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Summary 
The data backup and data recovery are well established 
disciplines within the computer science already. Despite this fact, 
however, there is currently no sufficiently general mathematical 
model for quantification of backup strategies. In this paper, such 
mathematical model is derived. The model introduced is based 
on the assumption that the total size of the data is constant. Using 
this model, we can quantitatively evaluate the properties of 
different types of backup strategies. For the full, differential and 
incremental backup strategies, formulae are derived for the 
calculation of the average total backup size and the average data 
recovery size in dependence on the probability of the change of 
data units. The quantitative relations obtained are discussed. 
Key words: 
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1. Introduction 

Data are one of the most valuable assets of persons 
and organizations. However, we can lose these data due to 
technical failures, human errors, etc. This is the reason why 
data are copied into backup data repositories (so-called 
data backup) in order to have the possibility of 
reconstructing these data when the data are lost in the main 
data repository (so-called data recovery). 

With regard to mathematical models of backup 
processes, A. Frisch states that “studies performing 
numerical and quantitative modeling backup processes are 
surprisingly rare” (see [1], p. 234). The models published 
so far allow only computations of full and incremental 
backups (e.g. [2], p. 4) and the quantification of the 
Amanda backup scheme ([3], p. 745-750 or [1], p. 225-
229). Z. Kurmas and L. Chervenak have published a 
comparison of some backup strategies [4], however, their 
evaluation of backup strategies is based on simulations and 
therefore no analytic results are presented in this paper. 
Other research papers are oriented on backup frequency 
and timing (e.g. [5] or [6]) and also do not provide any 
suitable results for the evaluation of general backup 
strategies. Therefore, we can state that there is currently no 
sufficiently general mathematical model for quantification 
of data backup and recovery, despite the great importance 
of both of these procedures. This paper introduces a 
mathematical model of data backup which allows a 
quantitative comparison of different backup methods. 

In the next section, the basic terms are formulated and 
the process of data backup and recovery is formalized. The 
third section is dedicated to the schemes of data recovery 
and the fourth section deals with the atomic backup 
(backups based on snapshots of data units). In the fifth 
section, a mathematical model for the quantification of 
backups is derived and in the sixth section, this model is 
applied to different data backup methods and the results 
obtained are discussed. 

2. Data backup formalization 

The terminology of the data backup is not unified and 
many authors “are using the basic terms in different and 
often conflicting ways” [7]. Therefore, we specify and 
formalize basic terms at first. 

 Data D are a structure of symbols, which represents 
some information. In the data repository, these data are 
arranged into certain elementary (i.e. further indivisible) 
sequences of symbols (e.g. sectors of the hard disk). We 
refer to an elementary sequence d of symbols as a data unit 
and denote the x-th data unit as dx. In the course of time, 
the data unit dx can correspond to different sequences of 
symbols, which we call versions of the data unit dx. The 
data unit dx, which does not represent any information, is 
the so-called empty data unit. We will formally denote 
such a data unit as dx = −. The model is based on the 
assumption that the total size of the data D is constant and 
that the size of the metadata (overhead of data units) is 
negligible. 

We have already stated that the symbol sequence of 
the data unit dx varies with time t. From the backup 
viewpoint, the important events are changing the data units 
and taking the backups. To simplify description, we 
assume that the events mentioned can not come 
simultaneously and changing the data units and taking the 
backups are instantaneous, i.e. the duration of these events 
is equal to zero. When the data unit dx has been changed at 
the time ti, we denote this version of the data unit as dx(ti). 
This version is valid in the time interval 〈ti, tj), where tj is 
the instant of the next change of the data unit dx. The 
quantity dx(ti) can also represent a version of the data unit 
which is valid at the time ti. In our model, we assume that 
if j > i, then tj > ti. 
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We will denote the data at the instant ti as D(ti) and 
assume that these data consist of n data units d1(ti) to 
dn(ti). Then, we can formally represent the data as an array 
of n data units: 
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The basis of any arbitrary type of backup is the full 
backup. The full backup F(ti) is a record of all data units 
which were valid at the time ti, i.e.: 

 F(ti) = D(ti). (2) 

Full backups are large, because they also contain data units 
which have remained unchanged since the previous backup. 
Therefore, these backups are combined with partial 
backups, which contain only data which have been 
changed compared to some previous backup.  

