
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

92

Manuscript received June 5, 2014
Manuscript revised June 20, 2014

Android Malware : Study and Analysis for Privacy Leak in Ad-
Hoc Network

Akash Malhotra†1 Pawan Prakash Singh††2

Suresh Gyan Vihar University,India Suresh Gyan Vihar University,India

Summary
Smartphone’s users has been increasing since last few years
which provides numerous operations like accessing information
through online mode, payment options, using utility applications,
playing games. Smartphone’s have become so powerful these
days that tends to play the role of PC’s. The basic operation of
any mobile phone calling, storing personal details like contact
information in contact book, business data, text messages etc.
Since we are in new generation, where so many different
varieties of devices connect together with each other giving way
for security concerns. With the huge and tremendous uprising
Smartphone sales in market, the chances of malicious attacks
became a trouble. As malware developers tries to steal
information from such devices. This paper provides a study of
analyzing malware through static and dynamic means. In static
analysis we are performing reverse engineering to detect
malicious code and in dynamic analysis we are using tools to
identify the packet structure. Further we perform white listing for
safe destination address. In this paper we are highlighting the
aspects of mobile malware when compared with third party
applications like Lookout etc.
Key words:
Android malware, reverse engineering, security and protection,
Anti-virus, white listing.

1. Introduction

People have started using smart phones, since various
companies provide various utility features in devices.
According to Garter, Sales of Mobile devices grew 5.6
percent in Third Quarter of 2011 whereas smart phones
sales increased 42 percent. With much interest, Android
Operating System itself accounts for more than 55 percent
of smart phones sales since its origin. Current day mobile
devices have four capabilities –, computing,
communication, sensing and high utility. Besides being at
a high sale rate and such capabilities, these devices have
also made the malicious attackers ready to attack and steal
data. This idea is complemented by Lookout Threat report
which has done great effort with respect to malware.
As the sale has increased exponentially the malicious
coders have also increased. Mobile malware performs
malicious activities like stealing private information,
sending sms, reading contacts and can even harm by
exploiting data. Malware authors can cause much damage
to device users as so many users use capabilities of devices

such as money transfer, online bank payment etc. Recent
news and survey states that android platform is the mostly
attacked platform for malwares. Since the malware can
enter from the network, so its users responsibility to install
malware free application. Even a malicious author can
even repackage a famous application. So the first right is
with user to check the permissions which an application
asks during its installation. Once the user allows the
application, he grants the application to use the
permissions mentioned completely. Otherwise the user can
deny installing the application.
 Our aim is to reduce the risk of malicious applications
causing harm to the user of a device, by enhancing the
security which performs white listing of network
permission by analyzing packet using tools such as snort,
wire-shark etc. As we know Android platform has a
permission model, which ask the user before installing the
applications. Android Applications possess permissions
when they want to perform operations that may result in
cost or violate confidentiality and integrity of personal
information present in the device. One of the very
common permission is access to the Internet. Generally,
58% of the applications that are in the Android market
request this permission, can communicate and access any
host on the Internet.
Permission plays an important role in android device
security. Before restricting access to an application
component, you need to define the set of permission in the
manifest. You have to use permission tag and within it you
can specify the level of access the permission will allow
(dangerous, signature, normal, signature Or System).
But if the malicious author repackages the applications
with malicious code, then he may lost his precious data.
Adding access level grants security up to some level. We
were solving our problem by grouping the applications,
according to permissions stated in it. Applications having
risky permissions are further analyzed with static and
dynamic process and the destination address being
blacklisted. We are using approach for looking for
malware in application such as reverse engineering in
android, and comparing by installing third-party
application.
 This could Existing literature have used tools to find
the over privilege permissions, user’s behavior, attention
while installing applications as this the basic step before

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

93

user gets influenced to harmful application on their device.
Our work will define the list of sites used in the internet by
the application developer

.2. Related work

The attacks on mobile devices are keeping increasing,
more and more malware are affecting the user. Testing
using Kirin [5] with 311 popular applications revealed that
the rules flagged 10 applications for which the behavior of
five was found to be questionable. Kirin entirely checks
the application author’s permission requests and doesn’t
examine how the application uses these permissions.
David Barrera [2] and colleagues have per-formed
permission checks on about 1,100 Android applications
and have used self-organizing maps (SOMs) to visualize
the relationship between the applications and the
permissions requested. But, SOMs also focus solely on the
application author’s permission requests and don’t
examine how the application uses them. In a study of
Android application permission requests that included 100
paid and 856 free applications, around 93 percent of the
free and 82 percent of the paid applications had at least
single dangerous permission request. Internet permission is
the most common and dangerous request. But, completely
analyzing the permission request isn’t sufficient for mobile
malware detection; this should be done in parallel with
static or dynamic analysis. In year 2011, Felt [8] et al.
analyzed 46 pieces of iOS, Android, and Symbian
malware that have spread in the wild from 2009 to
2011.Andromaly [3] which monitors both the smart phone
and user’s behaviors by observing several parameters,
spanning from sensors activities to CPU usage, 88 features
are used to describe these behaviors; the features are then
pre-processed by feature selection algorithms. The
malware authors developed four malicious applications to
check the ability to detect anomalies. This paper contains
further research and illustrates latest malwares, detection
and defense techniques by referring several papers, blog
posts, vendor technology and specifications.
David [2] et al. discusses permission re-delegation attacks
on Android. They introduce the problem and present an
attack on a vulnerable deputy. We perform a larger
analysis of applications and discuss how plat- forms need
to change to prevent these attacks.
Chin et al. present ComDroid, a static analysis tool that
aims to help prevent developers from accidentally making
components public. They also make recommendations for
changes to the Android platform to reduce the rate of
unintentional deputies. Although their tool and their
platform recommendations would help prevent some
instances of permission re-delegation, attacks on
intentional deputies would still remain.

