
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

16

Manuscript received July 5, 2014
Manuscript revised July 20, 2014

Mathematical Model of Data Backup and Recovery

Karel Burda

The Faculty of Electrical Engineering and Communication
Brno University of Technology, Brno, Czech Republic

Summary
The data backup and data recovery are well established
disciplines within the computer science already. Despite this fact,
however, there is currently no sufficiently general mathematical
model for quantification of backup strategies. In this paper, such
mathematical model is derived. The model introduced is based
on the assumption that the total size of the data is constant. Using
this model, we can quantitatively evaluate the properties of
different types of backup strategies. For the full, differential and
incremental backup strategies, formulae are derived for the
calculation of the average total backup size and the average data
recovery size in dependence on the probability of the change of
data units. The quantitative relations obtained are discussed.
Key words:
Data backup, data recovery, mathematical model.

1. Introduction

Data are one of the most valuable assets of persons
and organizations. However, we can lose these data due to
technical failures, human errors, etc. This is the reason why
data are copied into backup data repositories (so-called
data backup) in order to have the possibility of
reconstructing these data when the data are lost in the main
data repository (so-called data recovery).

With regard to mathematical models of backup
processes, A. Frisch states that “studies performing
numerical and quantitative modeling backup processes are
surprisingly rare” (see [1], p. 234). The models published
so far allow only computations of full and incremental
backups (e.g. [2], p. 4) and the quantification of the
Amanda backup scheme ([3], p. 745-750 or [1], p. 225-
229). Z. Kurmas and L. Chervenak have published a
comparison of some backup strategies [4], however, their
evaluation of backup strategies is based on simulations and
therefore no analytic results are presented in this paper.
Other research papers are oriented on backup frequency
and timing (e.g. [5] or [6]) and also do not provide any
suitable results for the evaluation of general backup
strategies. Therefore, we can state that there is currently no
sufficiently general mathematical model for quantification
of data backup and recovery, despite the great importance
of both of these procedures. This paper introduces a
mathematical model of data backup which allows a
quantitative comparison of different backup methods.

In the next section, the basic terms are formulated and
the process of data backup and recovery is formalized. The
third section is dedicated to the schemes of data recovery
and the fourth section deals with the atomic backup
(backups based on snapshots of data units). In the fifth
section, a mathematical model for the quantification of
backups is derived and in the sixth section, this model is
applied to different data backup methods and the results
obtained are discussed.

2. Data backup formalization

The terminology of the data backup is not unified and
many authors “are using the basic terms in different and
often conflicting ways” [7]. Therefore, we specify and
formalize basic terms at first.

 Data D are a structure of symbols, which represents
some information. In the data repository, these data are
arranged into certain elementary (i.e. further indivisible)
sequences of symbols (e.g. sectors of the hard disk). We
refer to an elementary sequence d of symbols as a data unit
and denote the x-th data unit as dx. In the course of time,
the data unit dx can correspond to different sequences of
symbols, which we call versions of the data unit dx. The
data unit dx, which does not represent any information, is
the so-called empty data unit. We will formally denote
such a data unit as dx = −. The model is based on the
assumption that the total size of the data D is constant and
that the size of the metadata (overhead of data units) is
negligible.

We have already stated that the symbol sequence of
the data unit dx varies with time t. From the backup
viewpoint, the important events are changing the data units
and taking the backups. To simplify description, we
assume that the events mentioned can not come
simultaneously and changing the data units and taking the
backups are instantaneous, i.e. the duration of these events
is equal to zero. When the data unit dx has been changed at
the time ti, we denote this version of the data unit as dx(ti).
This version is valid in the time interval 〈ti, tj), where tj is
the instant of the next change of the data unit dx. The
quantity dx(ti) can also represent a version of the data unit
which is valid at the time ti. In our model, we assume that
if j > i, then tj > ti.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

17

We will denote the data at the instant ti as D(ti) and
assume that these data consist of n data units d1(ti) to
dn(ti). Then, we can formally represent the data as an array
of n data units:

 [] [] .)()(,),(),()(121
n
xixiniii tdtdtdtdtD ===  (1)

The basis of any arbitrary type of backup is the full
backup. The full backup F(ti) is a record of all data units
which were valid at the time ti, i.e.:

 F(ti) = D(ti). (2)

Full backups are large, because they also contain data units
which have remained unchanged since the previous backup.
Therefore, these backups are combined with partial
backups, which contain only data which have been
changed compared to some previous backup.

Let D(tj) be the data at the instant tj and let D(ti) be
the data at the instant ti. Denote by bx(ti, tj) the change of
the data unit dx at the instant tj in contrast to the instant ti.
It holds for this change:









=
−

=

otherwise.),(
,)()(when,0

,deleted been has when,
),(

jx

jxix

x

jix

td
tdtd

d
ttb

(3)

The first line expresses the situation when the data unit dx
has been deleted, the second line represents the situation
when there has been no change in the data unit dx and the
third line corresponds to the situation when the data unit dx
has been either created or modified.

