
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014

90

Manuscript received July 5, 2014
Manuscript revised July 20, 2014

D-MMLQ Algorithm for Multi-level Queue Scheduling

Manupriya Hasija Akhil Kaushik Satvika Kaushik Manoj barnela

TIT&S, Bhiwani TIT&S, Bhiwani TIT&S, Bhiwani TIT&S, Bhiwani
Summary
Since the advent of Operating system, the focus of the work is
aimed at better resource scheduling. Handling of multiple tasks at
a single time by single processor is old story now. Today is the
time of multitasking as well as multiprocessing. The scheduling of
processes or tasks have taken a whirlwind after the concept of
multiprocessing. There are a lot of well-known scheduling
algorithms for job allocation on uniprocessor system but they may
not fit well under the system having multiple processors.
Altogether the thought of multiprocessing systems gives
overheads but still make the idea amazingly interesting. This paper
takes into account the deadline concept to realize the real-time
needs of a multiprocessor system with multiple queues and tries to
conceptualize an innovative algorithm for the same.
Keywords
Multiprocessor scheduling, MLQ, EDF, D-MMLQ, GridSim

1. Introduction

The core idea of any system is to improve the efficiency and
performance by either manipulating the inputs or modifying
the implementation methods to generate better output. With
the advent of computer systems, the human part has always
tried to do the same and has succeeded in most of his
expeditions. After the invention of Operating System, the
computer era has revolutionized. A lot of research has been
undertaken to study the scheduling algorithms for single
processor systems earlier and now for the multiprocessor
systems. However, most of the concepts of uniprocessor
organization are not applicable to its multiprocessor
counterpart due to reasons like availability of several
processing elements, load balancing, parallel processing of
data, dependency of processes on each other, etc.
Now in trend are real-time embedded systems which find
applications in many diverse areas, including automotive
electronics, avionics, telecommunications, space systems,
medical imaging, and consumer electronics. A real-time
system as defined as an information processing system
which has to respond to externally generated input stimuli
within a finite amount of time with the maximum accuracy.
The correctness depends not only on the logical result but
also on temporal accuracy to the same extent; the failure to
respond in time is as bad as the wrong response [1]. For
example in avionics, flight control software must execute
within a fixed time interval in order to accurately control the
aircraft. In automotive electronics there are tight time
constraints on engine management and transmission control

systems that derive from the mechanical systems that they
control.
Thus for the sake of best results, the point under
consideration especially for avoiding deadline misses is
efficient scheduling. Multiprocessor real-time scheduling
theory also has its origins in the late 1960s and early 1970s.
Multiprocessor real-time scheduling is intrinsically a much
more difficult problem than uniprocessor scheduling [3].
Some of the outcomes of single processor can be directly
generalized to the case of multiprocessors. However,
implementing multiple processors instead of single
processor brings a new facet in job scheduling. An
important point to note here is that a task may choose only
one processor among several free processors to make
scheduling complicated and amazingly interesting.

1.1. Multiprocessor Scheduling

Multiprocessor scheduling is an innovative approach to
allocate several jobs to numerous processors at same time.
The key idea here is to find which processor is ideal to
handle which job. Working of a multiprocessor scheduler is
shown in Fig. 1.
Multiprocessor scheduling can be defined as an attempt to
solve following two key problems:
1) Allocation Problem: which processor should execute
which task?
2) Priority Problem: which task will be executed in which
order?
Broadly, scheduling algorithms can further be divided into
two categories: preemptive and non-preemptive depending
upon whether a process can be interrupted in between to
give way to other processor. In preemptive scheduling, CPU
can stop executing a process and allocate resources to
another needy process; while non-preemptive scheduling
does not interrupt execution of a process. Due to this reason,
preemptive scheduling is a bit costlier approach.

Fig1. Working of Multiprocessor Scheduler

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014 91

The mechanism or policy that is used to efficiently manage
the access to and use of a resource by various processes is
popularly known as resource management. This allocation
and de-allocation of resources to various tasks and jobs by a
processor is also called scheduling and the scheduling
system is known as scheduler. An important consideration
in scheduling is the consumer and resource's perspective.
The consumer's outlook depends on how well the scheduler
manages the resources i.e. performance. On the contrary, the
resource's viewpoint is defined in the terms of how difficult
or costly it is to access the resources i.e. efficiency [12].
Whenever the processor becomes idle, the operating system
must select one of the jobs in the ready queue for execution.
The current distributed computing era is all about the
management and allocation of system resources relative to
computational load of the system. In present scenario of
supercomputing, large scale parallel machines are essential
to meet the ever increasing needs of demanding applications.
In such a context, a need for effective scheduling strategies
is of vital importance, to meet the desired quality of service
parameters from both user and system perspectives.
Specifically, the desire to reduce response time, waiting
times, processor idle time, problem of starvation and
maximize the throughput, processor utilization, resource
utilization etc. Scheduling algorithms demand a proper
balance between fair- share and preemptions taking place.
Scheduling techniques have a significant impact on the
performance characteristics of computing systems. Early
strategies used queue-based approaches to schedule the
tasks which later shifted towards priority- based approaches
and later mixes of various dissimilar approaches overtook
the market. Many different approaches and metrics of
performance have been proposed to achieve the optimal
solution for all resource management needs, which will be
discussed in the following section.

