Network Synchronization Coding for Wireless Sensor Network Device

Pattem Sampath Kumar
Department of ECE,
Malla Reddy Institute of Technology,
Hyderabad, AP, India.

K.Jaya Sankar
Department of ECE,
Vasavi college of Engineering,
Hyderabad, AP, India.

V.Sumalatha
Department of ECE,
JNTU college of Engineering,
Ananthapur, AP, India.

Abstract
Wireless sensor networks are emerging at faster rate in practical industrial applications. During the communication process the packets are transferred via wireless media. The precision of data transferred is dependent on the synchronization approach followed. However in case on wireless sensor network where the devices are located at different range, processing variant of measured data, the Precision Clock Synchronization Protocol for distributed Network and Control operation is needed. The IEEE-802.3is defined as the communication standard in such network. In this standard the protocol is defined for clock synchronization based on link to link synchronization. However in distributed network it is required to enable accurate synchronization of clocks with varying precision, resolution and oscillator stability in a distributed manner. In this paper a synchronization approach based on a hierarchical synchronization process of master and slave principal.

Keyword
Clock synchronization, distributed system, data precision, wireless sensor network, master-slave hierarchical synchronization.

I. INTRODUCTION
Wireless sensor networks have been proposed extensively over the past several years as a means of alleviating instrumentation costs associated with structural health monitoring of civil infrastructure. However, low data throughput, unacceptable packet yield rates, and limited system resources have generally plagued many deployments by limiting the number of sensors and their sampling rate. The sensor networks present challenges in three broad areas: energy consumption, network configuration and interaction with the physical world. Therefore, the development of sensor networks requires technologies from three different research areas: sensing, communication, and computing (including hardware, software, and algorithms). The next generation of the structural health monitoring sensors needs to be low cost, low power, self-healing, self-organized, and compact.

Many of today’s instrumentation used for wireless sensor operation require sophisticated timing of a variety of I/O functions (such as analog input, analog output, and digital I/O). PXI and data acquisition (DAQ) hardware offer an ideal solution to many of these timing with their very precise, modular, and easy-to-program synchronization features. A common class of test systems with some of the most demanding timing requirements is the simulation-response system. The stimulus-response system is characterized by reacting to one or more simultaneous excitation pulses by emitting one or more simultaneous signal pulses, usually after a known and very short time delay. In many cases, this stimulus-wait-response cycle repeats rapidly and continuously. In all cases, the instrumentation challenge of creating such a stimulus-response system is synchronizing the various output stimulus signals with respect to the acquisition of the response signals with a precisely timed delay.

In a wireless sensor network, synchronization is achieved by using data rate synchronization, clock frequency synchronization, or clock recovery synchronization techniques. The communication system includes a conversion clock at a transmitter and a conversion clock at a receiver. The data rate synchronization techniques adjust data rates by resampling digital data sent from the transmitter to the receiver to compensate for frequency variations in the conversion clocks. The clock frequency synchronization techniques use time stamps to adjust the receiver conversion clock frequency to substantially match the transmitter conversion clock frequency. The clock recovery techniques use a reference clock to adjust the transmitter conversion clock frequency and the receiver conversion clock frequency to be approximately the same.

II. WIRELESS SENSOR NETWORK
Recently, wireless sensor networks have emerged that can be characterized by local processing capabilities that minimize the amount of data transmitted in a single- or multi-hop strategy to extend the lifetime and robustness of
the network. The multi-hop Wisden system[6], which uses the small mica motes developed at the University of California at Berkeley [7], provides an example. In this system, by avoiding the transmission of lengthy time histories, battery life of the wireless nodes can be extended, while the issues of strict time synchronization and loss intolerance are marginalized. The BriMon system [8] provides an easy to deploy, long term and low maintenance system using battery operated wireless sensor motes as an alternative for communication and data logging needs. While such developments in wireless sensor networks have demonstrated their potential to provide continuous structural response data to quantitatively assess structural health, many important issues including network lifetime and stability, reliability, time-synchronization, and overall effectiveness when using low-cost sensors must be realistically addressed.

The most important challenges need to be solved at the network level itself, apart from the coordination needed with the application layer. Specific problems include:

1) Self-formation: The network topology should be self-adjustable, i.e. addition of new sensor devices should be handled automatically in the network without manual intervention. Similarly, the sensor devices may drop out of the network if enough energy is not harvested. In this case, the rest of the network should be able to adjust and find alternative routes for transmitting the information and coordinating the sensing activities.