Let D(tj) be the data at the instant tj and let D(ti) be 
the data at the instant ti. Denote by bx(ti, tj) the change of 
the data unit dx at the instant tj in contrast to the instant ti. 
It holds for this change:  
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The first line expresses the situation when the data unit dx 
has been deleted, the second line represents the situation 
when there has been no change in the data unit dx and the 
third line corresponds to the situation when the data unit dx 
has been either created or modified.  

Then, the partial backup P(ti, tj) is a total of changes 
of all data units within the interval (ti, tj〉:  

 [ ] .),(),( 1
n
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It generally holds that bx(ti, tj) ≠ bx(tj, ti) and therefore 
P(ti, tj) ≠ P(tj, ti). For example, when D(t1) = [d1(t1), 
d2(t1), d3(t1)] and D(t2) = [d1(t1), d2(t2), −], then P(t1, t2) 
= [0, d2(t2), −] but P(t2, t1) =  [0, d2(t1), d3(t1)]. 

When we know the data D(ti) and the partial backup 
P(ti, tj), then we can recover D(tj), i.e. data at the instant tj. 
Let us define an operation within which the data D(tj) are 
recovered from the data D(ti) and the partial backup P(ti, 
tj). We refer to this operation as a data revision. Formally, 
we define the data revision in the following way: 

 )(),()( jjii tDttPtD = , (5) 

where the revision of each data unit is given by the 
formula: 
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In the case of the first line, the backup contains the 
information that the data unit dx has been deleted in the 
course of the time interval (ti, tj〉. For this data unit, the 
result of data revision is an empty unit. In the case of the 
second line, the backup contains the information that there 
has been no change in the data unit dx in the given interval. 
For this data unit, the result of data revision is the version 
of the data unit at the instant ti. The third line corresponds 
to the situation when the backup contains the changed 
version of the data unit dx. In this case, the result of data 
revision is the changed version of the data unit.  

When it holds for the data revision in (5) that ti < tj, 
then we will speak about forward data recovery. In this 
case, we obtain by data revision a newer version, D(tj), 
from the older version, D(ti). When it holds that ti > tj, 
then we will speak about backward data recovery. In this 
case, we obtain by data revision the older version, D(tj), 
from the newer version, D(ti). For our examples of 
backups, it holds that: 
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When we do not need to distinguish between the full 
backup F(ti) and the partial backup P(tj, ti), then we will 
generally denote these backups as B(ti). 

We will classify partial backups into interval and 
atomic backups. An interval backup I(ti, tj) is a partial 
backup P(ti, tj) which contains the latest version of the 
data units that have been changed in the interval (ti, tj〉. 
This means that if any data unit is changed several times in 
the interval (ti, tj〉, then the given interval backup will 
contain only the version of the data unit which was valid at 
the instant tj. From this, it follows that we can recover the 
state of data only for the instants of taking backups. This 
type of backup is historically the oldest and these backups 
have a smaller size. 

The atomic backup is a modern method which has 
been made possible by the so-called snapshot technique 
(e.g. [8]). With this technique, when a new version of a 
data unit is written, the older version of the given data unit 
(the so-called snapshot) is retained in the repository. In the 
case of atomic backup, all snapshots are backed up and 
therefore we can recover the data into the state at an 
arbitrary instant. A drawback of this type of backup is the 
large size of the aggregate of all snapshots. Before we 
explain the atomic backups in more detail, we will first 
discuss the data recovery schemes. 
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3. Data recovery schemes 

The scheme of data recovery defines the procedure of 
data reconstruction from the backups acquired. In this 
paper, we will express data recovery schemes by a graph. 
The nodes i and j of such a graph represent the backups 
B(ti) and B(tj) and the oriented edge (i, j) expresses that we 
must first recover the data from the backup B(ti) and 
subsequently revise these data by using the data from the 
backup B(tj). We will call this relation between backups as 
a backup succession. In this case, we will call the backup 
B(ti) a reference backup and the backup B(tj) a subsequent 
backup. 

An example of the recovery scheme for five 
consecutive backups B(t1) to B(t5) is given in Fig. 1. The 
backup B(t1), i.e. node 1, is a full backup which contains 
all data at the instant t1. Simultaneously, this backup is the 
reference backup for the partial backups B(t2) and B(t4). 
These backups are reference backups for the partial 
backups B(t3) and B(t5). The interval backups B(t2), B(t3) 
and B(t5) contain changes of data units compared to the 
nearest previous backup. The interval backup B(t4) 
contains the latest version of the data units which were 
changed within the interval (t1, t4〉.  

