
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014

1

Manuscript received September 5, 2014
Manuscript revised September 20, 2014

Simulation of The Detection of Noxious Breast Cancer

M. E.Wahed

Computer Science department, Suez Canal University, Egypt
M.Abdallah

Computer Science department, Suez Canal University, Egypt

Mohamed Soliman Elkomy

Computer Science department, Suez Canal University, Egypt

Abstract
We present a method to help diagnose breast cancer. Test data
is generated with the help of the Laplacian Framework. Then
the test data is used to train a neural network so that it is able to
classify patients that have or do not have breast cancer.

1. Introduction:

BreastCancerCare.org.uk states that a small cancer may
grow very quickly or a larger cancer may have been
growing slowly over a longer time. Due to the sensitivity
of the breast area, women are reluctant in going through
the examination process. In this paper we present a
method based on a 3D scan of the breast area without
human intervention, where a patient can follow up on
tumor size change in the breast area over time.
Two of the Signs and Symptoms that Doctors Hospital at
Renaissance (http://www.dhr-rgv.com/):

» A lump, mass, or thickening in the breast
» Change in the size or shape of a breast

Our method will be very effective in identifying such
changes that happen in the breast area.

2. Laplacian Framework:

Surface representation and processing is one key topic in
computer aided design. The surface representation of a
3D object may affect the information that we can
perceive about that object. For example the triangular
mesh representation can be used to: display the surface,
deduce some topological information about the object, in
addition to knowing the differential properties of the
object that the model represents.
In this paper we build on work done on mesh processing
and modeling that is based on the Laplacian framework
and differential representations pointed out by [Olg05]
and [ATOM06]. As opposing to dealing with Cartesian

coordinates, the differential representation utilized in the
Laplacian framework results in detail-preserving
operations.
Laplacian operator and differential surface representation
and surface reconstruction:
To understand the work that this paper presents we will
first talk about the Laplacian differential surface
representation.
If " 𝑀 " is a mesh representing an object with “ 𝑉 ”
vertices and “𝐸 ” edges and “ 𝐹 ” faces. For each vertex
“ 𝐯𝐢 ” we have three Cartesian coordinated associated
with each vertex: 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 .

The differential or 𝛿-coordinates of 𝐯𝐢 is defined to be
the difference between the absolute coordinates of 𝐯𝐢 and
the center of mass of its immediate neighbors in the
mesh
𝛿𝑖 = � 𝛿𝑖

(𝑥) + 𝛿𝑖
(𝑦) + 𝛿𝑖

(𝑧) � = 𝐯𝐢 -
1
𝑑𝑖

 ∑ 𝐯𝐢𝑗∈𝑁(𝑖)

Where N(i) = { j |(i, j) ∈ E} and di = |N(i)| is the number
of immediate neighbors of i (1-ring of the vertex). The
transformation of the vector of absolute Cartesian
coordinates to the vector of 𝛿 -coordinates can be
represented in matrix form. Starting from the adjacency
matrix A which is a square matrix that has 1 in the cell if
both the row “i” and column “j” of the cell in the matrix
represent an edge between the two vertices i, and j.

Also we have the diagonal matrix D that has Dii =di ,
hence we can write the L matrix
L= I – D-1A
And the symmetric version Ls
Ls=DL=D-A
Then we can write:

𝐿 𝑥 = 𝛿𝑥
𝐿 𝑦 = 𝛿𝑦
𝐿 𝑧 = 𝛿𝑧

http://www.dhr-rgv.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 2

We cannot restore the Cartesian coordinates starting
from 𝛿 –coordinates; because L is singular. In order to
restore the Cartesian coordinates we need to specify the
Cartesian coordinates of one vertex to resolve the
translational degree of freedom. Substituting the
coordinates of vertex i is equivalent to dropping both the
ith row and column from L, which makes the matrix
invertible [Olg05]. Usually how this is done is by placing
more than one special constraint of the mesh vertices.
We have therefore |C| additional constraints (called the
positional constraints) of the form:

𝐯𝐣 = 𝐜𝐣 , 𝐣 ∈ C

If the vertices are ordered from 1 to m, then the linear
system looks like:

� 𝐿
𝜔𝐼𝑚∗𝑚|𝟎

� 𝑥 = � 𝛿𝑥
𝜔𝑐1:𝑚

� (1)

The additional constraints make the linear system over-
determined (more equations than unknowns) and in
general no exact solution may exist. However, the
system is full-rank and thus has a unique solution in the
least-squares sense:

𝑥� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 �‖𝐿𝑥 − 𝛿𝑥‖2 + �𝜔2|𝑥𝑗 − 𝑐𝑗|
𝑗∈𝐶

�

(1) Can be written on the following form

𝐴𝑥 = 𝑏 (2)

3. Least squares Perturbation and Laplacain
Mesh Processing:

I. The Effect of delta Changes on Relative Error

1. The Effect of Changes in b on Relative Error

In this section we consider what if questions applied to
equation (2). For example what if want to make changes
on the model under investigation, the question that arises
do we need to solve the new problem from the beginning.
[Fas13] states that the liner system 𝐴𝑥 = 𝑏 may be
perturbed as 𝐴(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏) this implies
that 𝐴𝛿𝑥 = 𝛿𝑏 , and hence we can solve this linear
equation to get 𝛿𝑥 and add to solution of the original
problem and get 𝑥 + 𝛿𝑥, i.e the solution of the perturbed
problem.

2. The Effect of Changes in A, and b on Relative
Error

If we solve (1) without including all the positional
constraints we will have a deformed object of the

original object. So what if we want to add more
constraints to our problem latter. Again the question
arises: Do we need to solve a new problem from the
beginning? The answer is no, we can work on the
perturbed system (𝐴 + 𝛿𝐴)(𝑥 + 𝛿𝑥) = (𝑏 + 𝛿𝑏) to find:
 𝛿𝑥 = (𝐴 + 𝛿𝐴)−1(𝛿𝑏 − 𝛿𝐴𝑥)

II. Implementation details and Results

We have used Matlab, and Graph tool box created by
“Gabriel Peyre”. To calculate the least squares solution
“mldivide” command was used. Due to the nature of the
problem the solver used is Sparse QR Factorization via
“SuiteSparseQR”.

1. The Effect of Changes in b on Relative Error

 The changes in b can result from multiple factors:
aging that occurred on an object, or simply because
we want to make a change on the object replacing a
piece by another piece.

 In figure (1) we see the effect of modifying part of
the model

 The Implementation details go as follows:
(1) Solve the original problem 𝐴𝑥 = 𝑏 𝑡𝑜 𝑔𝑒𝑡 𝑥
(2) Introduce a delta change on the b part in a limited

number of vertices
(3) Calculate 𝛿𝑏
(4) Calculate 𝛿𝑥 from 𝛿𝑥 = 𝐴−1𝛿𝑏
(5) Add 𝑥 + 𝛿𝑥

Figure (1), on the top a bottom view to show the incase in size of the
breast, on the bottom the red area shows where the tumor exits

As indicated in the following table, the difference
between values before applying the changes to the model
and after Appling the changes to the model. The changes
appear in the z component of the breast affected area of
the model.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 3

4. Feed Forward Back propagation Neural
Network:

I. Introduction:

In “feed forward”, neurons are connected foreword. Each
layer contains connections to the next layer. The term

back propagation describes how the neural network is
trained. It is a supervised training method, the network
must be provided with both inputs and anticipated
outputs, and the back propagation training algorithm then
takes the calculated error and adjusts the weights of
various layers backwards from the output layer to the
input layer.

