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Summary 
The purpose of annotation for 3D model is that it can 
automatically list the best suitable labels to describe the 3D 
models; it is an important part of the text-based 3D model 
retrieval. The existence of the semantic gap makes the result 
based on the similarity matching techniques needs to be 
improved. In order to improve the 3D model annotation 
performance using a large number of unlabeled samples, we 
propose a semi-supervised measure learning method to realize 
the 3D models multiple semantic annotation. A graph-based 
semi-supervised learning is firstly used to expand the training set, 
and the semantic words confidence of the models in the 
extension set is proposed. An improved relevant component 
analysis method is proposed in this paper to learn a distance 
measure based on the extended training set. Our approach is 
introduced to complete multiple semantic annotation task based 
on the learned distance measure. The test result on the PSB data 
set have shown that the method making use of the unlabeled 
samples has achieved a better annotation result when a small 
amount of labels were given. 
Key words: 
model automatic annotation, 3D model retrieval, semantic 
retrieval, metric learning,semi-supervised learning. 

1. Introduction 

In recent years, 3D scanning equipment, modeling tools 
and Internet technology have led to a large number of 3D 
models with widespread, 3D model retrieval become a 
research hotspot. Several 3D model search engines have 
been developed. Such as the 3D model search engine at 
Princeton University [1], the 3D model retrieval system at 
the National Taiwan University [2], the Ephesus search 
engine at the National Research Council of Canada [3]. 
These search engines are all include two search types. One 
is using traditional text-based retrieval which keywords are 
extracted from captions, titles, etc. The other type is using 
content-based retrieval method which search sample is 2d 
image or 3d object. In contrast, content-based 3D shape 
retrieval methods, that use shape properties of the 3D 
models to search for similar models, work better than 
traditional text-based methods [4]. But compare the 2d 
image or 3d object, the texture keyword is easier to define 
and get. The text-based retrieval provides users with a 
simple and natural interface, so it is friendlier for the user, 
but the text labels is required. In order to improve the 
retrieval effectiveness and capture the user’s semantic 
knowledge, the semantic automatic annotation technique 
has been introduced to the 3D model retrieval broadly in 

recent years [5-6]. Most current automatic annotation 
methods need a large number of models hand tagged with 
text labels, so the training sample size and quality are in 
high demand [7]. At the same time manually annotation 
brought tedious workload, which made the label results 
imperfect, inaccurate and subjective. Figure 1 show some 
hand tagged models and their labels. 

 

 
 
 
 

Fig.1. Four hand tagged models. 

In this paper, we present a method called 3D model 
multiple semantic automatic annotation based on semi-
supervised metric learning （ MS3ML ）  to label 3D 
models, which has achieved a better annotation result 
when a small amount of labels were given. The process 
flow by MS3ML is shown in Figure 2. The corpus is 
comprised of a small amount of hand tagged models users 
provided and a large number of unlabeled models. Firstly, 
the feature of 3D models was extracted, and the process of 
dimension deduction is needed. Secondly, we make full 
use of the unlabeled models to expand the training dataset 
(known as label propagation) and the label confidence was 
computed. Thirdly, a new distance metric considered label 
confidence as well as the correlation between features is 
learned. Lastly, for each model in unlabeled models 
collection, we label it by multiple semantic annotation 
strategy. 

2. Graph-based Semantic Label Propagation  

Since the amount of labelled models is not sufficient for 
automatic annotation, we need take full use of labelled and 
unlabeled models to expand the amount of labelled models. 
The graph-based semi-supervised learning has become the 
mainstream of semi-supervised learning because of its 
efficiency [8-9]. To do this, we use a corpus of known 

hand tagged models 1 1 | | | |{( , ) ( , )}L LL x y x y= ⋅⋅⋅  where ix  

denotes the model and iy denotes i-th model’s semantic 

label collection, Tiy ⊂ , 1 | |{ }TT λ λ= ⋅⋅⋅ denotes the 
collection 
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consisting of all labels. | | 1{ , , }L nU x x+= ⋅⋅ ⋅  denotes the 

unlabeled model. The model ix  is represented by the point 
ix in the d dimension feature space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2. 3D model semantic annotation process of MS3ML 

Define a graph, each of its vertices corresponding to each 
model from L U∪ , its weighted edge reflects the 
similarity between adjacent models. So n n×  similarity 

matrix W can denotes the graph { , }G V E= . Each element 
of the matrix can be formally defined by RBF kernel 
function as follows: 
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where ijw denotes the similarity between model ix  and jx , 

and (0,1)ijw ∈ .α  represents a particular constant. As the 
label information can be propagated through nodes which 
are connected by edges of the graph, so a n n×  matrix 
P can be defined, which represents the edge propagation 
probability of label  information to the neighbour node: 
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where ijP denotes probability which ix learns label 
information from jx . 