 

3 5 

t1 t2 t3 t4 t5 

t 1 

2 4 

 
Fig. 1: An example of a recovery scheme. 

From Fig. 1, it is apparent that if we want to recover 
data at the instant t3, we must first write the full backup 
B(t1) into the main repository, then we must revise these 
data by the backup B(t2), and finally, we must still revise 
the data obtained by using the backup B(t3). 

Now, we can explain the recovery schemes more 
precisely. In this paper, we focus on the milestone, 
differential and incremental recovery schemes because 
these schemes are the most widely used. The above 
recovery schemes are associated with the full, differential 
and incremental backup strategies [9]. For our example of 
five backups, the aforesaid schemes are illustrated in Fig. 2 
to Fig. 4. Fig. 2 illustrates the milestone recovery scheme. 
This scheme consists of full backups (the so-called 
milestones) only, i.e. B(ti) = F(ti). A drawback of this 
recovery scheme is the large size of backups (a large 
capacity of backup repositories is required), but the data 

recovery is very simple. The data D(ti) are simple to 
recover by writing the full backup F(ti) into the main 
repository, i.e.:  

 D(ti) = F(ti). (7) 
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Fig. 2: An example of the milestone recovery scheme. 

Other schemes are based on a combination of the full 
backup and partials backups. We will refer to these 
schemes as reference recovery schemes. The differential 
and incremental recovery schemes are the most frequently 
used. The differential recovery scheme is illustrated in Fig. 
3. In this type of recovery scheme, the first backup B(t1) is 
the full backup and all the other backups are interval 
backups. The reference backup for each interval backup is 
the first backup. Formally, we can express this scheme as 
B(t1) = F(t1) and B(ti) = I(t1, ti) where i = 2 to 5. The 
advantage over the previous scheme is the smaller size of 
the aggregate of backups but the recovery of D(ti) for i > 1 
is more complicated. In this case, we first write the full 
backup F(t1) into the main repository at first and then we 
revise these data by the backup I(t1, ti). Formally, we can 
express the data recovery according to the differential 
recovery scheme as: 
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Fig.3: An example of the differential recovery scheme. 

Fig. 4 illustrates the incremental recovery scheme. In 
this type of recovery scheme, the first backup B(t1) is again 
the full backup and all the other backups are interval 
backups. However, the reference backup for each interval 
backup is the nearest previous backup. Formally, we can 
express this scheme as B(t1) = F(t1) and B(ti) = I(ti− 1, ti) 
where i = 2 to 5. The advantage over the two previous 
schemes is the smaller size of the aggregate of backups; 
however, the recovery of D(ti) for i > 1 is the most 
complicated on the average. This is because data from the 
backup B(t1) must be sequentially revised by all backups 
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B(t2) to B(ti). Formally, we can express the data recovery 
according to the incremental recovery scheme as: 
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Fig. 4: An example of the incremental recovery scheme. 

All the reference schemes described are forward data 
recovery schemes, i.e. we can recover the data D(tj) from 
the initial full backup F(ti), where tj > ti. By analogy, there 
are also backward data recovery schemes. In these cases, 
the reference full backup contains the newest data and the 
partial backups contain older versions of data units. If need 
be, we can return to a certain former state of the data. The 
representatives of backup systems with backward data 
recovery are some backup systems with data mirroring. 
Data mirroring (e.g. [10]) is based on that each change of 
any data unit in the main repository is practically instantly 
executed in the backup repository too. Therefore, the data 
in both repositories are identical and the backup repository 
can be used in the case of the failure of the main repository 
as a full-blown replacement of the impaired repository. 
When we back up older versions of data units, then from 
the valid data D(ti), we can restore data at the instant tj, 
where tj < ti.  

4. Atomic backup 

Now, we can return to the description of the atomic 
backup. In the case of atomic backup, when a new version 
of the data unit is written, the older version of this data unit 
(the so-called snapshot) is retained in the repository. A 
backup program looks up and backs up snapshots which 
have not been backed up yet. By using the time data, which 
are kept about each snapshot, we can arrange the versions 
of all data units according to their validity in the time. This 
sequence allows us to recover data at an arbitrary instant. 
From the backup viewpoint, we can consider each snapshot 
as an individual backup. Then we can consider the 
sequence of snapshots in time as a sequence of individual 
backups, which are organized in the incremental recovery 
scheme. Each atomic backup always contains a single 

version of a single data unit only. When the data unit dy is 
changed at the instant ti, then we can formally express the 
corresponding atomic backup A(tj, ti) as: 
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Of course, the operation of data revision also holds for 
atomic backups.   