Taint Droid [4] performs dynamic taint analysis. It tracks
the real-time flow of sensitive data through applications to
detect inappropriate sharing. The taint source is API data,
and the network is the sink. They track only data flow, but
not control flow. Taint Droid [4] is complementary to IPC
Inspection because they track API return values but do not
prevent API calls from being made. Another tool, Scan
Droid [1], uses static analysis to determine data flow
through Android applications; it is intended for use similar
to Taint Droid [4]. Scan- Droid, however, requires access
to application source code. Kirin [5] checks application
permission requirements and recommends against the
installation of applications with certain permission
combinations. Their rules are intended to help detect
malware.
Apex [6] offer extensions to the Android framework to
provide fine grained control over an app’s access to
potentially sensitive resources. Most of these efforts are
aimed at addressing this problem on the user’s phone; Risk
Ranker [7], on the other hand, attempts to identify such
risky behaviors at the app market, offer extensions to the
Android IPC model that allow the ultimate implementer of
a privileged feature to check the IPC call chain to ensure
unprivileged apps cannot launch confused-deputy attacks
unnoticed. Similarly, besides the above defenses, some
work has been proposed to apply common security
techniques from the desktop to Mobile devices. Some
work has focused on malware and the overall market
health. Felt et al. [8] surveyed 46 malware samples on
three different smart phone platforms, discussing the
incentives that motivated their creation and possible
defenses against them. But, this work did not discuss how
to discover this malware. Our work has a much stronger
emphasis on malware detection than privacy leak detection.
Mal Genome [9] aims to systematically characterize
existing Android malware from various ways, including
installing methods, activation mechanisms as well as the
nature of carried malicious risks posed by existing in-app
ad libraries. These are the various works.

3. Methodology

Detection:
Static analysis
This approach is generally used when we looking for
malicious code inside the suspected application. The
malware application can cause a serious harm to the user
by exploiting his precious data or stealing it. In static
analysis, basically de-compilation of installer file is done.
An .apk file of android is analyzed with reverse
engineering process. Since we are analyzing through code
based approach, so it is termed as static analysis approach.
We use various tools for analyzing it. Tools used are
Winzip, Java Decompiler, dex2jar etc. Reverse

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

94

engineering in android is done to open and view the java
and xml files for any malicious code. Following the few
steps, we get view of all the activities of android. We can
even view the xml files of android application installer,
this process exactly pin points the false code. With the
following steps we get complete knowledge of a
developer’s intention.
Using revere engineering:
Step 1: Rename the doubtful Malware Android
installer .apk to .apk.zip
Step2: Extract to new folder for example says New_folder
Step3: Using the tool Dex2jar, convert classes.dex to
classes_dex2jar.jar
Step4: Now use the tool Java Decompiler to view the
classes.
Step 5: You can look for the malicious code.
This is repackaging of a malware being done.

Dynamic analysis: Dynamic analysis involves running the
mobile application in an environment, such as a emulator
or vm(virtual machine), so that researchers can check the
dynamic behavior of android application. We are first
performing static analysis of malware, and the further
checking the malware for by checking its behavior. Our
research study is done by using the both approach that is
static and dynamic. In dynamic we are running the
malware on android emulator and checking through snort
tool for outgoing packets. Basically we are analyzing
packets, for destination address. If the dynamic address is
not in white list, the packet will be dropped, so any other
device running in that environment is also safe as we are
breaking the connection. With the help of snort tool we are
generating logs for incoming and outgoing packets. These
logs are further analyzed with tools such as wire shark. We
can trace the packets. Testing using Taint Droid with 30
popular third-party Android applications revealed that 15
of them share user location with advertisers and seven
share phone identifiers with remote servers without the
user’s knowledge. Although the researchers used Android