2. Prior Work

 First Come First Serve (FCFS) also referred as FIFO (First
In First Out) algorithm comes under the category of
Queuing algorithm and is the most basic algorithm. It treats
every task equally and executes them according to their
arrival times. FCFS [2] is very easy to implement, incurs
low computational cost and is an optimal scheduling
algorithm. However, with increase in load, the performance
shows a steep downfall.
Earliest Deadline First (EDF) is a priority based algorithm
which has two variations based on whether preemptions are
allowed or not [2]. Non-preemptive-EDF shows
comparative low execution overhead while
preemptive-EDF is better with performance metrics. For
preemptive tasks EDF is proved to be an optimal algorithm.

But, similar to FCFS, the performance of EDF also
deteriorates as the load increases.
Group- EDF (g-EDF) is a variation of EDF which groups
together the tasks having almost similar deadlines and SJF
algorithm is used within the group for scheduling [4].
G-EDF gives better performance in terms of success ratio
(number of tasks that have been successfully scheduled to
meet their deadlines). It has computational complexity
almost comparable to EDF.
Shortest Job First (SJF) is a priority based non-preemptive
scheduling strategy that employs the deadline constraint to
schedule the tasks. The task with shortest expected
execution time is given priority to those having larger
execution time [5].
Backfilling [6] [7] is a concept introduced to extend FCFS
to improve resource utilization. Backfilling allows a lower
priority task to start before the higher one in the case when it
can fill the gap that is in the queue to reduce the processors’
idle time. It very effectively improves average turnaround
time.
Conservative Backfilling [8] is a variation of Backfilling
that focuses on elimination of Starvation problem by
performing backfilling after checking that it does not cause a
delay any previous job in queue.
Aggressive Backfilling/ EASY (Extensible Argonne
Scheduling system) implements the aggressive version [9]
of backfilling such that any job can be used to backfill
provided it does not delay the first job in the queue. Since
the queuing delay for the job at the head of the queue
depends only on jobs that are already running, and these
jobs will eventually either terminate or be terminated when
they exceed their estimated runtime, starvation is
eliminated.
Best Gap (BG) is similar to conservative backfilling.
Conservative backfilling chooses the first gap identified in
the cluster, while BG chooses the best gap on the basis of
some evaluations. In case of a tie between two gaps based on
the evaluation done, first gap is chosen. There are still some
other variations of Best Gap like Best Gap- Earliest
Deadline First [13].

3. Simulation Tool

Simulation is the imitation of real things, processes or
affairs. The act of simulation generally entails representing
certain key characteristics or behaviors of a selected
physical or abstract system. Grid environment also can be
simulated using several Grid simulators e.g. GridSim,
Eclipse etc. Grid simulators enable Grid users to work on
Grid like environment without worrying about the other
external factors that may influence the Grid environment.
The simulation tool employed to implemented D-MMLQ
algorithm is GridSim. GridSim toolkit provides a modular

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014 92

environment composed of independent entities
corresponding to the real world with the main functionality
of the scheduler divided into separate parts. In GridSim it is
easier to simulate different types of job, scheduling
algorithms or optimization criteria by making small changes
in the existing simulator. For example, to test some new
scheduling algorithm only the scheduler class is to be
modified. Similarly to schedule different type of jobs, only
the data set used by job loader and possibly corresponding
objective function in the scheduler is to be changed, rest of
the classes stay intact, Hence, providing an ease to repeat
the experiments with the exactly same setup. The changes
are encapsulated and the results can be easily compared.