We will illustrate the atomic backup on a scenario 
according to Table 1 and Fig. 5.  

Tab. 1: A scenario for the illustration of the atomic backup. 

ti d1(ti) d2(ti) d3(ti) Backups B 
t1 d1(t1) d2(t1) d3(t1) B(t1) = F(t1) =          

[d1(t1), d2(t1), d3(t1)] 
t2 d1(t1) d2(t2) d3(t1) B(t2) = A(t1, t2) =             

[0, d2(t2), 0] 
t3 d1(t1) d2(t2) d3(t3) B(t3) = A(t2, t3) =             

[0, 0, d3(t3)] 
t4 d1(t1) d2(t4) d3(t3) B(t4) = A(t3, t4) =             

[0, d2(t4), 0] 
t5 d1(t1) d2(t4) d3(t3) − 
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Fig. 5: An example of the atomic backup. 

In this scenario, the data consist of three data units dx, 
where x ∈ {1, 2, 3}. At the instant t1, three data units 
d1(t1), d2(t1) and d3(t1) were placed into the repository. 
The full backup F(t1) was simultaneously created from 
these versions of data units, i.e. B(t1) = F(t1) = [d1(t1), 
d2(t1), d3(t1)] (see Fig. 5). At the instant t2, the data unit 
d2 was changed from the version d2(t1) to the version 
d2(t2). At the instant t3, the data unit d3 was changed from 
the version d3(t1) to the version d3(t3) while at the instant 
t4, the data unit d2 was changed from the version d2(t2) to 
the version d2(t4). Let us suppose that a backup program is 
activated at the instant t5. At this instant, the valid data 
units are d1(t1), d2(t4) and d3(t3). Also situated in the 
repository are the snapshots d2(t1), d2(t2) and d3(t1). 
According to the time data in the metadata of snapshots, 
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the backup program can arrange these snapshots in time. 
On this basis, the backup program creates the atomic 
backups B(t2) = A(t1, t2) =  [0, d2(t2), 0],  B(t3) = A(t2, t3) 
= [0, 0, d3(t3)], and B(t4) = A(t3, t4) = [0, d2(t4), 0]. The 
snapshots can then be deleted and the backups B(t1), B(t2), 
B(t3), and B(t4) can be utilized to recover the data at an 
arbitrary instant in the interval 〈t1, t5). As regards the last 
line of Table 1 it should be noted that there was no data 
change at the instant t5 and therefore no atomic backup 
exists at this moment. If the aggregate of atomic backups 
were overly large, then we could transform the atomic 
backups into a single interval backup. In this way, we can 
reduce the total size of backups because the interval 
backup contains only the latest version of each changed 
data unit. At the same time, however, we cannot recover 
data at an arbitrary instant. We can derive the interval 
backup from atomic backups by using the data revision as 
follows: 

.),(...),(),(),( 1211 iijjjjij ttAttAttAttI −+++=   (12) 

For the above example, we can write that: 
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We see that our atomic backups contain three non-empty 
data units but the interval backup consists of two non-
empty data units only. We have reduced the size of 
backups, but now we can only recover the data at the 
instant t4.   

When we want to have the possibility of recovering 
data from the past, then we can use a combination of data 
mirroring and snapshooting. The principle is the following. 
When the data unit dx in the main repository is changed 
from the version dx(ti-1) to the version dx(ti), then this 
change is also executed in the backup repository and the 
older version dx(ti-1) is backed up as the atomic backup 
A(ti, ti-1).  

Atomic backups arranged according to time enable us 
to recover any past data. For example, when we need to 
recover the data D(tj), then we execute this recovery as:  

).,(...),(),()()( 1211 jjiiiiij ttAttAttAtDtD +−−−=   (13) 

An example of the recovery scheme which is based on 
the combination of the data mirroring and snapshooting is 
in Fig. 6 and Table 2. This example corresponds to the 
scenario from Table 1. For this recovery scheme, the valid 
data D(ti) of the backup repository are the reference full 
backup, i.e. F(ti) = D(ti). At the instant t5, it holds that 
F(t5) = [d1(t1), d2(t4), d3(t3)]. This state is simultaneously 
the state at the instant of the latest data change, i.e. at the 
instant t4. Therefore, we can write that F(t5) = D(t5) = 
D(t4) = B(t4). The backup F(t5)= B(t4) is the initial 

reference backup for the incremental recovery scheme with 
subsequent atomic backups A(t4, t3) = [0, d2(t2), 0], A(t3, 
t2) = [0, 0, d3(t1)], and A(t2, t1) =  [0, d2(t1), 0]. 

