
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014

12

Manuscript received September 5, 2014
Manuscript revised September 20, 2014

Visualization for Information Retrieval in Regional Distributed
Environment

Mamoon H. Mamoon, Hazem M. El-Bakry, Amany A. Slamaa

Faculty of computer science & information system
Mansoura University, EGYPT

Abstract
Information retrieval (IR) is the task of representing, storing,
organizing, and offering access to information items. The
problem for search engines is not only to find topic relevant
results, but results consistent with the user’s information need.
How to retrieve desired information from the Internet with high
efficiency and good effectiveness is become the main concern of
internet user-based. The interface of the systems does not help
them to perceive the precision of these results. Speed, resources
consuming, searching and retrieving process also aren't optimal.
The search engine's aim is developing and improving the
performance of information retrieval system and gifting the user
whatever his culture' level. The proposed system is using
information visualization for interface problems, and for
improving other side of web IR system's problems, it uses the
regional crawler on distributed search environment with
conceptual query processing and enhanced vector space
information retrieval model (VSM). It is an effective attempt to
match renewal user's needs and get a better performance than
ordinary system.
Keywords:
Regional distributed crawler, VSM, conceptual weighting,
visualization, WordNet, information visualization, web
information retrieval.

Introduction

This paper tries to aggregate an optimal or at least semi-
optimal information retrieval system by present visualized
results supported by more efficient search engine than the
standard. A search engine operates in the following order:
Web crawling, Indexing, and Searching. The development
include them as distributed regional web crawler,
conceptual searching. The refinement on proposed system
not stopped only at searching and results but also
accommodate to involve personalization benefits.
The goal of an information retrieval system is to maximize
the number of relevant documents returned for each query.
Keyword information retrieval systems often return a
proportion of irrelevant documents because matching
keywords is imprecise: words can have different meanings
when used in different contexts, and a single idea can often
be expressed by several different words or synonyms.
Information retrieval systems can be made more precise by
matching concepts, keywords for which the intended

meaning has been identified, either with information from
a lexicographic database in the case of documents, or by
asking the user to choose one meaning from several
possible meanings in the case of queries.
The matching algorithms used by keyword IR systems are
imprecise and retrieve irrelevant as well as relevant results.
Two causes of this imprecision are terminology and
semantics, both aspects of natural language. Terminology
affects retrieval because different people use different
words for the same concept. Terminology is often cultural;
a pavement in the UK is a sidewalk in the US, for example.
Semantics affects retrieval because the text of a document
may not contain the exact keywords in the query but may
nevertheless be about the topic of interest. This problem is
exacerbated by polysemy. Polysemous words have
different meanings in different contexts. For example, Java
can refer to the Island in Indonesia, a type of coffee, coffee
itself, or the object-oriented programming language.
Matching a word does not identify the context in which it
is used. The polysemous meanings, or senses, of words can
lead to keyword queries that are ambiguous. Identifying
the intended meaning of keywords can improve the
precision of IR systems.
The concept IR model proceeds in three stages: the
concepts in each document in the collection are identified,
the concepts in a query are identified, and the query
concepts are matched with the document concepts. Using
the concept declared in details in sections 1, 2. And see
how the concept also enhances one of information retrieval
model – vector space Model - not only intended meaning
problem in section 2.
As declared before and according to web information
retrieval problems [18], there is attempt to solve some of
them. In proposed system, there are some visualization
forms, user select which one he prefer. The suitable form
will display as default according to information that
conclude from his profile and his set cabbalists – software
and hardware -. This option is different on other retrieval –
visualization system that it display only one form don’t
care that it easy and suitable all culture (inchoate or
experienced) users. The system use personalization not
only for customize results but also in improving searching
process and increase time response. Figure 1 shows main
components of the proposed system (VIZIRRD).

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 13

Figure 1: proposed system

The Visualizing Information Retrieval system (VIZIR) or
visual information retrieval for the web has two main
engines; search engine and visualization engine. Each one
of them has own input and output and component that
declared in next figure 2. This system also has a
personalized feature. Combining these three will increase:
performance, efficiency and each user get own system
which declare how that achieve in the following sections.

Figure 2: architecture of VIZIRRD system

1- Query Expansion

Whenever a user wants to retrieve a set of documents, he
starts to construct a concept about the topic of interest;
such a conceptualization is called the "information need".
Given an "information need", the user must formulate a
query that is adequate for the information retrieval system.