Then, the partial backup P(ti, tj) is a total of changes
of all data units within the interval (ti, tj〉:

 [] .),(),(1
n
xjixji ttbttP == (4)

It generally holds that bx(ti, tj) ≠ bx(tj, ti) and therefore
P(ti, tj) ≠ P(tj, ti). For example, when D(t1) = [d1(t1),
d2(t1), d3(t1)] and D(t2) = [d1(t1), d2(t2), −], then P(t1, t2)
= [0, d2(t2), −] but P(t2, t1) = [0, d2(t1), d3(t1)].

When we know the data D(ti) and the partial backup
P(ti, tj), then we can recover D(tj), i.e. data at the instant tj.
Let us define an operation within which the data D(tj) are
recovered from the data D(ti) and the partial backup P(ti,
tj). We refer to this operation as a data revision. Formally,
we define the data revision in the following way:

)(),()(jjii tDttPtD = , (5)

where the revision of each data unit is given by the
formula:









=

−=−

=

==

otherwise.),,(
,0),(when),(

,),(when,

),()()(

jix

jixix

jix

jixixjx

ttb
ttbtd

ttb

ttbtdtd 

(6)

In the case of the first line, the backup contains the
information that the data unit dx has been deleted in the
course of the time interval (ti, tj〉. For this data unit, the
result of data revision is an empty unit. In the case of the
second line, the backup contains the information that there
has been no change in the data unit dx in the given interval.
For this data unit, the result of data revision is the version
of the data unit at the instant ti. The third line corresponds
to the situation when the backup contains the changed
version of the data unit dx. In this case, the result of data
revision is the changed version of the data unit.

When it holds for the data revision in (5) that ti < tj,
then we will speak about forward data recovery. In this
case, we obtain by data revision a newer version, D(tj),
from the older version, D(ti). When it holds that ti > tj,
then we will speak about backward data recovery. In this
case, we obtain by data revision the older version, D(tj),
from the newer version, D(ti). For our examples of
backups, it holds that:

[] []
[] []−=−=

=−==
),(),()(),()(,0)(

),(,0)(),(),(),()()(

221113221211

221312112112

tdtdtdtdtdtd
tdtdtdtdttPtDtD





and
[] []

[] [].)(),(),()(),()(,0)(
)(),(,0),(),(),()()(

13121113122211

131222111221

tdtdtdtdtdtdtd
tdtdtdtdttPtDtD

=−=
=−==





When we do not need to distinguish between the full
backup F(ti) and the partial backup P(tj, ti), then we will
generally denote these backups as B(ti).

We will classify partial backups into interval and
atomic backups. An interval backup I(ti, tj) is a partial
backup P(ti, tj) which contains the latest version of the
data units that have been changed in the interval (ti, tj〉.
This means that if any data unit is changed several times in
the interval (ti, tj〉, then the given interval backup will
contain only the version of the data unit which was valid at
the instant tj. From this, it follows that we can recover the
state of data only for the instants of taking backups. This
type of backup is historically the oldest and these backups
have a smaller size.

The atomic backup is a modern method which has
been made possible by the so-called snapshot technique
(e.g. [8]). With this technique, when a new version of a
data unit is written, the older version of the given data unit
(the so-called snapshot) is retained in the repository. In the
case of atomic backup, all snapshots are backed up and
therefore we can recover the data into the state at an
arbitrary instant. A drawback of this type of backup is the
large size of the aggregate of all snapshots. Before we
explain the atomic backups in more detail, we will first
discuss the data recovery schemes.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

18

3. Data recovery schemes

The scheme of data recovery defines the procedure of
data reconstruction from the backups acquired. In this
paper, we will express data recovery schemes by a graph.
The nodes i and j of such a graph represent the backups
B(ti) and B(tj) and the oriented edge (i, j) expresses that we
must first recover the data from the backup B(ti) and
subsequently revise these data by using the data from the
backup B(tj). We will call this relation between backups as
a backup succession. In this case, we will call the backup
B(ti) a reference backup and the backup B(tj) a subsequent
backup.

An example of the recovery scheme for five
consecutive backups B(t1) to B(t5) is given in Fig. 1. The
backup B(t1), i.e. node 1, is a full backup which contains
all data at the instant t1. Simultaneously, this backup is the
reference backup for the partial backups B(t2) and B(t4).
These backups are reference backups for the partial
backups B(t3) and B(t5). The interval backups B(t2), B(t3)
and B(t5) contain changes of data units compared to the
nearest previous backup. The interval backup B(t4)
contains the latest version of the data units which were
changed within the interval (t1, t4〉.

3 5

t1 t2 t3 t4 t5

t 1

2 4

Fig. 1: An example of a recovery scheme.