Let us note that this scheme is very similar to the 
atomic incremental scheme in Fig. 5. The difference 
between these schemes is their orientation in time. In Fig. 5, 
we see the forward incremental scheme while Fig. 6 
illustrates the backward incremental scheme. We point out 
that the backward recovery schemes need not be 
incremental atomic schemes only. As we mentioned above, 
we can derive arbitrary interval backups from atomic 
backups by using (12). This enables us to construct 
arbitrary backward interval schemes. 

Tab.2: A scenario illustrating the backward atomic backup. 

ti d1(ti) d2(ti) d3(ti) Backups B 

t1 d1(t1) d2(t1) d3(t1) − 
t2 d1(t1) d2(t2) d3(t1) B(t1) = A(t2, t1) =      

[0, d2(t1), 0] 
t3 d1(t1) d2(t2) d3(t3) B(t2) = A(t3, t2) =      

[0, 0, d3(t1)] 
t4 d1(t1) d2(t4) d3(t3) B(t3) = A(t4, t3) =      

[0, d2(t2), 0] 
t5 d1(t1) d2(t4) d3(t3) D(t5) = B(t4) =     

[d1(t1), d2(t4), d3(t3)] 
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[d1(t1), d2(t4), d3(t3)] 
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[0, 0, d3(t1)] 

[0, d2(t1), 0] 
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Fig. 6: An example of the backward atomic backup. 

Now, we summarize the terminology introduced in 
this paper. We will classify the backups as follows: 
• full, 
• partial, 
  − interval, 
  − atomic. 
We will sort the recovery schemes as follows: 
• milestone, 
• reference, 

− forward, 
− backward. 

We will classify the reference recovery schemes as 
follows: 
• differential, 
• incremental, 
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• combined. 
 
In the next section, we introduce a mathematical 

model for a quantitative evaluation of backups and 
recovery schemes.  

5. Mathematical model 

In this section, we deal with a mathematical model 
which enables us to quantify the size of different backups. 
This enables us to evaluate the properties of different data 
recovery schemes. We derive the model for the forward 
recovery schemes, but the formulas obtained are also valid 
for the backwards recovery schemes. In the model, we 
assume that all data units dx consist of the same number of 
symbols. We will call this number of symbols the size of 
the data unit and denote it by |d|. We pessimistically 
suppose that there are no empty data units in the main 
repository, i.e. all n data units always contain certain data. 
Then, for the total amount of the data |D| stored in the main 
repository, it holds that |D|= n⋅|d|. The same formula 
evidently holds for the size of the full backup: 

 .)( DtF i =  (14) 

Now, let us solve the size of partial backups. Let us 
suppose that the (i−1)-th change of the data unit dx 
occurred at the instant ti- 1 and the i-th change of this data 
unit occurred at the instant ti. Denote the time between 
these consecutive changes by ui, i.e. ui = (ti − ti- 1). In the 
model, the times ui are represented by the random variable 
U whose averaged value is Δ. We assume that this 
averaged value is the same for all data units. Then, the 
variable λ = 1/Δ represents the rate of changes of each data 
unit. We further assume that the probability distribution of 
the random variable U is an exponential distribution. The 
cumulative distribution function G of this distribution is: 

 .1)Pr()( uλeuUuG −−=≤=  (15) 

Now, we will represent mathematically the interval 
backups. To this purpose, we will use the quantities in Fig. 
7. In the Figure, the instants t1, t2, t3, and t4 are indicated. 
The instants t1 and t4 are instants at which a certain data 
unit was changed. The instants t2 and t3 are instants at 
which the data backup was executed. We note that these 
backups need not be adjacent. The quantity τ = (t3 − t2) is 
the time between these backups, the variable u = (t4 − t1) is 
the time between two consecutive changes of the data unit 
(i.e. a realization of the random variable U), and the 
quantity r = (t2 − t1) is the time between the change of the 
data unit and the following backup.   

