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Abstract 
We present a method to help diagnose breast cancer. Test data 
is generated with the help of the Laplacian Framework. Then 
the test data is used to train a neural network so that it is able to 
classify patients that have or do not have breast cancer. 

1. Introduction: 

BreastCancerCare.org.uk states that a small cancer may 
grow very quickly or a larger cancer may have been 
growing slowly over a longer time. Due to the sensitivity 
of the breast area, women are reluctant in going through 
the examination process. In this paper we present a 
method based on a 3D scan of the breast area without 
human intervention, where a patient can follow up on 
tumor size change in the breast area over time. 
Two of the Signs and Symptoms that Doctors Hospital at 
Renaissance (http://www.dhr-rgv.com/): 
 
» A lump, mass, or thickening in the breast  
» Change in the size or shape of a breast  
 
Our method will be very effective in identifying such 
changes that happen in the breast area. 

2. Laplacian Framework:   

Surface representation and processing is one key topic in 
computer aided design. The surface representation of a 
3D object may affect the information that we can 
perceive about that object. For example the triangular 
mesh representation can be used to: display the surface, 
deduce some topological information about the object, in 
addition to knowing the differential properties of the 
object that the model represents. 
In this paper we build on work done on mesh processing 
and modeling that is based on the Laplacian framework 
and differential representations pointed out by [Olg05] 
and [ATOM06]. As opposing to dealing with Cartesian 

coordinates, the differential representation utilized in the 
Laplacian framework results in detail-preserving 
operations. 
Laplacian operator and differential surface representation 
and surface reconstruction: 
To understand the work that this paper presents we will 
first talk about the Laplacian differential surface 
representation. 
If " 𝑀 "  is a mesh representing an object with “  𝑉 ” 
vertices and “𝐸  ” edges and “ 𝐹 ” faces. For each vertex 
“  𝐯𝐢 ” we have three Cartesian coordinated associated 
with each vertex: 𝑥𝑖 , 𝑦𝑖  , and 𝑧𝑖 . 
 
The differential or 𝛿-coordinates of  𝐯𝐢  is defined to be 
the difference between the absolute coordinates of  𝐯𝐢 and 
the center of mass of its immediate neighbors in the 
mesh 
𝛿𝑖 =   � 𝛿𝑖

(𝑥) +  𝛿𝑖
(𝑦) +   𝛿𝑖

(𝑧) � =    𝐯𝐢   -   
1
𝑑𝑖

   ∑ 𝐯𝐢𝑗∈𝑁(𝑖)  
 
Where N(i) = { j |(i, j) ∈ E} and di = |N(i)| is the number 
of immediate neighbors of i  (1-ring of the vertex). The 
transformation of the vector of absolute Cartesian 
coordinates to the vector of 𝛿  -coordinates can be 
represented in matrix form. Starting from the adjacency 
matrix A which is a square matrix that has 1 in the cell if 
both the row “i” and column “j” of the cell in the matrix 
represent an edge between the two vertices i, and j. 
 
Also we have the diagonal matrix D that has Dii =di , 
hence we can write the L matrix 
L= I – D-1A 
And the symmetric version Ls 
Ls=DL=D-A 
Then we can write: 
 

𝐿 𝑥 =  𝛿𝑥 
𝐿 𝑦 =  𝛿𝑦 
𝐿 𝑧 =  𝛿𝑧 

 

http://www.dhr-rgv.com/
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We cannot restore the Cartesian coordinates starting 
from 𝛿 –coordinates; because L is singular. In order to 
restore the Cartesian coordinates we need to specify the 
Cartesian coordinates of one vertex to resolve the 
translational degree of freedom. Substituting the 
coordinates of vertex i is equivalent to dropping both the 
ith row and column from L, which makes the matrix 
invertible [Olg05]. Usually how this is done is by placing 
more than one special constraint of the mesh vertices. 
We have therefore |C| additional constraints (called the 
positional constraints) of the form: 
 

𝐯𝐣  = 𝐜𝐣  , 𝐣 ∈ C 
 
If the vertices are ordered from 1 to m, then the linear 
system looks like: 

� 𝐿
𝜔𝐼𝑚∗𝑚|𝟎

� 𝑥 =  � 𝛿𝑥
𝜔𝑐1:𝑚

�                                      (1) 

 
The additional constraints make the linear system over-
determined (more equations than unknowns) and in 
general no exact solution may exist. However, the 
system is full-rank and thus has a unique solution in the 
least-squares sense: 

𝑥� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 �‖𝐿𝑥 − 𝛿𝑥‖2 + �𝜔2|𝑥𝑗 − 𝑐𝑗|
𝑗∈𝐶

� 

 
(1)  Can be written on the following form 

𝐴𝑥 = 𝑏                                     (2) 

3. Least squares Perturbation and Laplacain 
Mesh Processing: 

I. The Effect of delta Changes on Relative Error 

1. The Effect of Changes in b on Relative Error 

In this section we consider what if questions applied to 
equation (2). For example what if want to make changes 
on the model under investigation, the question that arises 
do we need to solve the new problem from the beginning. 
[Fas13] states that the liner system 𝐴𝑥 = 𝑏  may be 
perturbed as 𝐴(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏)  this implies 
that 𝐴𝛿𝑥 = 𝛿𝑏 , and hence we can solve this linear 
equation to get 𝛿𝑥  and add to solution of the original 
problem and get 𝑥 + 𝛿𝑥, i.e the solution of the perturbed 
problem. 