From Fig. 1, it is apparent that if we want to recover
data at the instant t3, we must first write the full backup
B(t1) into the main repository, then we must revise these
data by the backup B(t2), and finally, we must still revise
the data obtained by using the backup B(t3).

Now, we can explain the recovery schemes more
precisely. In this paper, we focus on the milestone,
differential and incremental recovery schemes because
these schemes are the most widely used. The above
recovery schemes are associated with the full, differential
and incremental backup strategies [9]. For our example of
five backups, the aforesaid schemes are illustrated in Fig. 2
to Fig. 4. Fig. 2 illustrates the milestone recovery scheme.
This scheme consists of full backups (the so-called
milestones) only, i.e. B(ti) = F(ti). A drawback of this
recovery scheme is the large size of backups (a large
capacity of backup repositories is required), but the data

recovery is very simple. The data D(ti) are simple to
recover by writing the full backup F(ti) into the main
repository, i.e.:

 D(ti) = F(ti). (7)

1 2 3 4 5

t1 t2 t3 t4 t5

t

Fig. 2: An example of the milestone recovery scheme.

Other schemes are based on a combination of the full
backup and partials backups. We will refer to these
schemes as reference recovery schemes. The differential
and incremental recovery schemes are the most frequently
used. The differential recovery scheme is illustrated in Fig.
3. In this type of recovery scheme, the first backup B(t1) is
the full backup and all the other backups are interval
backups. The reference backup for each interval backup is
the first backup. Formally, we can express this scheme as
B(t1) = F(t1) and B(ti) = I(t1, ti) where i = 2 to 5. The
advantage over the previous scheme is the smaller size of
the aggregate of backups but the recovery of D(ti) for i > 1
is more complicated. In this case, we first write the full
backup F(t1) into the main repository at first and then we
revise these data by the backup I(t1, ti). Formally, we can
express the data recovery according to the differential
recovery scheme as:



 =

=
otherwise.),,()(

,1for),(
)(

11

1

i
i ttItF

itF
tD



(8)

2 3 4 5

t1 t2 t3 t4 t5

t 1

Fig.3: An example of the differential recovery scheme.

Fig. 4 illustrates the incremental recovery scheme. In
this type of recovery scheme, the first backup B(t1) is again
the full backup and all the other backups are interval
backups. However, the reference backup for each interval
backup is the nearest previous backup. Formally, we can
express this scheme as B(t1) = F(t1) and B(ti) = I(ti− 1, ti)
where i = 2 to 5. The advantage over the two previous
schemes is the smaller size of the aggregate of backups;
however, the recovery of D(ti) for i > 1 is the most
complicated on the average. This is because data from the
backup B(t1) must be sequentially revised by all backups

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

19

B(t2) to B(ti). Formally, we can express the data recovery
according to the incremental recovery scheme as:



 =

=
− otherwise.),,(...),()(

,1for),(
)(

1211

1

ii
i ttIttItF

itF
tD



(9)

1

2

3

4

5

t1 t2 t3 t4 t5

t

Fig. 4: An example of the incremental recovery scheme.

All the reference schemes described are forward data
recovery schemes, i.e. we can recover the data D(tj) from
the initial full backup F(ti), where tj > ti. By analogy, there
are also backward data recovery schemes. In these cases,
the reference full backup contains the newest data and the
partial backups contain older versions of data units. If need
be, we can return to a certain former state of the data. The
representatives of backup systems with backward data
recovery are some backup systems with data mirroring.
Data mirroring (e.g. [10]) is based on that each change of
any data unit in the main repository is practically instantly
executed in the backup repository too. Therefore, the data
in both repositories are identical and the backup repository
can be used in the case of the failure of the main repository
as a full-blown replacement of the impaired repository.
When we back up older versions of data units, then from
the valid data D(ti), we can restore data at the instant tj,
where tj < ti.

4. Atomic backup

Now, we can return to the description of the atomic
backup. In the case of atomic backup, when a new version
of the data unit is written, the older version of this data unit
(the so-called snapshot) is retained in the repository. A
backup program looks up and backs up snapshots which
have not been backed up yet. By using the time data, which
are kept about each snapshot, we can arrange the versions
of all data units according to their validity in the time. This
sequence allows us to recover data at an arbitrary instant.
From the backup viewpoint, we can consider each snapshot
as an individual backup. Then we can consider the
sequence of snapshots in time as a sequence of individual
backups, which are organized in the incremental recovery
scheme. Each atomic backup always contains a single

version of a single data unit only. When the data unit dy is
changed at the instant ti, then we can formally express the
corresponding atomic backup A(tj, ti) as:

 [] ,),(),(1
n
xijxij ttbttA == (10)

where



 =

=
otherwise.,0

,for),(
),(

yxtd
ttb iy
ijx

(11)

Of course, the operation of data revision also holds for
atomic backups.

We will illustrate the atomic backup on a scenario
according to Table 1 and Fig. 5.