Values with delta

changes
Values without
delta changes

Values with delta
changes

Values without
delta changes

Values with delta
changes

Values without
delta changes

0.60824 0.60711 0.14036 0.14 0.14029 0.13966
0.54745 0.54623 0.070222 0.069529 0.31594 0.31536
0.51604 0.51516 -0.017041 -0.017617 0.44149 0.44075
0.48689 0.48571 0.30394 0.30427 0.56147 0.56086
0.35449 0.35398 0.39946 0.39955 0.48003 0.47956
0.41426 0.41339 0.47032 0.46925 0.29299 0.29268
0.27682 0.2761 0.50747 0.50657 0.64017 0.63964

A feed forward neural network with one hidden layer

II. Choosing The Network Structure:

A two layer feed forward neural network can be trained
to react to a given input pattern with a prescribed output
response. The hidden layer maps an input vector onto
one of the vertices of a unit hyper cube. The output
neuron realizes a hyper plane to separate vertices
according to the different class that they belong to
[TK09].

We used Matlab as a pattern recognition tool to train a
two layer neural network.
The input is the model with a tumor represented in a 30%
increase factor of the natural body in one of four parts of
the breast area. The input layer consists of 161 inputs.
We apply the laplacian framework to the model with
delta changes. We divide the breast area into four parts.
We also use four values of 𝜔 from equation(1) which
produces 16 models. The models that don’t have cancer
are produced using the laplacian framework without
delta changes, again with 𝜔 having four values. The

hidden layer contains 161 elements. The network output
is a layer composed of one output. The output one if
there is tumor, zero otherwise.

III. Results:

The training set was divided into two halves. One half is
used for training, the other half is used for testing and
validation.
After training the network it was able to identify the
models that have cancer from the others that don’t have
cancer.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 4

5. Conclusion:

We have shown how to generate patient and healthy
models of the breast area using the Laplacian framework.
We then used a two layer neural network to classify
sample patients as having cancer. The network produces
output proportional to the deformation caused by the
tumor which helps the patient to keep track of
deformation introduced by time that may be caused by
cancer.

References:
[BGAA12] Baerentzen J., Gravesen J., Anton F., Aanaes H.:
Guide to Computational Geometry Processing. Springer (2012)
[BKPAL 10] Botsch M., Kobbelt L., Pauly M., Alliez P., Levy
B.: Polygon Mesh Processing. AK Peters,Wellesley (2010)
[Fas13] Fasshauer G.: online notes for course MATH 477/577
at IIT
[Hea97] Heath M.: Scientific Computing An Introductory
Survey. McGraw-Hill (1997)
[HJ08] Heaton J.: Introduction to Neural Network for Java.
Heaton Research (2008)
[HL95] Hillier F., Lieberman G.: Introduction to Operations
Research. McGraw hill (1995)
[Mey00] Meyer C. Matrix Analysis and Applied Linear
Algebra. SIAM (2000)
[NISA06] Nealen A., Igarashi T., Sorkine O., Alexa M.:
Laplacian mesh optimization. Proceedings of ACM
GRAPHITE (2006)
[Pey04] Peyre G.: Toolbox Graph Mathworks (2004)
[R02] Raida Z. : Modeling EM structures in the neural network
toolbox of MATLAB, 2002
[Sor05] Sorkine O.: Laplacian Mesh Processing. Proceedings
of EUROGRAPHICS 2005, STAR Volume.
[TB97] Trefethen L., Bau D. : Numerical Linear Algebra.
SIAM (1997)
[TK09] Theodoridis S., Koutroumbas K. : Pattern Recognition.
Elsevier Inc. 2009
[WAE14] Wahed M., Abdallah M., Elkomy M. : Non
Superfluous Time Solutions of the Laplacian Framework.
ijcsns 2014

Mohamed Elkomy received his
B.Sc. in Electrical Engineering from
Ain Shams University in 2001. After
working as a teaching Assistant
(from 2006 to 2007) he has received
his Master in Computing from the
American university in Cairo in 2009.
His research interest includes

Computational Geometry, Geometric Processing, and Electrical
CAD design.

	[R02] Raida Z. : Modeling EM structures in the neural network toolbox of MATLAB, 2002
	[Sor05] Sorkine O.: Laplacian Mesh Processing. Proceedings of EUROGRAPHICS 2005, STAR Volume.

