased the existing data is written into the top left-hand 
corner of the area.  This occurs when an image is 
increased to allow its dimensions to be accepted by the 
FFT, and to bring the structuring element image up to the 
same size as the image being used by the FFT algorithm. 
The mixed-radix FFT algorithm should in theory show 
approximately logarithmic behavior [4].  However we 
found that the operation of the  algorithm  to  
accommodate the different sizes of input image introduces  
a  variation  in computing time and overlap-save 
algorithms,  that speed up computation time and allow the 
convolution of a large image with smaller kernel to be 
performed [2] without having to pad up the kernel. The 
two algorithms are similar and are performed in the spatial 
domain.  The input image i subdivided into N segments 
(slices) of the kernel, the\convolution is evaluated for each 
segment, and then all the separate convolution results are 
recombined in the spatial domain. In between these two 
operations any convolution algorithm can be used.  In this 
case, our fast convolution is used, employing the 
multiplication of two equal sized Fourier transforms in the 
frequency domain 
Studying kernel size and overlap factor: Kernel size 
reduces number of input and operation calculation more 
than half of input and consequently number of operation 
needed. It was the start of our research to discuss the 
difference in pixel output when using different kernel size 
such as 3x3, 5x5, and different overlap factor 

II. PARALLEL COMPUTING 

The computing speeds up is strongly attached to data 
dependency, so understanding data dependencies is 
fundamental in implementing parallel algorithm. No 
program can run more quickly then the longest chain of 
dependent calculations, since calculation that depend upon 
prior calculations in the chain must be executed in order. 
However, most algorithms do not consist of just a long 
chain of dependent calculations; there are usually 
opportunities to execute independent calculation in 
parallel if it satisfies the following; 
Let Pi and Pj be two program segments. Bernstein's 
conditions [14] describe when the two are independent 
and can be executed in parallel. For Pi, let Ii be all of the 

input variables and Oi the output variables, and likewise 
for Pj. P i and Pj are independent if they satisfy 

•  

•  

•  

Violation of the first condition introduces a flow 
dependency, corresponding to the first segment producing 
a result used by the second segment. The second condition 
represents an anti-dependency, when the second segment 
(Pj) produces a variable needed by the first segment (Pi). 
The third and final condition represents an output 
dependency: When two segments write to the same 
location, the result comes from the logically last executed 
segment. 

III. PARALLEL PROCESSING ON DSP 
FOR IMAGE PROCESSING 
ALGORITHM 

The parallel  Reviewing  parallelization classification and 
trying to find the suitable method for image processing as 
the various architectures can be used to solve vision 
problems, as the pipeline, Multiple Instruction and 
Multiple Data stream machine, Single Instruction stream-
Multiple Data stream. 
The parallel architectural for Image Processing, Image 
processing community has been relying for many years on 
special purpose computers to accelerate their 
computations; they start to turn towards parallel 
processing technology. They were searching, if they can 
get benefit simultaneously from reliable and fast hardware, 
and software programming tools that allow implementing 
more complex image and vision applications. The 
commercial success of any computer architecture 
significantly depends on the availability of tools that 
simplify software development. Consequently, many 
different programming tools have been developed that 
attempt to solve difficulties and obstacles facing software 
programming languages design for parallel and distributed 
computers. However, our research study uses the ability of 
connecting Matlab 2007a with FPGA software tool ISE 
10.1 backage from XILINX. 
The selected Digital Signal Processor TMS320C6414T- 
1000 is from Texas Instruments. It is a device from the 
C6000 family and one of the cutting-edge fixed point 
DSPs in this series. It runs with a clock of 1 GHz and 
provides 8000 million MAC (Multiply-Accumulate) 
operations per second. An example will show the 
performance improvement of partly hand optimized code. 
Some tests are carried out with the function which 
implements the Gaussian Pyramid. The digital filtering of 