The semantic label of model ix  is expressed by 1 | |T× row 

vector if , if ix L∈ , the j-th element is defined as follows: 
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That is, the j-th elements of if  is 1 if the j-th label in T is 

one of the models label, and the rest are zero. If ix U∈ , 
[0,1]ijf ∈ . Define the | | | |L T× matrix Lf which denotes 

the label semantic matrix, the | | | |U T×  matrix Uf  which 

denotes unlabeled semantic matrix. Define Xf denotes 
matrix of all the data as follows: 
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The data’s label is propagated from the neighbors, that is 
 

( ) ( 1)i i
X Xf P f −= ×  (5) 

We summarize the standard process of label propagation 
algorithm as follows: 

1. 0i = , Initialize
( ) 0i

Uf = ; 
2. Calculate P ; 

3. 1i i= + , get 
( )i

Uf  by
( ) ( 1)i i

X Xf P f −= × ; 
4. Repeat step 3 until convergence ; 

5. Define iUf as i-th row vector of Uf , each elements of 
iUf has been assigned a real-value which is used to 

measure the confidence of i-th model label in U . We can 
take columns labels corresponding to the first k largest 

elements in iUf as model’s semantic labels. 
The algorithm steps show that the unlabeled data’s label is 
constantly being updated by the label propagation 
algorithm, and the labeled data is a starting point, the 
information of label firstly transferred to the nearest 
neighbors, then to the secondary neighbors. The final state 
of label propagation is all the vectors of the unlabeled data 
are no longer changed, that is semantic labels achieves a 
smooth distribution in all the unlabeled data. Thus each 
model has the first k semantic labels. We expands the 
manually labeled data set L  to L U∪ , meanwhile for each 
label we assigned a confidence value which we interpret as 
the probability that the label is a relevant to the model. So 
the relevance of each model in L U∪  to each label can be 
described by the triple like this (xi, ‘airplane’, 0.83). 

3. Weighted Metric Learning  

The above method can extend the labelled data set, and we 
get its label confidence approximately. Now we can learn 
a new distance metric considered the size of label 
information as well as the correlation between features 
with the data in the extended labelled dataset L U∪ . RCA 
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(Relevant Component Analysis) is a simple and effective 
distance metric learning method. It can learn a global 
linear transformation in the same class constraints that 
users provided. In pattern recognition field its performance 
is better than the usual Euclidean distance and other 

distance metrics [10]. But we found that when the amount 
of labelled information is insufficient, the result got from 
traditional RCA will bias. So we propose a method called 
weighted RCA. The extended labelled dataset and 
labelling

 confidence we got are a guarantee of the algorithm’s 
validity. 
We firstly normalize the label confidence of each label 

in T , and then get a | |T -dimensional diagonal matrix of 
confidence: 

             1 2 3 | |[ , , ,..., ]TW Diagonal w w w w=           
where iw is mean confidence of all the models described 
by  i-th label in T . 
So we can use weighted covariance matrix instead of 
centralized covariance matrix of RCA. We summarize the 
process of the MS3ML algorithm as follows: 
(i) Given the data set 1 1 | | | |{( , )...( , )}L LL x y x y= ，which is 

comprised of | |L models, we propagate the label of 
the model to the unlabeled model setU , so we get the 
label’s confidence of each model which has been 
propagated (see section 3).  

(ii) Each label’s confidence are normalized, and a 
| | | |T T×  diagonal matrix of confidence is generated, 
the weighted covariance matrix of all the labeled 
model are calculated:  

| |

, ,
1 1

1 ( ) ( )
inT

T
c i c mean c i c mean

c i
C x x W x x

n − −
= =

= − −∑∑  (7) 

where ,c ix denotes i-th model in feature space 
described by c-th label. c meanx −  is mean point in 
feature space described by c-th label. 

(iii) Calculate  1C− as a mahalanobis distance metric: 
1

1 2 1 2 1 2( , ) ( ) ( )T
weighted RCAd x x x x C x x−

− = − −  (8) 
(iv) For each model in unlabeled models collection, we 

label it by multiple semantic annotation strategy. (see 
section 5). 