Now, we are interested in the probability Q(τ), which 
is the probability that when the data unit has not been again 
changed until the first backup (i.e. until t2), then this data 
unit is not changed until the instant of the next observed 

backup (i.e. until t3 = t2 + τ). We can formally express this 
probability as a conditional probability: 

 .)Pr()( rUτrUτQ >+>=  (16) 
 

 
 

Fig.7: Quantities for the derivation of the mathematical model. 

The exponential distribution is a distribution without 
memory and therefore it holds (e.g. [11], p. 40):    

 .)Pr()Pr( τUrUτrU >=>+>  (17) 

It follows from (17) that when the data unit is not 
changed in the time interval r (the condition U > r), then 
the probability that this data unit does not change in the 
time interval (r + τ) is the same as the probability that this 
change does not occur in the time interval τ. Then we have: 

 

.)(1)Pr(1

)Pr()Pr()(
λτeτGτU

τUrUτrUτQ
−=−=≤−=

=>=>+>=  
 

(18) 

The complementary probability P(τ) = 1 − Q(τ) is, of 
course, a probability that the data unit is changed in the 
time interval τ. The data D consist of n data units and 
therefore the interval backup I(ti − τ, ti) on average 
consists of n⋅P(τ) changed data units. Then the average 
size |I(ti − τ, ti)| of this backup is: 

 ( ).1)(),( λτ
ii eDτPndtτtI −−⋅=⋅⋅=−  (19) 

This formula enables computing the average size of 
each subsequent interval backup B(ti) = I(ti − τ, ti), which 
is spaced the time interval τ from its reference backup B(ti 
− τ). 

Let us assume that backups are executed periodically 
with the time interval T. Then it holds that the time interval 
between two different backups τ = k⋅T, where k = 1, 2, 3, ....  

Now, let us define the quantity q: 
 .)( TλeTQq −==  (20) 

The quantity q is the probability that the data unit 
does not change in the time interval T. The quantity p = 
1−q is the probability that the data unit changes in the time 
interval T. For this quantity, it holds: 

 .11 Tλeqp −−=−=  (21) 

Then the average size of the interval backup I(ti − k⋅T, 
ti) is: 

 ( ) ( ).11),( kkTλ
ii qDeDtTktI −⋅=−⋅=⋅− −  (22) 

t1 t2 t3 t4 

t 
r τ 
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This formula enables computing the average size of 
each subsequent interval backup B(ti) = I(ti − k⋅T, ti), 
which is spaced the time interval k⋅T  from its reference 
backup B(ti − k⋅T). 

Now, we determine the total average size S of the 
aggregate of atomic backups from the time interval T. We 
have already introduced the notation according to which 
the rate of changes of each data unit is λ and the number of 
data units is n. Then, the total number of changes N = n⋅λ⋅T. 
Each such change is recorded in one atomic backup of |d| 
symbols in size. Therefore, the total average size |S(ti − T, 
ti)| of the aggregate of atomic backups from the time 
interval T is: 

.
1

1ln),(
p

DTλDTλndtTtS ii −
⋅=⋅⋅=⋅⋅⋅=−  

 

(23) 

We note that the inversion of equation (21) was used 
to express |S(ti − T, ti)| in the latest term. 

By using formulas (14), (22), and (23), we can 
quantify the average size of different types of backup. Now, 
we can quantitatively analyze the different types of 
recovery scheme. 

6. Discussion 

We will illustrate the utilization of our model on 
recovery schemes in Figs 1 to 4. The milestone scheme is 
in Fig. 2, the differential scheme in Fig. 3, the incremental 
scheme in Fig. 4, and the combined scheme in Fig. 1. We 
note that the schemes introduced are comparable since all 
these schemes consist of M = 5 backups. We will restrict 
ourselves to forward schemes only, but the results obtained, 
of course, also hold for the equivalent backward recovery 
schemes. With all interval recovery schemes, we assume 
that the backups are executed with the period T. The size 
of the data D(ti) and the backups B(ti) will be denoted 
|D(ti)| and |B(ti)|, respectively.  

For a comparison of the schemes, we will utilize two 
parameters. The first parameter is the average total backup 
size C. We compute the value of this parameter by 
summing the average sizes of all backups in the given 
scheme, i.e.: 

 
.)(

1
∑
=

=
M

i
itBC  

 

(24) 

The parameter C represents the storage space 
demands of the given recovery scheme and therefore we 
try to minimize its value. A higher value of the average 
total backup size means the backup repository has a larger 
storage capacity and therefore a higher cost too. 

