
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

32

Manuscript received July 5, 2014
Manuscript revised July 20, 2014

A Real-time Rendering Method Based on Precomputed
Hierarchical Levels of Detail in Huge Dataset

Zhou Kai†, and Tian Feng†

† School of Computer and Information Technology, Northeast Petroleum University, Daqing, China

Summary
Traditional preprocessing methods, such as discrete LOD or
continuous LOD, are inapplicable to large dataset consists of
huge amount of models. Division granularity of discrete LOD is
coarse while continuous LOD is time-consuming. Real-time
rendering is a challenging and open problem to solve. A real-time
rendering method to solve preprocessing problem in huge dataset
based on pre-computed hierarchical levels of detail is proposed
by different granularity and hierarchy division. Experimental
result shows that the proposed method is more suitable for huge
dataset.
Key words:
hierarchical levels of detail, real-time rendering, huge dataset.

1. Introduction

With rapidly increasing collections of 3D data and the
development of automatic 3D modeling technology, there
is a contradiction between rendering capability and
accuracy for the computer. LOD technology is a major
method in accelerated rendering. In 1976, Clark [1]
proposed the concept of levels of detail (LOD). When
objects cover a smaller area of the screen, you can use the
lower-resolution model, otherwise higher-resolution model
for fast rendering scenes. Now the LOD technology is
divided into discrete LOD and continuous LOD. In
discrete LOD, different hierarchy is gradually simplified,
and there is not external contact between them, so we
should choose the appropriate level to rendering [2] [3].
Discrete LOD is simple and it's efficiency is high, but its
level is limited, so discrete LOD can’t be suitable for a
variety of applications. Division granularity of discrete
LOD is coarse, for large scale models, the same LOD level
is used in near and far viewpoint region, which affects the
details of rendering. Continuous LOD is proposed to solve
these problems. It allows the continuous variation of the
same model on LOD level [4], and is widely applied to
render large scale models such as terrain models.
Continuous LOD is complicated in computing mechanism;
some kind of record structure is generated, then 3D models
are reconstructed during rendering. In comparison with the
discrete LOD, the effects of rendering improved using
continuous LOD, but the cost of rendering is also
increased.

Erikson [5] proposed HLOD (the Hierarchical Levels
of Detail) which is used to fast render huge dataset. The
main idea of HLOD technique is granularity division and
hierarchy based on discrete LOD. It adopts tree
hierarchical LOD storage structure and takes the detail and
rendering efficiency into account during rendering large
scenes. But the method doesn’t support the model texture,
only support the color information.

A real-time rendering method for huge dataset based
on preprocessing HLOD is constructed by Visual C++ and
OpenGL to improve rendering effect which support texture.
The following first part will briefly describe the HLOD
principle. Then the detail of implementation is introduced.
Finally, the experimental results and the future work are
given.

2. HLOD Theory

The HLOD adopts hierarchy strategy where data is saved
by tree hierarchical structure to simplify the scene
rendering. The rendering effect of multi-level discrete LOD
is similar with continuous LOD. For a scene, HLOD can be
divided into two levels: the first level is the internal level of
3D model where a HLOD unit is one or more parts of 3D
division. The second level is the scene HLOD where one
unit is one or more models. The HLOD construction of the
internal level is briefly described by quad tree. A model is
subdivided twice to obtain C1 ... C9, as shown in Figure1;
Figure 2 shows the obtained quad tree.

Fig.1.The model subdivision

C1 C2 C4

C3 C5

C6

C7 C8 C9

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

33

Each node in quad tree contains geometric information
of 3 different resolutions. For each leaf node, such as C1,
LODc11, LODc12, LODc13 are get by simplifying
geometric information, and LODc11 is regarded as
the finest layer, LODc13 is regarded as the roughest layer.
You can get 3 layers LOD information in each leaf node
by this way, then construct HOLD though the bottom-up
process. LOD data contained in the non-leaf nodes called
HLOD. Such as the finest layer HLODb11 consists
of LODc13, LODc23, LODc33 and the boundary. HLODb12
and HLODb13 are obtained by directly simplifying
HLODb11. We can build the HLOD tree of the entire model
by repeating the process.