Usually, the query is a collection of index terms, which
might be erroneous and improper initially. In this case, a
reformulation of the query should be done to obtain the
desired result. The reformulation process is called query
expansion [4]. So, Query expansion (QE) is the process of
reformulating a seed query to improve retrieval
performance in information retrieval operations by
expanding search query to match additional documents [9
and 41]. In the context of web search engines, query
expansion involves evaluating a user's input (what words
were typed into the search query area and sometimes other
types of data) and expanding the search query to match
additional documents. Query expansion involves
techniques such as:
1. Finding synonyms of words, and searching for the
synonyms as well.
2. Finding all the various morphological forms of words by
stemming each word in the search query.
3. Fixing spelling errors and automatically searching for
the corrected form or suggesting it in the results.
4. Re-weighting the terms in the original query [9].

1.2- Query expansion and WordNet:

Keyword IR systems retrieve documents by matching the
keywords in the query with the keywords in the documents.
A simple data structure that maps keywords to documents
is an inverted index. Each keyword (Ki) is listed in an
index and points to a list of the documents (Di) that
contain the keyword:
K1 ⇒ D1, D2, D3, D4
K2 ⇒ D1, D2
K3 ⇒ D1, D2, D3
K4 ⇒ D1
Query expansion is one automated technique that has been
used to address the imprecision of text retrieval techniques
(Spink 1994). Query expansion adds keywords to a query
that are related to the keywords supplied by the user, such
as the synonyms of the keyword. For example, if the
original query contains a single keyword, K, the synonyms
of the keyword are added as disjunctions. The query, Q =
K is expanded to incorporate the synonyms of K:
QE = K ∨ S1 ∨ S2
Adding the synonyms helps to overcome the problem of
different words being used for the same concept also when
user's query is only one, two, or maximum three words.
Automatic methods of choosing synonyms are required
because users find it difficult to come up with alternative
search terms.
Query expansion techniques can be enhanced with
concepts to make the expanded queries more specific.
Once the keywords in a query have been disambiguated
into concepts, the keywords relating to the generalizations,
specializations, and the parts of the concepts can be added

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 14

to the query [7]. The importance of concept will be
duplicated if we use it

1.3- Query expansion role in precision and recall

Search engines invoke query expansion to increase the
quality of user search results. It is assumed that users do
not always formulate search queries using the best terms.
Best in this case may be because the database does not
contain the user entered terms.
By stemming a user-entered term, more documents are
matched, as the alternate word forms for a user entered
term are matched as well, increasing the total recall. This
comes at the expense of reducing the precision. By
expanding a search query to search for the synonyms of a
user entered term, the recall is also increased at the
expense of precision. This is due to the nature of the
equation of how precision is calculated, in that a larger
recall implicitly causes a decrease in precision, given that
factors of recall are part of the denominator. It is also
inferred that a larger recall negatively impacts overall
search result quality, given that many users do not want
more results to comb through, regardless of the precision.
The goal of query expansion in this regard is by increasing
recall, precision can potentially increase (rather than
decrease as mathematically equated), by including in the
result set pages which are more relevant (of higher quality),
or at least equally relevant. Pages which would not be
included in the result set, which have the potential to be
more relevant to the user's desired query, are included, and
without query expansion would not have, regardless of
relevance. By ranking the occurrences of both the user
entered words and synonyms and alternate morphological
forms, documents with a higher density (high frequency
and close proximity) tend to migrate higher up in the
search results, leading to a higher quality of the search
results near the top of the results, despite the larger recall
[9].

2-A proposed Information Retrieval Model to use

A fundamental weakness of current information retrieval
method is that the vocabulary that searchers use in
formulating their queries is often not the same as the one
by which the information has been indexed. In an attempt
to resolve this drawback has been to combine Vector
Space Model (VSM) and WordNet [4, 5 and 10] ontology
after replaceing the Term frequency- Inverse Document
Frequency TF-IDF term weighting with Concept-based
Term Weighting (CBW) to Compatible with WordNet.
WordNet is utilized to get conceptual information of each
word in the given query context.