Tab. 1: A scenario for the illustration of the atomic backup.

ti d1(ti) d2(ti) d3(ti) Backups B
t1 d1(t1) d2(t1) d3(t1) B(t1) = F(t1) =

[d1(t1), d2(t1), d3(t1)]
t2 d1(t1) d2(t2) d3(t1) B(t2) = A(t1, t2) =

[0, d2(t2), 0]
t3 d1(t1) d2(t2) d3(t3) B(t3) = A(t2, t3) =

[0, 0, d3(t3)]
t4 d1(t1) d2(t4) d3(t3) B(t4) = A(t3, t4) =

[0, d2(t4), 0]
t5 d1(t1) d2(t4) d3(t3) −

1

2

3

4

t1 t2 t3 t4 t5

t [d1(t1), d2(t1), d3(t1)]

[0, d2(t2), 0]

[0, 0, d3(t3)]

[0, d2(t4), 0]

Fig. 5: An example of the atomic backup.

In this scenario, the data consist of three data units dx,
where x ∈ {1, 2, 3}. At the instant t1, three data units
d1(t1), d2(t1) and d3(t1) were placed into the repository.
The full backup F(t1) was simultaneously created from
these versions of data units, i.e. B(t1) = F(t1) = [d1(t1),
d2(t1), d3(t1)] (see Fig. 5). At the instant t2, the data unit
d2 was changed from the version d2(t1) to the version
d2(t2). At the instant t3, the data unit d3 was changed from
the version d3(t1) to the version d3(t3) while at the instant
t4, the data unit d2 was changed from the version d2(t2) to
the version d2(t4). Let us suppose that a backup program is
activated at the instant t5. At this instant, the valid data
units are d1(t1), d2(t4) and d3(t3). Also situated in the
repository are the snapshots d2(t1), d2(t2) and d3(t1).
According to the time data in the metadata of snapshots,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

20

the backup program can arrange these snapshots in time.
On this basis, the backup program creates the atomic
backups B(t2) = A(t1, t2) = [0, d2(t2), 0], B(t3) = A(t2, t3)
= [0, 0, d3(t3)], and B(t4) = A(t3, t4) = [0, d2(t4), 0]. The
snapshots can then be deleted and the backups B(t1), B(t2),
B(t3), and B(t4) can be utilized to recover the data at an
arbitrary instant in the interval 〈t1, t5). As regards the last
line of Table 1 it should be noted that there was no data
change at the instant t5 and therefore no atomic backup
exists at this moment. If the aggregate of atomic backups
were overly large, then we could transform the atomic
backups into a single interval backup. In this way, we can
reduce the total size of backups because the interval
backup contains only the latest version of each changed
data unit. At the same time, however, we cannot recover
data at an arbitrary instant. We can derive the interval
backup from atomic backups by using the data revision as
follows:

.),(...),(),(),(1211 iijjjjij ttAttAttAttI −+++=  (12)

For the above example, we can write that:

[] [] []
[]
[])(),(,0

0)(0),(0)(,000
0),(,0)(,0,00),(,0

),(),(),(),(

3342

334222

423322

43322141

tdtd
tdtdtd

tdtdtd
ttAttAttAttI

=
==

==
==







We see that our atomic backups contain three non-empty
data units but the interval backup consists of two non-
empty data units only. We have reduced the size of
backups, but now we can only recover the data at the
instant t4.

When we want to have the possibility of recovering
data from the past, then we can use a combination of data
mirroring and snapshooting. The principle is the following.
When the data unit dx in the main repository is changed
from the version dx(ti-1) to the version dx(ti), then this
change is also executed in the backup repository and the
older version dx(ti-1) is backed up as the atomic backup
A(ti, ti-1).

Atomic backups arranged according to time enable us
to recover any past data. For example, when we need to
recover the data D(tj), then we execute this recovery as:

).,(...),(),()()(1211 jjiiiiij ttAttAttAtDtD +−−−=  (13)

An example of the recovery scheme which is based on
the combination of the data mirroring and snapshooting is
in Fig. 6 and Table 2. This example corresponds to the
scenario from Table 1. For this recovery scheme, the valid
data D(ti) of the backup repository are the reference full
backup, i.e. F(ti) = D(ti). At the instant t5, it holds that
F(t5) = [d1(t1), d2(t4), d3(t3)]. This state is simultaneously
the state at the instant of the latest data change, i.e. at the
instant t4. Therefore, we can write that F(t5) = D(t5) =
D(t4) = B(t4). The backup F(t5)= B(t4) is the initial

reference backup for the incremental recovery scheme with
subsequent atomic backups A(t4, t3) = [0, d2(t2), 0], A(t3,
t2) = [0, 0, d3(t1)], and A(t2, t1) = [0, d2(t1), 0].