http://en.wikipedia.org/wiki/Parallel_computing#cite_note-14
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an image requires the MAC operation on every pixel with 
a sliding scope over the image. The first unoptimized 
implementation of the Gaussian pyramid fits only the 
needs of the functionality, but without any performance 
aspects. The filter coefficients are derived from an array. 
All coefficients are multiplied with the corresponding 
pixels.  
The products are summed up and divided by the sum of 
the coefficients derived from the array, Again the 
Gaussian Filter is a neighborhood function, which means 
that an ROI is used. During the test, the image.size of 
256x256 pixels is used, where the ROI window has a size 
of 252x252 pixels, because a border of 2 pixels is required 
for the algorithm. This results in a destination image with 
the size of 126x126 pixels and obtains a performance of 
86.11 ns/pixel. The functions PfeGetPix8u and 
PfeSetPix8u are a part of the PfeLib (Performance 
Primitives Library) [23]. Without using these two 
optimized functions to load and store pixels from the 
memory, the performance of the functional behavior 
(unoptimized) will be much worse. A common method to 
gain execution time performance is to inline the function. 
It means that the C/C++ source code for the called 
function is inserted at the place of the function call. This 
technique is useful for platforms with multi-staged-
pipelines and especially for VLIW processors. Execution 
time on VLIW processors is improved, because function 
calls inside of loops would cause the optimizer to not 
parallelize loops. 
we are investigating how we can make use of the 
advantages of both technologies to build a new platform 
which is based on both DSPs and FPGAs. That platform 
would enable us to split algorithms and to execute parts of 
the algorithm on the processing unit (DSP or FPGA) 
which is better suited for. 
 
Studying peak to signal ratio: Peak Signal-to-Noise Ratio, 
often abbreviated PSNR, is an engineering term for the 
ratio between the maximum possible power of a signal 
and the power of corrupting noise that affects the fidelity 
of its representation. Because many signals have a very 
wide dynamic range, PSNR is usually expressed in terms 
of the logarithmic decibel scale. PSNR is most commonly 
used to measure the quality of reconstruction of lossy 
compression codecs (e.g., for image compression). The 
signal in this case is the original data, and the noise is the 
error introduced by compression. When comparing 
compression codecs, PSNR is an approximation to human 
perception of reconstruction quality. Although a higher 
PSNR generally indicates that the reconstruction is of 
higher quality, in some cases it may not. One has to be 
extremely careful with the range of validity of this metric; 
it is only conclusively valid when it is used to compare 
results from the same codec (or codec type) and same 
content 

PSNR is most easily defined via the mean squared error 
(MSE). Given a noise-free m×n monochrome image I and 
its noisy approximation K, MSE is defined as 

 

 

Proposed computational model; 
This computational model calculates the result of different 
kernel size and different filter .But it is more depend upon 
number of segments. If number of segments are more than 
number of parallel pipelines is increasing then processing 
time reduced. First step image processing without parallel 
processing calculate the time different filter size and 
different kernel size Then second step image processing 
with parallel then applies different filter and different 
kernel size. In second step also calculate other parameter 
as MSE it shows how much error occur in output image 
and PSNR calculate the quality of output image. 

 

Then a third step. Image processing with parallel 
processing .But divided the image into a number of parts 
by the overlap segment method. It gets the segment by an 
overlap factor then proceeds. It is reduced processing time 
and MSE, PSNR .Then compare the result each other with 
different parameter. Shows in fig. 
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Experimental Results: 

Different experiments were carried out to test the 
correctness and the timing of  the algorithm. For the 
overlap segment  technique with parallel  processing . It 
can compare the result based on different kernel and  
different filter size 

Sequential computation Table.1 
Number 
of 
segment 

Filter 
type  

Kernel 
size 

Process 
time 
(msec) 

Mse  Psnr  

3 Gaussian 
filter 

3x3 0.006390 8.884 37.8 

3 Median  3x3 0.003927 6.005 39.5 
3 Average 3x3 0.002948 4.818 40.4 
3 motion 3x3 0.002998 11.79 36.5 

Parallel computing Table.2 
Number 
of 
segment 

Overlap 
fector 

Processing 
time(msec) 

mse Psnr  

3 4 0.0014504 0 Inf 
4 5 0.0050847 0 Inf  

                 Parallel processing with overlap segment table.3 

Original image                      side effect  image 

 

 

 

 

 

Result 

 

 

 

 

Conclusion 

In this work a performance analysis of image processing 
with parallel and overlap segment technique it is 
implemented on DSP system. The advantages of overlap 
segment technique. It is eliminate the problem of filtering 
operation It is gives the better result is compare to 
tradition segment method. It can analysis the result by 
some parameter such as filter type, segment size, and 
overlap factor, MSE(Mean square error), PSNR(Peak to 
signal noise ratio) these parameter decided the image 
processing computing time and quality of image. In this 
approach parallel processing concept is a very important 
because it is reducing the process time of image 
processing. Analysis the segment size of image. it can 
identify the results by comparative model which 
parameter gives the efficient results for image processing. 
In this model comparing with Gaussian filter, median 
filter, average filter motion filter Overlap segment 
technique faster is compare to traditional segment 
technique different size segment and different window 
size for processing. The selected Digital Signal Processor 
TMS320C6414T- 1000 [18] is from Texas Instruments. 
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