2.1- a new Query term weighting for Vector Space
Model

2.1.1 Problem definition and suggestion

The main disadvantage of the vector space model is that it
does not in any way de ne what the values of the vector
components should be. The problem of assigning
appropriate values to the vector components is known as
term weighting. Early experiments by Salton (1971) and
Salton and Yang (1973) showed that term weighting is not
a trivial problem at all. They suggested so-called tf :idf
weights, a combination of term frequency tf , which is the
number of occurrences of a term in a document, and idf ,
the inverse document frequency, which is a value inversely
related to the document frequency df , which is the number
of documents that contain the term. Many modern
weighting algorithms are versions of the family of tf :idf
weighting algorithms. Salton's original tf :idf weights
perform relatively poorly, in some cases worse than simple
idf weighting [5].
As calculating query term importance was a fundamental
issue of the retrieval process. The traditional term
weighting scheme TF-IDF approach has following
drawbacks:
Rare terms are no less important than frequent terms – IDF
assumption
 Multiple appearances of a term in a document are no less
important than single appearance – TF assumption
Because of IDF assumption, the TF-IDF term weighting
scheme assigns higher weights to the rare terms frequently.
Thus, it will influence the performance of classification.
Concept-based Term Weighting (CBW) calculates term
importance by utilizing conceptual information found in
the WordNet ontology. CBW was fundamentally different
than IDF in that it was independent of document collection.
The significance of CBW over IDF is that:
CBW introduced an additional source of term weighting
using the WordNet ontology.
CBW was independent of document collection statistics,
which is a feature that affects performance [5].

2.2.2 Vector Space Model (VSM) using WorldNet

Term significance can be effectively captured using CBW
and then be used as a substitute or possible co-contributor
to IDF. CBW presents a new way of interpreting
ontologies for retrieval, and introduces an additional
source of term importance information that can be used for
term weighting. In proposed method, Concept-based Term
Weighting (CBW) technique is used to calculate term
importance by finding the conceptual information of each
term using WordNet ontology. The significance of this
technique is that:

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 15

1. it is independent of document collection statistics,
2. it presents a new way of interpreting ontologies for
retrieval,
3. It introduces an additional source of term importance
information that can be used for term weighting.

In this research project WordNet is the chosen ontology
used by CBW. To determine generality or specificity for a
term, conceptual weighting employs four types of
conceptual information in WordNet:
1. Number of Senses.
2. Number of Synonyms.
3. Level Number (Hypernyms).
4. Number of Children (Hyponyms/Troponyms).
Overview of Concept based term weighting to calculate
CBW value of a query term is shown in figure 3. As shown,
there are three main steps involved to find the weight of a
query. Extraction step extracts conceptual information of
each word based on each POS (Noun, Verb, Adjectives)
from WordNet. Weighting step find the weight of each
extracted integer values for each POS based on weighting
functions. After weighting fusion is applied to get a single
CBW value for a query term. Any terms used in the query
that are non-WordNet terms were given a default high
CBW value. This is based on the assumption that the term
does not appear in WordNet, is most likely a specific term,
and thus it is highly weighted.

Figure 3: overview of concept-based term weighting (CBW) [5]

The block diagram shown in figure below consists of three
main steps:
1. Extraction
2. Weighting
3. Fusion

Extraction:

This step works on a query given by user and extracts the
conceptual value for each input query term from WordNet
which includes number of senses, number of synonyms,
level number (Hypernyms) and number of Children
(Hyponyms/Troponyms). Extraction is done by using
extraction algorithm [2] as shown below. Initially all
values in conceptual term matrix (CTM) are set to -1. Then
senses for each POS are counted from WordNet and listed
in the first column of CTM. Similarly synonyms for each
POS are found by selecting maximum synonyms for senses
given by WordNet for a query term. Levels for each POS
are found by selecting minimum hypernyms for senses
given by WordNet for a input query term and listed in third
column of CTM. And finally children for each POS are
found by selecting maximum hyponyms/troponyms for
senses given by WordNet for a query term. These extracted
integer values are stored in Conceptual Term Matrix
(CTM) [5].

Extraction Algorithm

Stemming the terms before building the inverted index has
the advantage that it reduces the size of the index, and
allows for retrieval of web pages with various inflected
forms of a word (for example, when searching for web
pages with the word computation, the results will include
web pages with computations and computing). Stemming
is easier to do than computing base forms, because
stemmers remove suffixes, without needing a full
dictionary of words in a language [5].