Let us note that this scheme is very similar to the
atomic incremental scheme in Fig. 5. The difference
between these schemes is their orientation in time. In Fig. 5,
we see the forward incremental scheme while Fig. 6
illustrates the backward incremental scheme. We point out
that the backward recovery schemes need not be
incremental atomic schemes only. As we mentioned above,
we can derive arbitrary interval backups from atomic
backups by using (12). This enables us to construct
arbitrary backward interval schemes.

Tab.2: A scenario illustrating the backward atomic backup.

ti d1(ti) d2(ti) d3(ti) Backups B

t1 d1(t1) d2(t1) d3(t1) −
t2 d1(t1) d2(t2) d3(t1) B(t1) = A(t2, t1) =

[0, d2(t1), 0]
t3 d1(t1) d2(t2) d3(t3) B(t2) = A(t3, t2) =

[0, 0, d3(t1)]
t4 d1(t1) d2(t4) d3(t3) B(t3) = A(t4, t3) =

[0, d2(t2), 0]
t5 d1(t1) d2(t4) d3(t3) D(t5) = B(t4) =

[d1(t1), d2(t4), d3(t3)]

1

2

3

t1 t2 t3 t4 t5

t
[d1(t1), d2(t4), d3(t3)]

[0, d2(t2), 0]

[0, 0, d3(t1)]

[0, d2(t1), 0]

4

Fig. 6: An example of the backward atomic backup.

Now, we summarize the terminology introduced in
this paper. We will classify the backups as follows:
• full,
• partial,
 − interval,
 − atomic.
We will sort the recovery schemes as follows:
• milestone,
• reference,

− forward,
− backward.

We will classify the reference recovery schemes as
follows:
• differential,
• incremental,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

21

• combined.

In the next section, we introduce a mathematical

model for a quantitative evaluation of backups and
recovery schemes.

5. Mathematical model

In this section, we deal with a mathematical model
which enables us to quantify the size of different backups.
This enables us to evaluate the properties of different data
recovery schemes. We derive the model for the forward
recovery schemes, but the formulas obtained are also valid
for the backwards recovery schemes. In the model, we
assume that all data units dx consist of the same number of
symbols. We will call this number of symbols the size of
the data unit and denote it by |d|. We pessimistically
suppose that there are no empty data units in the main
repository, i.e. all n data units always contain certain data.
Then, for the total amount of the data |D| stored in the main
repository, it holds that |D|= n⋅|d|. The same formula
evidently holds for the size of the full backup:

 .)(DtF i = (14)

Now, let us solve the size of partial backups. Let us
suppose that the (i−1)-th change of the data unit dx
occurred at the instant ti- 1 and the i-th change of this data
unit occurred at the instant ti. Denote the time between
these consecutive changes by ui, i.e. ui = (ti − ti- 1). In the
model, the times ui are represented by the random variable
U whose averaged value is Δ. We assume that this
averaged value is the same for all data units. Then, the
variable λ = 1/Δ represents the rate of changes of each data
unit. We further assume that the probability distribution of
the random variable U is an exponential distribution. The
cumulative distribution function G of this distribution is:

 .1)Pr()(uλeuUuG −−=≤= (15)

Now, we will represent mathematically the interval
backups. To this purpose, we will use the quantities in Fig.
7. In the Figure, the instants t1, t2, t3, and t4 are indicated.
The instants t1 and t4 are instants at which a certain data
unit was changed. The instants t2 and t3 are instants at
which the data backup was executed. We note that these
backups need not be adjacent. The quantity τ = (t3 − t2) is
the time between these backups, the variable u = (t4 − t1) is
the time between two consecutive changes of the data unit
(i.e. a realization of the random variable U), and the
quantity r = (t2 − t1) is the time between the change of the
data unit and the following backup.

Now, we are interested in the probability Q(τ), which
is the probability that when the data unit has not been again
changed until the first backup (i.e. until t2), then this data
unit is not changed until the instant of the next observed

backup (i.e. until t3 = t2 + τ). We can formally express this
probability as a conditional probability:

 .)Pr()(rUτrUτQ >+>= (16)

Fig.7: Quantities for the derivation of the mathematical model.

The exponential distribution is a distribution without
memory and therefore it holds (e.g. [11], p. 40):

 .)Pr()Pr(τUrUτrU >=>+> (17)

It follows from (17) that when the data unit is not
changed in the time interval r (the condition U > r), then
the probability that this data unit does not change in the
time interval (r + τ) is the same as the probability that this
change does not occur in the time interval τ. Then we have:

.)(1)Pr(1

)Pr()Pr()(
λτeτGτU

τUrUτrUτQ
−=−=≤−=

=>=>+>=

(18)

The complementary probability P(τ) = 1 − Q(τ) is, of
course, a probability that the data unit is changed in the
time interval τ. The data D consist of n data units and
therefore the interval backup I(ti − τ, ti) on average
consists of n⋅P(τ) changed data units. Then the average
size |I(ti − τ, ti)| of this backup is:

 ().1)(),(λτ
ii eDτPndtτtI −−⋅=⋅⋅=− (19)

This formula enables computing the average size of
each subsequent interval backup B(ti) = I(ti − τ, ti), which
is spaced the time interval τ from its reference backup B(ti
− τ).