Monkey (ADB Monkey) to generate inputs, this is not as
efficient as testing with real users. Further, this approach
hasn’t been tested against malware that exhibits
polymorphic behavior or code fragment encryption. Snort
tool catches the incoming and outgoing packets. We are
going to catch the packets and analyzes them.We are going
to track the malicious code behavior at runtime by
installing the suspicious malware, (specifically the one
which steals information’s) on android emulator. Once the
malware makes HTTP Post or get request we will track it
running snort on machine and trace the destination address
where it is going to send our precious data, so that any
other Device coming in that network, will get a warning
that this URL does not fall under the white listing URL’s.
Using Snort tool:
Step 1: Start snort tool
Step2: Install android malware on Android emulator
Step3: Run the command and log file will be generated.
Step3: Trace the packet from where the malware is making
connection
Step 4: If it is unsafe, blacklist it or drop the packet.
Step 5: Protect other devices with alert message that this
cannot make connection.
White listing and blacklisting
White listing is a list or register of entities that are being
used for particular reason, and have a particular advantage,
service, mobility or recognition. Only stored entities on the
list will be accepted, approved, and/or recognized. White
listing is the converse of blacklisting, the practice of
finding entities that are denied, not recognized. In our
approach we are maintain list of URL’s to be blacklisted
and white listed, which protects the other device installing
the malicious application. In this we are adding safe
URL’s
A blacklist (or black list) is a list or register of entities
which particularly, being denied a particular advantage,
service, mobility, access or rights. Simply blacklist can
mean to deny someone work in a particular field, or
to stop a person from social circle. We are maintaining it
under snort rules.

4. Comparison study of Third party apps and
our methodology

We compare our malware detection techniques between
Lookout, third party application and our approach on
following data[6] and found that our analysis is also
effective as we can see it in graph. This graph is standard
graph when tested on lookout application for 10,000 and
above data.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.6, June 2014

95

Dataset 1:
Large volume of data, Standard graph-LOOKOUT

Table1
S/n Total number

of dataset
Total number
of malicious

node(standard)
1 10000 2400
2 20000 4502
3 30000 6001
4 40000 7202
5 50000 9020

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

2000

3000

4000

5000

6000

7000

8000

9000

10000

number of application at a time

 n
um

be
r o

f m
al

ic
io

us
 n

od
e

de
te

ct
ed

Dataset 2:
This graph is comparison Lookout and our approach here
dataset used is small in number, so we can observe, our
approach is also effective in finding the malware specially
which uses internet permission.
Observed graph with respect to standard graph (small
volume of data).

Table2
Total

number of
dataset

Total number of
malicious dataset

(standard)

Total number of
malicious dataset

(observed)
100 24 30
200 45 48
300 60 55
400 72 68
500 90 88

100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

80

90

number of application at a time

 n
um

be
r o

f m
al

ic
io

us
 n

od
e

de
te

ct
ed

standard
observed

5. Results & Conclusion

We can calculate a result by using true and false positive
ratio and then by finding out total accuracy
(1)TPR=TP /TP+FN
(2)FPR=FP /FP+TN
(3)Total Accuracy=TP+TN /TP+TN+FP+FN
In our paper we have presented our methodology to
understand how we are able to analyze malwares through
reverse engineering(code based) and packet
analysis(behavior based).We have used various tools to
analyse them and compared the dataset with
Lookout ,Third Party Application. Our approach is quite
efficient as it is providing white listing of safe URL’s.

References
[1] Adam, P. F ,Chaudhuri, A., & Foster, J. S. (2009).

ScanDroid: Automated security certification of android
applications. In IEEE symposium of security and privacy.

[2] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
Somayaji. A methodology for empirical analysis of
permission-based security models and its application to
android. In the Proceedings of the 17th ACM conference on
Computer and communications security, CCS ’10, pages
73–84, NY, USA, 2010. ACM

[3] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss:
Andromaly: a behavioral malware detection framework for
android devices. Journal of Intelligent Information Systems
38(1) (January 2011) 161.

[4] Enck, W., Gilbert, P., Chun, B.-g., Cox, L. P.,Jung, J.,
McDaniel, P., and Sheth, A. N.TaintDroid: An Information-
Flow Tracking System for Real-time Privacy Monitoring on
Smartphone’s. In the Proceedings of the 9th USENIX
Symposium on Operating Systems Design and
Implementation (2010),USENIX OSDI ’10

[5] Contagio mobile malware mini dump.
https://contagiominidump.blogspot.com/

[6] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with User
Defined Runtime Constraints. In the Proceedings of the 5th
ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’10, 2010

[7] Risk Ranker
https://www.csc.ncsu.edu/faculty/jiang/pubs/MOBISYS12.p
df

[8] Felt, A. P., Chin, E., Hanna, S., Song, D., and Wagner.
Android Permissions Demystified. In the Proceedings of the
18th ACM Conference on Computer and Communications
Security (2011), CCS 11.

[9] MalGenome: Proceedings of the 33rd IEEE Symposium on
Security and Privacy San Francisco, CA, May 2012

[10] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., and Chin,
E. Permission Re-Delegation: Attacks and Defenses. In the
Proceedings of the 20th USENIX Security Symposium
(2011), USENIX Security ’11.

https://contagiominidump.blogspot.com/
https://www.csc.ncsu.edu/faculty/jiang/pubs/MOBISYS12.pdf
https://www.csc.ncsu.edu/faculty/jiang/pubs/MOBISYS12.pdf