2) Time Synchronization: The distributed sensors collect information for transmission to the local base station. The various sensors should be time synchronized such that the events causing the observation can be correlated and uniquely identified.

3) Transceiver frequency: Selection of a suitable RF band for low-power, non-interfering, high-throughput operation is needed.

4) Prioritization: The communication between the sensor nodes and the local base station could be synchronous (periodic update messages) or asynchronous (as a result of an anomalous event, which could create an alert for the monitoring system). The messages sent asynchronously should be allocated higher priority in the network, because of their alert-like nature.

5) Hierarchy: The sensor network needs to be organized in an adaptive hierarchy based on the application requirements. The hierarchy among the sensor nodes can ease the routing as well as provide the capability to make distributed decisions. Distributed decisions minimize the transmission of unnecessary raw data to the local base station.

6) Information Storage and Retrieval: In the case of communication failure (with the remote central information server) due to inadequate power for communication or interruption in communication link, the sensor network needs to be designed with limited storage capability. This storage capacity can be optimized with respect to the type and number of sensors.

7) Protocol Design: Standard communication protocols need to be customized in order to: (1) Minimize the communication overhead, and (2) Make the sensing system reliable and robust. This customization will provide application-oriented network features unique to the continuous monitoring system. The next generation of the wireless networks for sensor applications needs to be designed accordingly to resolve these important challenges.

III. COMMUNICATION MODEL

In order to provide decision making capability and perform complex signal processing at the sensor level, dedicated reconfigurable System on-Chip (SoC) devices are closely coupled with the micro-electromechanical sensors (MEMS). Recently, FPGA-based ultrasonic signal processing hardware have been successfully used in real-time flaw detection [11], ultrasonic data compression [12] and parameter estimation applications [9] demonstrating its versatility. In addition, power and area efficient implementations based on recursive filter structures for subband decomposition have been proposed [10]. These implementations are especially suitable for ultra-low power smart sensors used in structural monitoring applications.

IV. HIERARCHICAL SYNCHRONIZATION

The synchronization protocol is organized as follows;

1: Master-slave hierarchy has to organize between clocks (based on observing the clock property information contained in multicast Sync messages).

2: Each slave must be in synchronization to its master (based on Sync, delay_Req, Follow-Up, and Delay_Resp messages exchanged between master and its slave).

Fig 1: Hierarchy of Master-Slave clocks

Clock1: Grand master clock
Clock2: slave to the grand master clock and master to its slave
Clock3: slave to its master
In the above the master clock sends two messages:
1. Sync message (red color)
2. Follow up message (green color)
The arrow with red color denotes timestamp point and the line with dotted red color denotes time at which sync message passed the timestamp point (t1).

a) The characteristics of Sync Messages defined as:
 • It is issued by clocks in the ‘Master’ state
 • It is having clock characterization information
 • It is having an estimate of the sending time (~t1)
 • The receipt time is noted whenever it was received by slave clock
 • It can be distinguished from other legal messages on the network
 • For best accuracy these messages can be easily identified and detected at or near the physical layer and the precise sending (or receipt) time recorded

b) Similarly the characteristics of Follow-Up messages are defined as:
 • It is issued by clocks in the ‘Master’ state
 • Always associated with the preceding Sync message
 • Contain the ‘precise sending time= (t1)’ as measured as close as possible to the physical layer of the network
 • When received by a slave clock the ‘precise sending time’ is used in computations rather than the estimated sending time contained in the Sync message

Best Master Clock Selection
This phase gives the description about the best selection of master clock. The most precise clock in the network...
synchronizes all other clocks. There are two kinds of roles for the selected master clock: master (the one, which synchronizes the others) and slaves (those being synchronized). In principle, any clock can play either the master or the slave role. The precision of a clock is categorized by the protocol in classes (stratum). The highest class is an atomic clock that has the stratum value 1. The “best master clock algorithm” automatically gives the selection of the best clock in the network.

Selecting a Master Clock
The clock which is going to act as master clock should have the following characteristics:

- A clock at startup listens for a time called TIME_RCP_SYNC.
- A master clock (clock in the PTP_MASTER state) issues periodic Sync messages in a period called sync interval.
- A master clock may receive Sync messages from other clocks (who for the moment think they are master) which it calls ‘distant masters’
- Each master clock uses the Best Master Clock algorithm to determine whether it should remain master or yield to a distant master.
- Each non-master clock uses the Best Master Clock algorithm to determine whether it should become a master.