Let us assume that backups are executed periodically
with the time interval T. Then it holds that the time interval
between two different backups τ = k⋅T, where k = 1, 2, 3,

Now, let us define the quantity q:
 .)(TλeTQq −== (20)

The quantity q is the probability that the data unit
does not change in the time interval T. The quantity p =
1−q is the probability that the data unit changes in the time
interval T. For this quantity, it holds:

 .11 Tλeqp −−=−= (21)

Then the average size of the interval backup I(ti − k⋅T,
ti) is:

 () ().11),(kkTλ
ii qDeDtTktI −⋅=−⋅=⋅− − (22)

t1 t2 t3 t4

t
r τ

u

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

22

This formula enables computing the average size of
each subsequent interval backup B(ti) = I(ti − k⋅T, ti),
which is spaced the time interval k⋅T from its reference
backup B(ti − k⋅T).

Now, we determine the total average size S of the
aggregate of atomic backups from the time interval T. We
have already introduced the notation according to which
the rate of changes of each data unit is λ and the number of
data units is n. Then, the total number of changes N = n⋅λ⋅T.
Each such change is recorded in one atomic backup of |d|
symbols in size. Therefore, the total average size |S(ti − T,
ti)| of the aggregate of atomic backups from the time
interval T is:

.
1

1ln),(
p

DTλDTλndtTtS ii −
⋅=⋅⋅=⋅⋅⋅=−

(23)

We note that the inversion of equation (21) was used
to express |S(ti − T, ti)| in the latest term.

By using formulas (14), (22), and (23), we can
quantify the average size of different types of backup. Now,
we can quantitatively analyze the different types of
recovery scheme.

6. Discussion

We will illustrate the utilization of our model on
recovery schemes in Figs 1 to 4. The milestone scheme is
in Fig. 2, the differential scheme in Fig. 3, the incremental
scheme in Fig. 4, and the combined scheme in Fig. 1. We
note that the schemes introduced are comparable since all
these schemes consist of M = 5 backups. We will restrict
ourselves to forward schemes only, but the results obtained,
of course, also hold for the equivalent backward recovery
schemes. With all interval recovery schemes, we assume
that the backups are executed with the period T. The size
of the data D(ti) and the backups B(ti) will be denoted
|D(ti)| and |B(ti)|, respectively.

For a comparison of the schemes, we will utilize two
parameters. The first parameter is the average total backup
size C. We compute the value of this parameter by
summing the average sizes of all backups in the given
scheme, i.e.:

.)(

1
∑
=

=
M

i
itBC

(24)

The parameter C represents the storage space
demands of the given recovery scheme and therefore we
try to minimize its value. A higher value of the average
total backup size means the backup repository has a larger
storage capacity and therefore a higher cost too.

The average recovery time is the next criterion for
evaluating the recovery schemes. If we assume a constant
rate of writing data from the backup repository into the
main repository, then the average recovery time depends

on the average size of backups that we must write into the
main repository in order to recover the required data D(ti).

However, to recover different data, i.e. D(t1) to D(tM),
we must write into the repository the different backups of
different sizes. For example, in the recovery scheme
according to Fig. 1, we need to write only the full backup
B(t1) to recover the data D(t1). However, to recover the
data D(t5), we need to write into the repository the backups
B(t1), B(t4), and B(t5). We will call the set of backups
needed for recovering the data D(ti) the recovery data and
denote their average size by Ri. Now, let us return to the
recovery schemes. We recall that the node i represents the
backup at the instant ti. We will call the node of a full
backup the root. Let us denote by Vi the set of nodes in the
path from the root to the node i. In our example, the path
for the node 1 is given by the node 1 itself and therefore V1
= {1}. In the case of the node 5, the path is given by the
sequence of nodes 1-4-5 and therefore V5 = {1, 4, 5}. Then,
for Ri it holds:

 .)(∑
∈

=
iVk

ki tBR (25)

For example, according to Fig. 1, R5 = |B(t1)| + |B(t4)|
+ |B(t5)|. By using (25), we can compute the size of the
data for recovering any state of D(ti). We will call the
average value of all quantities R1 to RM the average data
recovery size and denote it by R. Formally, we can write:

.1

1
∑
=

⋅=
M

i
iR

M
R

(26)

The average recovery time depends in direct
proportion on the quantity R and therefore we try to
minimize the value of R. In such a case, the data recovery
will be the fastest on average.