2. The Effect of Changes in A, and b on Relative 
Error 

If we solve (1) without including all the positional 
constraints we will have a deformed object of the 

original object. So what if we want to add more 
constraints to our problem latter. Again the question 
arises: Do we need to solve a new problem from the 
beginning? The answer is no, we can work on the 
perturbed system (𝐴 + 𝛿𝐴)(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏) to find: 
  𝛿𝑥 = (𝐴 + 𝛿𝐴)−1(𝛿𝑏 − 𝛿𝐴𝑥) 

II. Implementation details and Results 

We have used Matlab, and Graph tool box created by 
“Gabriel Peyre”. To calculate the least squares solution 
“mldivide” command was used. Due to the nature of the 
problem the solver used is Sparse QR Factorization via 
“SuiteSparseQR”. 

1. The Effect of Changes in b on Relative Error 

 The changes in b can result from multiple factors: 
aging that occurred on an object, or simply because 
we want to make a change on the object replacing a 
piece by another piece. 

 In figure (1) we see the effect of modifying part of 
the model 

 The Implementation details go as follows: 
(1) Solve the original problem 𝐴𝑥 = 𝑏 𝑡𝑜 𝑔𝑒𝑡 𝑥 
(2) Introduce a delta change on the b part in a limited 

number of vertices  
(3) Calculate  𝛿𝑏 
(4) Calculate 𝛿𝑥 from  𝛿𝑥 = 𝐴−1𝛿𝑏 
(5) Add 𝑥 + 𝛿𝑥 

 

 

Figure (1), on the top a bottom view to show the incase in size of the 
breast, on the bottom the red area shows where the tumor exits  

As indicated in the following table, the difference 
between values before applying the changes to the model 
and after Appling the changes to the model. The changes 
appear in the z component of the breast affected area of 
the model. 
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4. Feed Forward Back propagation Neural 
Network: 

I. Introduction: 

In “feed forward”, neurons are connected foreword. Each 
layer contains connections to the next layer. The term 

back propagation describes how the neural network is 
trained. It is a supervised training method, the network 
must be provided with both inputs and anticipated 
outputs, and the back propagation training algorithm then 
takes the calculated error and adjusts the weights of 
various layers backwards from the output layer to the 
input layer.   

 
Values with delta 

changes 
Values without 
delta changes 

Values with delta 
changes 

Values without 
delta changes 

Values with delta 
changes 

Values without 
delta changes 

0.60824 0.60711 0.14036 0.14 0.14029 0.13966 
0.54745 0.54623 0.070222 0.069529 0.31594 0.31536 
0.51604 0.51516 -0.017041 -0.017617 0.44149 0.44075 
0.48689 0.48571 0.30394 0.30427 0.56147 0.56086 
0.35449 0.35398 0.39946 0.39955 0.48003 0.47956 
0.41426 0.41339 0.47032 0.46925 0.29299 0.29268 
0.27682 0.2761 0.50747 0.50657 0.64017 0.63964 

 

 
A feed forward neural network with one hidden layer 

II. Choosing The Network Structure: 

A two layer feed forward neural network can be trained 
to react to a given input pattern with a prescribed output 
response. The hidden layer maps an input vector onto 
one of the vertices of a unit hyper cube. The output 
neuron realizes a hyper plane to separate vertices 
according to the different class that they belong to 
[TK09]. 
 
We used Matlab as a pattern recognition tool to train a 
two layer neural network.  
The input is the model with a tumor represented in a 30% 
increase factor of the natural body in one of four parts of 
the breast area. The input layer consists of 161 inputs. 
We apply the laplacian framework to the model with 
delta changes. We divide the breast area into four parts. 
We also use four values of 𝜔 from equation(1) which 
produces 16 models. The models that don’t have cancer 
are produced using the laplacian framework without 
delta changes, again with 𝜔  having four values. The 

hidden layer contains 161 elements. The network output 
is a layer composed of one output. The output one if 
there is tumor, zero otherwise. 
 

 
 

 
III. Results: 

The training set was divided into two halves. One half is 
used for training, the other half is used for testing and 
validation. 
After training the network it was able to identify the 
models that have cancer from the others that don’t have 
cancer. 
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5. Conclusion: 

We have shown how to generate patient and healthy 
models of the breast area using the Laplacian framework. 
We then used a two layer neural network to classify 
sample patients as having cancer. The network produces 
output proportional to the deformation caused by the 
tumor which helps the patient to keep track of 
deformation introduced by time that may be caused by 
cancer.  
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