C1 ... C9 are regarded as models for scene HLOD, and
the scene HLOD tree is constructed by a similar process.
The difference is that the boundary of scene HLOD
doesn’t exist, and simplified unit is one or more models.
After establishing model HLOD tree and scene HLOD tree,
we can choose right HLOD hierarchy to render scene
according to the user's view and error thresholds assigned
by users.

3. Rendering Based on Pre-computed HLOD

Rendering based on pre-computed HLOD mainly need to
solve the following problems:
(i) the pre-computation of the single model HLOD. It

includes model space subdivision， model boundaries，
bottom-up establishment of the single model HLOD
and the design and storage of single model HLOD
file;

(ii) the pre-computation of the scene HLOD. It includes
the HLOD data ofall models, the scene bounding box,
the scene space subdivision and the bottom-up
establishment of scene HLOD;

(iii) the HLOD selection and rendering based on
viewpoint.

3.1 The Pre-computation of the Single Model HLOD

Figure 3 is the pre-computation flowchart of single model
HLOD:

Because 3DS file format is more widely used，the

format is adopted in the paper. The two parameters which
are the center of the bounding box and the size of the
bounding box are computed. The average value of all
vertex coordinates is the center of the bounding box. The
bounding box size is twice the maximal distance from
vertices to the center.
(i) The Octree Model Subdivision

The octree is one of spatial subdivision method. 3D
space is divided into eight parts, and then each part is
divided into eight parts again. Followed by the recursive
process, the result tree structure is built. Each parent node
in the structure contains eight child nodes that may save
the relevant information of its parent node. The model data
can be organized well and vertex number threshold can be
predefined. The node will stop dividing if the vertex
number is less than minVertNum.

The divided space will produce boundary patches.
Because the boundary patches can’t be simplified,
otherwise the gap will exist between the various parts of
the model, so each boundary will be retained. Octree
subdivision algorithm is summarized as follows:

Step1. Determine the number of vertices in the node. If
vertNum <= minVertNum, the current node stops dividing,
otherwise continues with the following steps;

Step2. Obtain the center and the size of 8 child nodes in
each node according to the center and size of the node
bounding box.

Step3. Traverse the child nodes. According to the center
and the size of the child nodes, the index array of each
vertex in parent node is assigned to the sub-node;

Step4. Traverse topological sequence in node. For each
topology group (C1, C2, C3), if the vertexes C1, C2 and C3
belong to different child nodes, (C1, C2, C3) should be
stored in boundary patch array.

Step5. Repeat Step1 - Step4, until all nodes stop
dividing.

Figure 4 shows the first layer boundary of the bunny
model octree.

Fig.3.The single model HLOD precomputation flow chart

The simplify algorithm
of the boundary

Model material
classified processing

HLOD file
format design

Establish HLOD by
the bottom-up

;

The storage of
HLOD files

Boundary
retention

Partition
granularity

Octree
section

Loading 3DS
model

Establish
bounding box

A

B4B3B2B1

C4C3C2C1 C5 C6 C7 C8 C9

LODc11 LODc12
LODc13

HLODb11 HLODb12
HLODb13

HLODa1 HLODa2
HLODa3

Fig.2.The model HLOD tree construction

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

34

(ii) The Bottom-up Construction of Model HLOD

Once the octree is constructed, the single model HLOD
is built by the bottom-up process after the octree is
constructed. The single model HLOD is constructed from
the leaf nodes. The divided model is simplified by the
simplification method with geometry and property
boundary preservation. Single model HLOD algorithm is
summarized as follows:

Step1. If the current node is a leaf node, the geometric
information which is not simplified is regarded as the finest
layer (LOD1). Then the boundary patch of LOD1 is
reduced to half to get the finer layer (LOD2), the boundary
patch of LOD2 is reduced to half to get the roughest layer
(LOD3). During the whole process, we obtain the spatial
distance error (distanceError) which is from each LOD to
original geometric information.