WIRELESS SENSOR NODE TOPOLOGY

The following procedure was performed during the multiple subnet synchronization and master clock selection.

- Sync, Follow-Up, Delay_Req, or Delay_Resp messages should not be passed by boundary clocks, thus network segment is concerned as far as the synchronization is occurred.
- A port of a boundary clock acts just like an ordinary clock within the subnet with respect to synchronization and best master clock algorithm.

The boundary clock internally selects the port that sees the ‘best clock’ as the single slave port. This port is a slave in the selected subnet. All other ports of the boundary clock internally synchronize to this slave port.

- Boundary clocks define a parent-child hierarchy of master-slave clocks.
- The best clock in the system is the Grand Master clock.
- If there are cyclic paths in the network topology the best master clock algorithm reduces the logical topology to an acyclic graph.

In IP multicast communication and is not restricted to Ethernet, but can be used on any network technology that supports multicasting. In point to point (PTP) communication the network is scaled for a large number of PTP nodes because a master can serve many slaves with a single pair of Sync and Follow_up messages. Multicast communication offers also the advantage of simplicity. IP address administration does not need to be implemented on the PTP nodes. For this reason, Delay_Req and Delay_Resp as well as the management messages, which are in fact point-to-point messages, use also multicast addressing. All other nodes but the wanted destination has to filter out these messages.

PTP Implementation

a) Time Stamping Methods
Synchronization accuracy directly depends on time stamp accuracy. There are different options to take time stamps:

- The most accurate method is to detect PTP frames with hardware assistance. Ingress and egress frames pass the Media Independent Interface (MII), where frames can easily be captured and decoded. Below the MII, data is 4B5B coded, scrambled, and therefore not directly interpretable. The accuracy of this method is limited by the Physical chip timing characteristics.

- Without any hardware assistance, the next best place for time stamping is the network driver. Egress frames are stamped at the very latest moment before the frame is handed over to the MAC controller. Ingress frames are
stamped at the entry point of the network interface interrupt service routine. The accuracy of this method is limited by the operating platform timing characteristics (e.g. interrupt latency, CPU performance) and load dependent.

Stamping on the application layer is best located at the socket interface. It does not require any modification to system software. The influence of protocol stack and load allows only moderate accuracy.

Performance Criteria
The precision of the delay and offset calculations depend on the precision of the time stamps. They should reflect the send and receive time as precise as possible. The slave’s offset and delay calculation is based on the difference of time stamps taken at two different places (i.e. master and slave node). Therefore, the two clocks should use the same scale, i.e. the same tic interval. This is achieved by drift compensation: the slave clock’s rate is accelerated or slowed down. A slightly different tic interval will degrade the result.

It is assumed that the message transit delay is the same for both directions. At a first glance, this is the case in an Ethernet link. However, going into the details, there are a few non-idealities: Cables used for Ethernet have a minor asymmetry by design, to reduce far end cross talk (FEXT). Ethernet transceivers have asymmetric transmit and receive paths. If their timing characteristics are clearly specified within a small range, the asymmetry can be taken into account by calculation as inbound and outbound latency correction constants. On the long run, conditions may change due to reconfiguration (leading to a very different delay) or environmental conditions (temperature). How fast the clocks can react depends on the frequency of sync and delay measurement and the dynamic behavior of the servos controlling the slave clock.

To sum it up, performance depends on:

- The symmetry of communication channel (i.e. same delay in both directions and constant over a longer period of time)
- drift compensated clocks (i.e. adjusted time base in master and slave clocks)
- time stamp accurateness
- time stamp firmness
- sync interval
- clock stability
- clock control loop characteristics

Synchronization Methods compared with PTP
There have been various previous methods of synchronizing clocks distributed over a network: the most common are the Network Time Protocol (NTP) and the simpler Simple Network Time Protocol (SNTP) derived from it. These methods are quite common in LANs or in the Internet and allow accuracy right down to the millisecond range. Another possibility is the use of radio signals of the GPS satellites. However, this requires relatively expensive GPS receivers for every clock and the appropriate antennae on the roof and the necessary cabling. Although this provides a high precision clock, it is often impractical for reasons of cost and effort.

The Objective of this paper is to prove that the speed of communication has improved by implementing the Hierarchical Synchronization protocol over the existing communication link. For this purpose we need to develop the communication link without Hierarchical Synchronization protocol and with the Hierarchical Synchronization protocol.