4. Proposed Solution

In this section, the proposed solution for scheduling the jobs
using Deadline based- Modified Multi-Level Queue
(D-MMLQ) Scheduling technique in Grid environment is
briefly explained. The user submits gridlets along with the
requirements to the Alea GridSim scheduling system. The
submission of gridlets to the resources involves checking
the suitability of the available PEs. If the requirement is
satisfied, the gridlets are assigned to the respective
resources. This technique uses a dynamic priority
mechanism to schedule the gridlets to the system efficiently
and maximize the resource utilization. The gridlets waiting
for the service is placed in the waiting queue. The gridlets
that are scheduled in the queue are executed.
The algorithm proposed in this paper is based on this
renowned concept of multi-level queue which will reduce
the problem of starvation of low priority jobs for long time
despite the availability of enough resources. The concept of
multi-level queue scheduling strategy maintains two
separate queues where jobs are permanently assigned to the
queues. The jobs are executed by applying any particular
scheduling algorithm. Every queue has its own scheduling
policy. The main idea behind it is to separate jobs with
different characteristics. In general the scheduler is defined
based on various parameters including: when to demote the
priority of job, which scheduling algorithm is to being
applied, the number of queues, etc. The proposed work
employs the parameter of selection of the queue to be
executed.
Firstly, the jobs entering are allowed to enter any queue at
random basis. The selection of the queue is done on First
Come First Serve (FCFS) basis as FCFS has been proved to
be an optimal scheduling algorithm (i.e. FCFS will surely
come up with a schedule for a set of jobs if there exists one).
However, the gridlets present in the queues are executed
based on EDF scheduling policy. The gridlets with the
earlier deadlines are assigned the higher priority, and a
higher priority request will be executed first. The gridlets

having their deadlines close completes its execution quickly.
All gridlets gets an opportunity to execute and thus reduces
starvation of gridlets by promoting the gridlets in lower
queues to a higher priority.

5. D-MMLQ Algorithm

The Deadline based Multi-Level Queue (D-MMLQ)
Scheduling algorithm is basically divided into two phases.
The first phase is concerned chiefly with the allocation of
jobs to various queues, whereas the second phase handles
the execution of jobs. Phase 1 uses Wallclock comparator
for finding out which queue gets executed first, which
basically uses improvised First Come First Serve (FCFS)
basis. After the queue selection, jobs are executed in phase 2
on the basis of Earliest Deadline First (EDF). The
significant point here is that D-MMLQ specially looks for
starved jobs and makes sure the number of starved jobs is
zero or as minimum as possible. The selection of cluster (of
processing elements) is done automatically by GridSim
simulator.
// Phase 1: Job Submission
1: Queues: = 1: N.
2: Sort N queues by using Wallclock comparator.
3: For i: = 1 to N
4: Set current_queue: = queues[i];
5: Insert the jobs in the current queue at last.
6: Sort current_queue by comparing deadlines of jobs.

//Phase 2: Job Execution
7: For all jobs in current_queue repeat
8: If job j can be executed then
9: Set k: = select cluster;
10: Remove j from current_queue and send it on k;
11: End if
12: End for
13: End for

6. Performance Evaluation

In this section, the performance of D-MMLQ scheduling
strategy through various experiments using Alea simulator,
an extension of GridSim simulation toolkit is discussed. The
experiment involves 5000 jobs which were executed on 14
clusters having numerous of CPUs. The simulation is
implemented by providing the input data-set
"metacentrum.mwf" and all the jobs submitted complete
over a particular span of time. These graphs show the
differences among the efficiencies of algorithms. FCFS
shows poor results as per the machine usage parameter.
FCFS is not able to utilize available resources when the job
in the queue requires some specific and currently

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014 93

non-available processor(s). At this point, other jobs in the
queue can be executed to improve the utilization value. This
is the main motivation working behind D-MMLQ. The
results show that D-MMLQ is able to show some increase
the machine usage by shifting the jobs among the queues.
Still, D-MMLQ as it employs a mixture of EDF and FCFS
will not allow any job to starve, hence making fair-share
decisions. This increases the machine utilization and
efficiency. The simulation is done by providing input data
set and it completes all the jobs submitted to the grid over a
span of time. The following graphs show the results of
D-MMLQ algorithm:

Fig 3. Numbers of requested, available and used CPUs on D-MMLQ

Fig 4. Number of waiting and running jobs on D-MMLQ

Fig 5. Cluster usage per hour on D-MMLQ

7. Results and Comparisons:

The newly proposed D-MMLQ algorithm works on two
principles: Wallclock comparator for inserting jobs in the
multilevel queues and then using EDF for executing jobs in
each queue. This combined innovative approach proposed
in D-MMLQ algorithm provides better results as compared
to the EDF scheduling algorithm. The following graphs
show the results of EDF algorithm implemented on the
similar input set as of D-MMLQ:

Fig 6. Number of requested, available and used CPUs on EDF

Fig 7. Number of waiting and running jobs on EDF

Fig 8. Cluster usage per hour on EDF

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.7, July 2014 94

Another factor that classifies the supremacy of D-MMLQ
over its counterpart EDF is Normalized User Weight
(NWT). The least NWT value, the better is the scheduling
algorithm. NWT value for EDF algorithm is 2.5579, which
is reduced by approximately 16% by D-MMLQ algorithm to
0.422154. Hence, it is observed that D-MMLQ is supreme
to EDF in all aspects of performance in multiprocessor
environment.