Step2. If the node is not a leaf node, firstly call Step1
and Step2 to build HLOD for nonempty node. This is a
recursive process. After all nonempty child nodes finish
building HLOD, the geometric information of the roughest
layer and the boundary reduce the boundary patch to half.
The finest layer (HLOD1), the finer layer (HLOD2) and the
roughest layer (HLOD3) are got in turn. For non-leaf nodes,
its space distance error (distanceError) is the maximal
value.

The HLOD structure for the octree root node is built by
above algorithm. Figure 5 shows a single model HLOD
rendering example. Eight child nodes of the root node are
selected and rendered .The first child node selects
the finest layer HLOD, others select the roughest layer
HLOD. The border has been well preserved.

(iii) The HLOD Files Design

Table I shows the time cost of the different models to

establish the HLOD.

TABLE Ⅰ A single model hold time consuming

Model The Patch
Number

Division
Granularity

Time-consuming
(/s)

horse 39698 500 125

bunny 69451 500 180

bunny 69451 1000 130

P47 96720 1000 224

Armadillo 345944 1000 833

dragon 847414 1000 2212

When the model is larger, the establishment of the

HLOD is relatively time-consuming. In order to improve
rendering efficiency, HLOD file format is designed and
HLOD model is stored by the binary block. Even the scene
is changed again, the HLOD data file of each model is
obtained without pre-processing, and directly builds scene
HLOD. So it greatly reduces the waiting time. HLOD file
format is shown in Figure 6:

The header file includes all data that are the center and

size of the bounding box ，
the number of vertices and boundary patch, and
material data. In order to record octree structure
information, octree node information has been encoded for
obtaining octree node information and octree node
description [6]. Node description code is a code segment
that identifies whether the node is leaf or not. We can
reconstruct the original octree structure with
node information code. The following is the brief
algorithm for building the node code segment
(OctreeCode) and the node description segment
(NodeDiscription).

Step1. The octree root node is added to the queue (node
queue);

Step2. After taking out a node from node queue,
traverse its eight child nodes. If the child node is empty, put
zero into the OctreeCode container. If the child node is not
empty, put one into the OctreeCode. If the child node is a
leaf node, put one into the NodeDiscription container, if

Fig.5. Single model HLOD rendering

Fig.4.The octree subdivision boundary of the model bunny

1. Header files
The center
The size
The number of vertices
The number of boundary patch
Material data

2. Octree structure information
Octree information encoding
Octree node description code

3. Node information
The boundary topology data
The HLOD data

XXX.HLOD

Fig.6.The HLOD file

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

35

non-leaf node, put zero into the NodeDiscription and the
non-leaf nodes are added to the node queue;

Step3. Repeat Ste1 - Step2 until node queue is empty.
The original octree structure of the model must be

reconstructed before reading HLOD data, so the octree
structure information is put prior to the node information
in the HOLD file. The third part of HLOD file is the
HLOD information and boundary information of nodes. So
one can put the HLOD information into the appropriate
node in order to correctly read the entire HLOD file. 3DS
file and HLOD file data size are illustrated in table 2.

TABLE Ⅱ HLOD file size table of the single model

model The boundary
number

The size
of 3DS
file/KB

The size
of HOLD
file/KB

blackface 36298 965 2210

horse 39698 975 2368

bunny 69451 1542 4560

P47 96720 1840 5131

3.2 The Scene HLOD Pre-computation

After obtaining HLOD data of all models, we begin to
build scene HLOD. Because models are placed in the
scene according to a certain position, the single model
bounding box information which is loaded in HLOD file
format is transformed according to the model space
transformation information. After traversing the single
model bounding box, their average value is treated as the
center of the scene bounding box (SceneCenter). The max
distance which is parallel to axial of the bounding box is
treated as the scene bounding box size (SceneSize). After
getting the scene bounding box, the scene is divided by
octree method that is similar with the single model
division. If the model number is less than 2 in the
bounding box, stop dividing. You can get a scene octree
after the division. The method of the scene HLOD
establishment is similar to single model HLOD. After
obtaining the single model HLOD and the scene HLOD,
HLOD selection and view-based rendering will be done
according to the error and roaming viewpoint assigned by
the user.