V. OPERATIONAL MODELING
Block diagram with Hierarchical Synchronization protocol differs from the actual diagram in the interface part. The interface block is split into 2 units.

1. Synchronization unit
2. Clock Generation unit

The synchronization unit is used to select the master clock from the existing clocks and it sends that information in a setup packet to the Clock generation unit where it compares the master clock with the clocks from the individual systems and corrects the device clocks to the master clock thereby enhancing the speed of communication.

The block diagram above is the top module for communication with the help of hierarchical synchronization protocol. It is performed in three stages, 1) Communication Link, 2) Interface, 3) Network Processor. Communication link is the first stage. Since the objective is to prove that speed is enhanced while various devices connected are operating at different frequencies, the link designed here consists of 4 channels each channel operating at different frequencies. Each channel having a transmitter and a receiver. In this the Ethernet is using as medium the transmitter and receiver should also Ethernet transmitter and Ethernet receiver. The transmitter device
collects data from the hosts and transmits that data through the receiver to the network processor for the corresponding control signals. The data from the host is taken as input and the packet is formed by the frame builder unit. CRC generator is used to calculate the Frame Check Sequence and add it to the packet. Then the build packet is transmitted through the serial to parallel converter to the receiver.

Frame Format

```
<table>
<thead>
<tr>
<th>SOF</th>
<th>Protocol</th>
<th>Type</th>
<th>Source Address</th>
<th>Destination Address</th>
<th>Data</th>
<th>Synchronization</th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 bits</td>
<td>8 bits</td>
<td>16 bits</td>
<td>48 bits</td>
<td>48 bits</td>
<td>8 bits</td>
<td>16 bits</td>
<td>1 bit</td>
</tr>
</tbody>
</table>
```

Fig 8: Frame format developed protocol

The frame format of the setup packet is shown above. A synchronization field is added to the packet which provides the information that is necessary for synchronizing in addition to the packet format having in conventional frame format. It consists of 2 internal fields, time stamp and the propagation delay. These two fields specify the offset value and the propagation delay value of the slave clocks from the master clock. The devices which receive this packet will take these two fields and corrects its clock to the master clock. In this design the propagation delay is assumed to be zero since no physical medium is involved. The flow of the design is similar to that without synchronization.

The above figure gives the graphical representation of the design process carried out in the proposed approach. The host machine which needs to communicate with the processor sends its data to the FIFO of the transmitter device and depending on the status of the control signal read or write operation is performed and then the data is forwarded to the CRC generator where the FCS is generated and also to the frame builder where the frame is build and then the parallel data is converted to serial for transmission and send over the network.

The data is transmitted over the network and at the receiving side the data is reconverted into parallel form and this data is fed into the FIFO and send to the frame reader where the is decomposed into different fields. The destination address field is fed to AML to check if the frame is addressed to this particular receiver or not. If the address matches then the FCS is fed to CRC checker to check for its correctness and if the frame is proved to be received without any error then the frame is processed else the frame is discarded.

Fig 9: operational flowchart of the wireless sensor operation
VI. SIMULATION OBSERVATIONS

Fig 10: Timing simulation result for the communication unit following conventional link synchronization approach.

Fig 11: Timing observation result for the developed communication unit following proposed hierarchical coding unit.

DLC=3 bytes
Best master clock (BMC)= min (tstamp)
Default clock = clk1 (under asynchronous mode communication)
Frequency selection method = round robin
Total number of communicating nodes = 4
Total amount of data generated per node = 3 bytes
Total amount of expected data in processor = 12 bytes
Total time taken = 5580 ns (under non synchronous round robin based comm)
(Total time = processing time + comm Time)
Total time taken = 1445 ns (under 1588 synchronous mode comm)
Total time saved (ts)= 4135 ns
Total clock cycles saved = ts / BMC
= 4135 / 10 = 413 cycles

VII. CONCLUSION

In this paper a new synchronization protocol for data transmission using hierarchical synchronization processing is proposed. In the proposed approach the timing synchronization is obtained more effectively by introducing the time stamp logic for driving operation. The proposed Hierarchical synchronization coding scheme derives the synchronization bits from the on-run master clock frequency and the sub clock frequency are more precisely been used for synchronization process. The developed synchronization reduces the operation timing of the data reception by faster synchronization of the master frequency and intern developing synchronous sub clock synchronization frequency.

REFERENCES