8. Conclusion & Future Scope:

This paper describes a new and innovative scheduling
algorithm named “D-MMLQ” for multiprocessor
scheduling. The proposed algorithm fuses two vital
concepts for handling job allocation and execution through
multi-level queue. The approach proposes that the
starvation problem of low priority jobs or jobs at lower end
of queue, hence increasing the overall competence of
multiprocessor system. The graphs show less average
waiting time and better utilization of resources by
D-MMLQ algorithm in comparison to traditional EDF
algorithm. Furthermore, the Normalized User Weight
(NWT) factor is the least possible value obtained till now by
any popular scheduling algorithm. Hence, it can be
concluded that the D-MMLQ algorithm proposed in the
paper is the best scheduling algorithm devised till today.
The following topics are in the scope for potential work
direction:
1) To analyze the algorithms further some more effective

parameters like critical instant, utilization bound and
bounded response time can be used.

2) The algorithm can be further improved by applying the
quasi-deadline concept.

3) This concept can be further explored on heterogeneous
platform.

4) Schedulability analysis of these algorithms can further
prove its optimality.

Acknowledgement

The authors would like to thank Dr. Mukesh Kumar, Mr.
Parveen Kumar and Mr. Deepak Singla for their extensive
help and constant discussions.

References
[1] A. Burns & A. Wellings. “Real-Time Systems and

Programming Languages”. Addison Wesley Longmain, April
2009.

[2] Silberschatz ,Galvin and Gagne, “Operating systems
concepts”, 8th edition, Wiley, 2009.

[3] C. L. Liu & J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”,
Journal of the ACM, Vol. 20. No. 1, pp. 46-61.

[4] W. Li, “Group-EDF- A New Approach and an Efficient
Non-Preemptive Algorithm for Soft Real-Time Systems”,
2006.

[5] L. Yang, J. M. Schopf & I. Foster, “Conservative Scheduling:
Using predictive variance to improve scheduling decisions in
Dynamic Environments”, SuperComputing2003, Phoenix,
AZ, USA, November 15-21, 2003.

[6] D. Lifka, “The ANL/IBM SP scheduling system”, JSSPP,
1995.

[7] A. W. Mu'alem and D. G. Feitelson, “Utilization,
predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with back_lling”, IEEE TPDS,
12(6):529.543, 2001.

[8] D. Feitelson, L. Rudolph, & U. Schwiegelshohn, Parallel job
scheduling - a status report, June 2004.

[9] D. Lifka, “The ANL/IBMSP scheduling system”, Job
Scheduling Strategies for Parallel Processing, pp. 295-303,
Springer-Verlag, Lect. Notes Comput. Sci. Vol. 949, 1995.

[10] R. Buyya & M. Murshed, “GridSim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for Grid computing”, The Journal of
Concurrency and Computation: Practice and Experience
(CCPE), 14:1175{1220, 2002.

[11] S. Baruah, “Dynamic- and static-priority scheduling of
recurring real-time tasks”, Real-Time Systems: The
International Journal of Time-Critical Computing,
24(1):99–128, 2003.

[12] A.S. Tanebaun, “Modern Operating Systems”, 3rd Edition,
Prentice Hall, ISBN: 13:9780136006633, pp: 1104. 2008.

[13] Dalibor Klusacek, Event-based Optimization of Schedules
for Grid Jobs, Doctor of Philosophy at the Faculty of
Informatics, Masaryk University, Brno, Czech Republic,
2011.

Manupriya Hasija is pursuing her
Master’s in Computer Science from The
Technological Institute of Textiles and
Sciences, India. She got her bachelor’s
degree from Gurgaon Institute of
Technology and Management, Gurgaon,
India. Her research interests are in the fields
of Operating Systems and Scheduling
algorithms.

Akhil Kaushik received his Master’s
degree in Information Technology from
Central Queensland University, Australia.
Since then he is being with The
Technological Institute of Textile and
Sciences, Bhiwani, India, Computer
Science Department, where he is currently
working as an Assistant Professor. His
primary research interests lie in the areas of

Cryptography, Steganography and Expert Systems. He has about
12 international publications and 6 national publications in the
same field.