Now, we derive the formulas for C and R for all the
schemes considered. In the case of the milestone scheme
(Fig. 2), we see that the average total backup size equals
the sum of the average sizes of all M = 5 full backups, i.e.
it holds:

.)(

1
MDtFC

M

i
i ⋅== ∑

=

(27)

The average sizes of the recovery data Ri are identical
for all D(ti), where Ri = |D|. Therefore, for the average
data recovery size R, it simply holds:

 .DR = (28)

In the case of the differential recovery scheme (see
Fig. 3), we know that B(t1) = F(t1) and B(ti) = I(t1, ti),
where i = 2 to M. Then for the sizes of single backups, it is
valid:







=−⋅=

==
=

− .,...3,2),1(),(

,1,)(
)(

1
1

1

MiqDttI

iDtF
tB

i
i

i

(29)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

23

By substituting these quantities into (24), (25), and
(26), we finally obtain:









−
−

−⋅=
q

qqMDC
M

1

(30)

and

.
1

12 







−
−

−−⋅⋅=
q

qqM
M
D

R
M

(31)

In the case of the incremental recovery scheme (see
Fig. 4), we know that B(t1) = F(t1) and B(ti) = I(ti− 1, ti),
where i = 2 to M. Then for the sizes of single backups, it is
valid:







=−⋅=

==
=

− .,...3,2),1(),(

,1,)(
)(

1

1

MiqDttI

iDtF
tB

ii
i

(32)

By substituting these quantities into (24), (25), and
(26), we finally obtain:

 ()[]qMMDC ⋅−−⋅= 1 (33)

and
 ()[].11

2
qMM

D
R ⋅−−+⋅=

(34)

For comparison, we additionally derive the quantities
C and R for the combined recovery scheme in Fig. 1. The
first backup is full, i.e. |B(t1)|= |D|. The second, third and
fifth backups are spaced one time interval T from their
reference backups and therefore we can write that |B(t2)| =
|B(t3)| = |B(t5)| = |D|⋅(1 − q). The fourth backup is spaced
the time interval 3⋅T from its reference backup and
therefore |B(t4)| = |D| ⋅ (1 − q3). By substituting these
quantities into (24), (25), and (26), we obtain:

 ()335 qqDC −⋅−⋅= (35)

and
 ().2411

5
3qq

D
R ⋅−⋅−⋅=

(36)

To compare C and R for the schemes considered, we
utilize the functions C = f(p) and R = g(p), where p is the
probability that the data unit is changed in the time interval
T. The graphs of functions C = f(p) in the multiples of the
quantity |D| are in Fig. 8 for the all schemes considered. In
the case of the milestone recovery scheme, the value of C
is the constant 5⋅|D| or generally M⋅|D|.

Now, let us analyze the reference recovery schemes.
For p = 0, we can see that C = |D| for all reference schemes.
This is due to the fact that there are no changes in the data
units. All subsequent backups are empty and the value C =
|D| is given by the first (i.e. full) backup. The second
common extreme of all reference schemes is the value of C
when the rate of data unit changes λ → ∞. In this case, all
data units are always changed within the interval T and

therefore the probability p = 1. Then, the total average size
C of backups equals the value M⋅|D|, i.e. the storage space
demands of all reference schemes are identical with those
of the milestone scheme.

0.2 0.4 0.6 0.8 0 1
0

C

1

2

3

4

5

p

Milestone

Differential

Combined

Incremental

[|D|]

 Fig. 8: The dependence of the average total backup size

C on the probability p for different recovery schemes.

When we compare all schemes, we can see that there

are two extremes. The first extreme is the milestone
recovery scheme. For all p ∈ (0, 1), this scheme has the
highest demands on the storage capacity of the backup
repository. The second extreme is the incremental recovery
scheme where, by contrast, these storage space demands
are the lowest. Then, we can take the storage space
demands of the milestone recovery scheme as an upper
bound:

 MDC ⋅=max (37)

and the storage space demands of the incremental recovery
scheme as a lower bound:

 ()[]11min +⋅−⋅= pMDC (38)

The storage space demands of the other schemes are
between these bounds.

Fig. 9 illustrates the functions R = g(p), i.e. the
dependence of the average data recovery size R on the
probability p. We can see that the lower bound of R is
given by the milestone recovery scheme:

 .min DR = (39)

By contrast, the upper bound of R is given by the
incremental recovery scheme:

.1

2
1

max 





 +⋅

−
⋅= pMDR

(40)

From the two figures above, we can see that the
milestone and incremental recovery schemes are boundary
cases for both the quantity C and the quantity R. The
milestone recovery scheme is the worst scheme from the
viewpoint of storage space demands, but the best scheme
from the viewpoint of the recovery time. In the case of the

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

24

incremental recovery scheme, the exact opposite holds.
Then, we can take the differential scheme and combined
recovery schemes as a compromise between the two
extremes above.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Incremental

R

p

Milestone

Differential

[|D|]

Combined

Fig. 9: The dependence of the average data recovery size R on the

probability p for different recovery schemes.