The average recovery time is the next criterion for 
evaluating the recovery schemes. If we assume a constant 
rate of writing data from the backup repository into the 
main repository, then the average recovery time depends 

on the average size of backups that we must write into the 
main repository in order to recover the required data D(ti).  

However, to recover different data, i.e. D(t1) to D(tM), 
we must write into the repository the different backups of 
different sizes. For example, in the recovery scheme 
according to Fig. 1, we need to write only the full backup 
B(t1) to recover the data D(t1). However, to recover the 
data D(t5), we need to write into the repository the backups 
B(t1), B(t4), and B(t5). We will call the set of backups 
needed for recovering the data D(ti) the recovery data and 
denote their average size by Ri. Now, let us return to the 
recovery schemes. We recall that the node i represents the 
backup at the instant ti. We will call the node of a full 
backup the root. Let us denote by Vi the set of nodes in the 
path from the root to the node i. In our example, the path 
for the node 1 is given by the node 1 itself and therefore V1 
= {1}. In the case of the node 5, the path is given by the 
sequence of nodes 1-4-5 and therefore V5 = {1, 4, 5}. Then, 
for Ri it holds:   

 .)(∑
∈

=
iVk

ki tBR  (25) 

For example, according to Fig. 1, R5 = |B(t1)| + |B(t4)| 
+ |B(t5)|. By using (25), we can compute the size of the 
data for recovering any state of D(ti). We will call the 
average value of all quantities R1 to RM the average data 
recovery size and denote it by R. Formally, we can write: 
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(26) 

The average recovery time depends in direct 
proportion on the quantity R and therefore we try to 
minimize the value of R. In such a case, the data recovery 
will be the fastest on average. 

Now, we derive the formulas for C and R for all the 
schemes considered. In the case of the milestone scheme 
(Fig. 2), we see that the average total backup size equals 
the sum of the average sizes of all M = 5 full backups, i.e. 
it holds:  
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(27) 

The average sizes of the recovery data Ri are identical 
for all D(ti), where Ri = |D|. Therefore, for the average 
data recovery size R, it simply holds: 

 .DR =  (28) 

In the case of the differential recovery scheme (see 
Fig. 3), we know that B(t1) = F(t1) and B(ti) = I(t1, ti), 
where i = 2 to M. Then for the sizes of single backups, it is 
valid: 
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(29) 
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By substituting these quantities into (24), (25), and 
(26), we finally obtain: 
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and 
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(31) 

In the case of the incremental recovery scheme (see 
Fig. 4), we know that B(t1) = F(t1) and B(ti) = I(ti− 1, ti), 
where i = 2 to M. Then for the sizes of single backups, it is 
valid:   
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(32) 

By substituting these quantities into (24), (25), and 
(26), we finally obtain: 

 ( )[ ]qMMDC ⋅−−⋅= 1  (33) 

and 
 ( )[ ].11

2
qMM

D
R ⋅−−+⋅=  

 

(34) 

For comparison, we additionally derive the quantities 
C and R for the combined recovery scheme in Fig. 1. The 
first backup is full, i.e. |B(t1)|= |D|. The second, third and 
fifth backups are spaced one time interval T from their 
reference backups and therefore we can write that |B(t2)| = 
|B(t3)| = |B(t5)| = |D|⋅(1 − q). The fourth backup is spaced 
the time interval 3⋅T from its reference backup and 
therefore |B(t4)| = |D| ⋅ (1 − q3). By substituting these 
quantities into (24), (25), and (26), we obtain: 

 ( )335 qqDC −⋅−⋅=  (35) 

and 
 ( ).2411

5
3qq

D
R ⋅−⋅−⋅=  

 

(36) 

To compare C and R for the schemes considered, we 
utilize the functions C = f(p) and R = g(p), where  p is the 
probability that the data unit is changed in the time interval 
T. The graphs of functions C = f(p) in the multiples of the 
quantity |D| are in Fig. 8 for the all schemes considered. In 
the case of the milestone recovery scheme, the value of C 
is the constant 5⋅|D| or generally M⋅|D|.  

Now, let us analyze the reference recovery schemes. 
For p = 0, we can see that C = |D| for all reference schemes. 
This is due to the fact that there are no changes in the data 
units. All subsequent backups are empty and the value C = 
|D| is given by the first (i.e. full) backup. The second 
common extreme of all reference schemes is the value of C 
when the rate of data unit changes λ → ∞. In this case, all 
data units are always changed within the interval T and 

therefore the probability p = 1. Then, the total average size 
C of backups equals the value M⋅|D|, i.e. the storage space 
demands of all reference schemes are identical with those 
of the milestone scheme. 
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   Fig. 8: The dependence of the average total backup size 

C on the probability p for different recovery schemes. 
 