When traversing the nodes in the scene, find the
simplification error which is satisfies the Equation 1 and
close to the right value to render. Equation 1 can be
obtained according to Figure 8 where N is the width of the
rendering window, P is pixel error and e is the
simplification error of boundary patch when establishing
HLOD.

θtan.
N
PdEe =≤ （1）

The algorithm of the view-based rendering is described
as follows. Fist, the scene root node is joined the queue
(nodeQueue).

Step1. Get node from nodeQueue and traverse three
HLOD of the node, then compare to simplification error e
and E. If they meet the formula (1), the node pointer and
the HLOD pointer are added to render queue
(renderQueue);

Step2. After traversing the node's HLOD, if there are
not nodes meet the formula (1), the non-empty child node
is joined nodeQueue;

Step3. Repeat Step1 - Step2, until nodeQueue is empty;
Step4. Traverse the queue and render the queue.

4. Conclusion

A real-time rendering method based on pre-computed
hierarchical levels of detail is proposed. It provides better
rendering quality and reduces the complexity. The
pre-computed results format is designed for HLOD model
and increases the reusability of the method. Experimental
result shows that the proposed method is more suitable for
huge dataset.

Acknowledgment

This work is supported by Youth Foundation of Northeast
Petroleum University (NO: 2013NQ120). We also would
like to thank the anonymous reviewers for their helpful
comments and suggestions.

References
[1] Clark J. Hierarchical Geometric Models for Visible Surface

Algorithms [C]// Communications of the ACM, New York,
NY, USA: ACM Press, 1976, 547-554.

[2] T. Funkhouser, C. Squin, S. Teller. Management of Large
Amounts of Data in Interactive Building Walkthroughs [C]//
Proc. 1992 Symposium on Interactive 3D Graphics, Special
issue of Computer Graphics. New York, NY, USA: ACM
Press, 1992: 11-20.

[3] H. Hoppe. Progressive Meshes [C]// Proc. SIGGRAPH'96,

Fig.8.The view-based HLOD selection

d

LOD

Viewpoint

e

θ

s
The view-part
 near facet

v

http://dict.cnki.net/dict_result.aspx?searchword=%e7%ae%80%e5%8c%96%e8%af%af%e5%b7%ae&tjType=sentence&style=&t=simplification+error
http://dict.cnki.net/dict_result.aspx?searchword=%e7%ae%80%e5%8c%96%e8%af%af%e5%b7%ae&tjType=sentence&style=&t=simplification+error
http://dict.cnki.net/dict_result.aspx?searchword=%e7%ae%80%e5%8c%96%e8%af%af%e5%b7%ae&tjType=sentence&style=&t=simplification+error

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

36

New York, NY, USA: ACM Press, 1996: 102-108.
[4] M. de Berg, K. Dobrindt. On Levels of Details in Terrains

[R].Technical Report UU-CS-1995-12, Department of
Computer Science, Utrecht University, New York, NY,
USA: ACM Press, 1995: 426 – 427.

[5] Erikson C, Dinesh M. HLODs for Faster Display of Large
Static and Dynamic Environments [C] // Computer Graphics
(SIGGRAPH 01 Proceedings), New York, NY, USA: ACM
Press, 2001: 113- 117.

[6] J Peng, C-C J Kuo. Geometry-guided progressive lossless
3D mesh coding with octree (OT) decomposition [J]. ACM
Transactions on Graphics(0730-0301), 2005，24(3): 609-
613.

Kai Zhou received the M.E. degrees
from Northeast Petroleum University
in 2006. She is research assistant
since 2006 and is working as a
lecturer from 2009 in the Department
of Computer and Information
Technology, Northeast Petroleum
University. Her research interest
includes pattern recognition, virtual
reality.

Feng Tian born in 1980. PhD and
associate professor. Received his PhD
degree in computer application
technologies from the State Key
Laboratory of Virtual Reality
Technology and Systems, Beihang
University in 2014. His main research
interests include image annotation,
image tagging, cross media analysis,
multimediamining, 3D model

Retrieval, virtual reality and pattern recognition.

	Acknowledgment