4.  Multiple Semantic Annotation For The 
Unlabeled Models 

Given an unlabeled 3D model newX , we wish assign labels 
from the set of all possible labels 1 | |{ ... }TT λ λ=  to newX . 
Specifically, for each label we wish to assign a confidence 
value which we interpret as the probability that iλ is a 
relevant label for newX . So we start with a geometric shape 
similarity metric and find the neighbors of newX within 
some distance threshold. Note that the distance threshold is 
allowed to be a function of the model, which allows for 

adaptively defining the threshold based on the density of 
models in a given portion of the descriptor space.  We take 
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 to be an estimate of the probability that newX  and 

neighbour iX − represent the same type of model and therefore 
should have similar text labels. Then given our unlabelled 
model newX , a possible text label iλ , and a neighbor 

neighbour iX −  from the extended labeled data set L U∪  (see 
section 3), the probability that newX  should have the label 
is 

( , )

( ) ( , )
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Where ( , )i
newC Xλ denotes the confidence of label iλ  

intuitively this means that the probability that iλ  is 
appropriate for newX  is the probability that it is appropriate 
for neighbour iX −  and that newX  and neighbour iX −  are similar 

enough to share labels. ( , )i
newC Xλ can be thought of as 

measuring how much we trust the original annotation 
on neighbour iX − . When considered over the full set of k 
neighbors this generalizes to 
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By analogy to the TF-IDF method from text processing 
we reweight these probabilities such that: 
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For each unlabeled model, we get a vector of 
probabilities for each semantic labels. We choose the TOP-
N labels to describe the model. 

5. Experiment 

To evaluate the proposed method, our experiments were 
performed on a database containing 1125 3D models, 
which were collected from the Princeton Shape 
Benchmark (PSB). In order to evaluate the methods 
described in this paper, 725 were semantically hand tagged 
with text labels. In the experiment, this paper mainly uses 
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the depth buffer method to extract the 3D models’ feature 
(438-dimensional feature vector) in the model base [11]. 
We performed a PCA over the descriptors, and kept only 
the top 20 dimensions.  
In this paper, we use “Average Precision” VS “Percentage 
of each tag labeled” to evaluate both automatic labeling 
process and retrieval process, figure 3 lists the average 
retrieval precision of five times. These types of labeling 
methods, including: Euclidean distance metric method, a 
typical supervised classification learning method (SVM 
algorithm and the Euclidean distance), RCA distance 
metric method (RCA algorithm and mahalanobis distance) 
and MS3ML. 

 

Fig.3. Comparison of the average retrieval precision 

Figure 3 shows that the proposed method has the higher 
labelling precision when there is a small amount of label 
information. Among them, the kernel function of the 
supervised labelling method SVM adopted RBF kernel 
[12]; the distance metric function used Euclidean distance. 
Since SVM requires a large number of training data, so if 
we select a few data sets for training, the labelling result 
was not be accurate and led to low retrieval precision. In 
order to test the validity of the proposed method on a small 
labelled information. Table 1 respectively shows the 
average retrieval efficiency of various methods in the case 
of very few labelled data (label 1, 2, 3 and 4 models for 
each label), and only the first 16 retrieval results will be 
taken into account. 

Table1. Comparison of the retrieval effectiveness of several 3D model 
retrieval methods with a small amount of labels 

methods 

Labeled 
models  

per 
label 

precision
（%） 

recall  
（%） 

Supervise
d method 

SVM and  
Euclidean 
distance 

1 17.31 5.51 
2 34.47 10.64 
3 49.52 16.82 
4 64.67 22.93 

Semi-
supervise
d method 

RCA 

1 38.92 13.12 
2 44.02 14.65 
3 46.41 15.92 
4 66.51 23.42 

MS3ML 1 74.11 26.51 

2 75.53 26.97 
3 77.55 27.78 
4 78.07 28.08 

Table 1 shows this proposed semi-supervised distance 
metric learning methods has a better retrieval results in the 
case of very few labelled data information. 

6. Conclusion And Future Work 

In this paper, we have proposed a novel method for 
multiple semantic automatic labeling of 3D models by 
semi-supervised metric learning (MS3ML). The method 
acquires a small amount of hand tagged information 
provided by users, and the semi-supervised semantic label 
propagation takes full use of unlabeled models to expand 
the training dataset. The expanded collection increase in 
the number of labeled models; meanwhile labeling 
confidence we got can describe the semantic relevance of 
the label, on the basis of the above two points, Weighted-
RCA method can effectively resolve the traditional RCA 
learning bias caused by the insufficient amount of labeled 
data or inaccurate labeling information. The result on the 
Princeton Shape Benchmark shows that MS3ML get a 
better retrieval results and performance, so the method not 
only reduce hand tagged information, but also improves 
the retrieval accuracy in the case of very few labelled data 
information.  
In addition, in our experiments, we observed that this 
method also has some limitations, because the algorithm 
requires that the small amount of labels provided is correct, 
if there are errors in these labels, it will reduce the 
efficiency of the algorithm. In future work we will focus 
on how to improve the robustness of the algorithm and 
perfect the annotation result by relevance feedback from 
search result. 
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