When we compare all schemes, we can see that there 

are two extremes. The first extreme is the milestone 
recovery scheme. For all p ∈ (0, 1), this scheme has the 
highest demands on the storage capacity of the backup 
repository. The second extreme is the incremental recovery 
scheme where, by contrast, these storage space demands 
are the lowest. Then, we can take the storage space 
demands of the milestone recovery scheme as an upper 
bound: 

 MDC ⋅=max  (37) 

and the storage space demands of the incremental recovery 
scheme as a lower bound: 

 ( )[ ]11min +⋅−⋅= pMDC  (38) 

The storage space demands of the other schemes are 
between these bounds. 

Fig. 9 illustrates the functions R = g(p), i.e. the 
dependence of the average data recovery size R on the 
probability p. We can see that the lower bound of R is 
given by the milestone recovery scheme: 

 .min DR =  (39) 

By contrast, the upper bound of R is given by the 
incremental recovery scheme: 
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(40) 

From the two figures above, we can see that the 
milestone and incremental recovery schemes are boundary 
cases for both the quantity C and the quantity R. The 
milestone recovery scheme is the worst scheme from the 
viewpoint of storage space demands, but the best scheme 
from the viewpoint of the recovery time. In the case of the 
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incremental recovery scheme, the exact opposite holds. 
Then, we can take the differential scheme and combined 
recovery schemes as a compromise between the two 
extremes above. 
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Fig. 9: The dependence of the average data recovery size R on the 

probability p for different recovery schemes. 

The last thing in this discussion is comparing the sizes 
of the interval and atomic backups. From (22), we know 
that the average size |I| of the interval backup within the 
time interval T is: 

 .)1(),( pDqDtTtI ii ⋅=−⋅=−  (41) 

From (23), we know that the total average size |S| of 
all atomic backups from the time interval T is: 
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(42) 

 Fig. 10 illustrates the dependence of |S| and |I| on the 
probability p. We can easily prove that it holds that |S(ti − 
T, ti)|/|I(ti − T, ti)|, i.e. the average size |I| of the interval 
backup within the time interval T is not greater than the 
total average size |S| of all atomic backups within the same 
time interval T. This is due to that the aggregate of atomic 
backups contains all versions of data units and not only the 
latest versions. 
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Fig. 10: Dependence of |S| and |I| on the probability p. 

From the Figure, we can see that the differences 
between |S| and |I|  are not significant for small values of p. 
However, these differences are definitely significant for 
greater values of p. For example, the ratio |S| / |I| equals 
approximately 1.4 for p = 0.5. Then, in the case of the 
atomic backup, we need a backup repository with a 
capacity which is 40 percent greater than in the case of the 
interval backup. In the case of p ≈ 0.8, the ratio |S| / |I| 
equals 2, i.e. we need a backup repository with a capacity 
which is two times greater than in the case of the interval 
backup. The advantage of the atomic backup, i.e. the 
possibility of recovering the data at any time instant, is 
paid for by increased requirements for the storage capacity 
of the backup repository.  

7. Conclusion 

In the paper, the terminology and mathematical 
apparatus for data backup and recovery is extended. The 
core of the paper is a mathematical model of the data 
backup and recovery. The mathematical model enables us 
to compute the average size of an arbitrary backup (eq. 21 
and 22) from the probability p that the data unit is changed 
in the time interval T. It enables us to determine the 
average total backup size C (eq. 24) for any recovery 
scheme and also the average data recovery size R (eq. 26). 
The model proposed allows us to compare different 
recovery schemes (e.g. Fig. 8 and 9) and extends the 
theory of the data backup and recovery. The model also 
allows us to compare interval and atomic backups (see eq. 
22, 23 and Fig. 10). 

The model introduced is based on the assumptions 
that the probability p is the same for all data units and that 
the data unit change is an event which has no influence on 
the changes of other data units, i.e. these changes are 
mutually independent events. Further assumptions are that 
the total size of the data is constant and that no data unit is 
empty. The assumptions introduced are not general and 
therefore our next goal is to create a more general model. 
In any case, however, the model described is suitable for 
theoretic purposes at least. 
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