The last thing in this discussion is comparing the sizes
of the interval and atomic backups. From (22), we know
that the average size |I| of the interval backup within the
time interval T is:

 .)1(),(pDqDtTtI ii ⋅=−⋅=− (41)

From (23), we know that the total average size |S| of
all atomic backups from the time interval T is:

 .
1

1ln),(
p

DtTtS ii −
⋅=−

(42)

 Fig. 10 illustrates the dependence of |S| and |I| on the
probability p. We can easily prove that it holds that |S(ti −
T, ti)|/|I(ti − T, ti)|, i.e. the average size |I| of the interval
backup within the time interval T is not greater than the
total average size |S| of all atomic backups within the same
time interval T. This is due to that the aggregate of atomic
backups contains all versions of data units and not only the
latest versions.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
|S|, | I |

p

|S|

| I |

[|D|]

Fig. 10: Dependence of |S| and |I| on the probability p.

From the Figure, we can see that the differences
between |S| and |I| are not significant for small values of p.
However, these differences are definitely significant for
greater values of p. For example, the ratio |S| / |I| equals
approximately 1.4 for p = 0.5. Then, in the case of the
atomic backup, we need a backup repository with a
capacity which is 40 percent greater than in the case of the
interval backup. In the case of p ≈ 0.8, the ratio |S| / |I|
equals 2, i.e. we need a backup repository with a capacity
which is two times greater than in the case of the interval
backup. The advantage of the atomic backup, i.e. the
possibility of recovering the data at any time instant, is
paid for by increased requirements for the storage capacity
of the backup repository.

7. Conclusion

In the paper, the terminology and mathematical
apparatus for data backup and recovery is extended. The
core of the paper is a mathematical model of the data
backup and recovery. The mathematical model enables us
to compute the average size of an arbitrary backup (eq. 21
and 22) from the probability p that the data unit is changed
in the time interval T. It enables us to determine the
average total backup size C (eq. 24) for any recovery
scheme and also the average data recovery size R (eq. 26).
The model proposed allows us to compare different
recovery schemes (e.g. Fig. 8 and 9) and extends the
theory of the data backup and recovery. The model also
allows us to compare interval and atomic backups (see eq.
22, 23 and Fig. 10).

The model introduced is based on the assumptions
that the probability p is the same for all data units and that
the data unit change is an event which has no influence on
the changes of other data units, i.e. these changes are
mutually independent events. Further assumptions are that
the total size of the data is constant and that no data unit is
empty. The assumptions introduced are not general and
therefore our next goal is to create a more general model.
In any case, however, the model described is suitable for
theoretic purposes at least.

References

[1] A. Frisch: System Backup: Methodologies, Algorithms and
Efficiency Models. In J. Bergstra, M. Burgess: Handbook of
Network and System Administration. Elsevier, Amsterdam
2007.

[2] S. Nelson: Pro Data Backup and Recovery. Apress, New
York 2011.

[3] A. Frisch: Essential System Administration. O’Reilly Media,
Sebastopol 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

25

[4] Z. Kurmas, A. L. Chervenak: Evaluating Backup
Algorithms. In IEEE Symposium on Mass Storage Systems.
2000, pp. 235-242.

[5] M. Burgess, T. Reitan: A risk analysis of disk backup or
repository maintenance. Science of Computer Programming.
64 (2007), pp. 312-331. DOI: 10.1016/j.scico.2006.06.003.

[6] C. Qian, Y. Huang, X. Zhao, Toshio Nakagawa: X: Optimal
Backup Interval for a Database System with Full and
Periodic Incremental Backup. Journal of Computers. 5
(2010), pp. 557-564.

[7] Teradactyl: Backup Terms and Definitions. Teradactyl LLC.
Retrieved April 17, 2014 from
http://www.teradactyl.com/backup-knowledge/backup-
definitions/backup terminology.html

[8] N. Garrimella: Understanding and exploiting snapshot
technology for data protection. Part 1: Snapshot technology
overview. IBM developerWorks. (April 26, 2006).
Retrieved April 17, 2014 from
http://www.ibm.com/developerworks/tivoli/library/t-
snaptsm1/index.html?ca=dat-

[9] P. de Guise: Enterprise Systems Backup and Recovery.
CRC Press, Boca Raton 2008.

[10] M. Liotine: Mission-Critical Network Planning. Artech
House, London 2003.

[11] L. Lakatos, L. Szeidl, M. Telek: Introduction to Queueing
Systems with Telecommunication Applications. Springer,
New York 2013.

Karel Burda received the M.S. and
PhD. degrees in Electrical Engineering
from the Liptovsky Mikulas Military
Academy in 1981 and 1988,
respectively. During 1988-2004, he
was a lecturer in two military
academies. At present, he works at
Brno University of Technology. His
current research interests include the

security of information systems and cryptology.