 Weighting

Weighting is the next step after extraction. Weighting
functions convert extracted integer values into weighted
values in the range [0, 1]. These weighted values are stored
in weighted conceptual term matrix. Based on min, max
and avg values for each POS (noun, verb and adjectives)
weighting functions are designed as shown in equation (1)
and (2). The level number and the number of children are
both set to zero for adjectives because adjectives are not
organized in a conceptual hierarchy since they are only
descriptors of nouns. Therefore, it is not possible to extract
the level number and the number of children from
WordNet for adjectives. Therefore weighting functions are
not created for level number and number of children of
adjectives.
a) General Weighting Function for
 i. Nouns, Verbs Senses, Synonyms and Children
ii. Adjectives Senses and Synonyms

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 16

 Eq. (1)

b) General Weighting Function for Nouns, Verbs Levels

Eq. (2)

In above functions is taken as an error factor. These all
functions are based on Min, Max and Avg values of each
POS. For noun, verb and adjective’s senses, weight 0 is
assigned for an integer value greater than or equal to Max,
weight 0.5 is assigned for an integer value equal to Avg
and weight 1 is assigned for an integer value equal to Min.
For an integer value in the range [Min, Avg] is given a
weight in the range [0.5, 1] and an integer value in the
range [Max, Avg] is given a weight in the range [0, 0.5].
Same rules are applied for noun, verb and adjective’s
synonyms and children. For noun, verb and adjective’s
level, weight 0 is assigned for an integer value equal to
Min, weight 0.5 is assigned for an integer value equal to
Avg and weight 1 is assigned for an integer value greater
than or equal to Max. For an integer value in the range
[Min, Avg] is given a weight in the range [0, 0.5] and an
integer value in the range [Avg, Max] is given a weight in
therange [0.5, 1].

Fusion

Fusion is the last step to get single CBW value of a query
that determines the importance of a term. Fusion is
performed on weighted conceptual term matrix which is
the result obtained by weighting. Fusion considers a new
matrix named as Weights Fusing Matrix (WFM) of size
3*4 with all values set to 0.5 to give an average effect.
WFM is shown below.

Fusing steps:
1. Fuse each column of the weighting CTM with the
columns of WFM using column weighted average function.

 Eq. (3)

2. Fuse the row R generated in step (1), as shown in
previous using row weighted average to give the CBW
term importance.

Eq. (4)

Where W is a set of weights with each element being a
value in the range [0, 1], and set to 0.5 by default.
Note: weighting (CBW) = Weighted Conceptual Term
Matri Weighted (CTM) X Weight Fusing Matrix (WFM)

3- Implementation of the concept in three phases

The first stage in the concept IR model is to identify the
concepts in the documents in the collection. An index must
be built that maps concepts to documents to enable fast
retrieval. This process need only be done once for each
document added to the collection. The index can be
updated incrementally as each new document is added to
the collection.
The concepts in a document are identified by first
extracting the keywords and removing the duplicates and
stop words. Each keyword is then added to a list of
concepts. A keyword with more than one sense must be
disambiguated before being added to the list of concepts.
Five tests are performed to identify which sense of a
keyword is present in a document. A point is awarded if
any of the following conditions are met:
1. one or more of the synonyms of the sense occur in the
document;
2. the sense is a part of a concept that occurs in the
document;
3. a concept that occurs in the document is part of the
sense;
4. the sense is a generalization of a concept that occurs in
the document;
5. The sense is a specialization of a concept that occurs in
the document.
The application of each test produces a matching score that
indicates the algorithm’s level of confidence that the
concept is present in the document. Tied scores can be
presented to a domain expert for final classification. Each
concept (Ci) is stored in an index and points to a list of the
documents that contain the concept. For example:
C1 ⇒ D1, D2, D3, D4
C2 ⇒ D1, D2
C3 ⇒ D1, D2, D3
C4 ⇒ D1

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 17

The list of documents for each concept in the index is
augmented with the score Mi of matching concept C with
document Di:
C ⇒ {D1, M1}, {D2, M2}, {D3, M3}
The same Boolean operations can be applied to an index of
concepts as for an index of keywords.
For example, the simple query Q = java, must be
disambiguated by asking the user which of the three senses
of Java is intended. The keywords in a query can be
disambiguated by presenting a list of the senses of each
keyword and enabling the user to select the intended senses.
Disambiguating a keyword by selecting one sense over the
other senses indicates that documents containing the other
senses should not be retrieved. If query Q is disambiguated
into sense 3, the object-oriented programming language,
then documents about the island or the beverage should not
be retrieved. This requirement can be met by ensuring that
documents containing the synonyms, specializations,
generalizations, etc. of the other senses are not retrieved.
This translates into a query such as:
QE = java ∧ ¬(jakarta ∨ indonesia ∨ bali) ∧ ¬(espresso
∨ caffeine ∨ tea)
This query requests documents that contain the keyword
Java but not the keywords that relate to the two senses of
Java that are not required: the island and the beverage. The
keywords that represent the island are one of its parts,
Jakarta, the whole of which Java is a part, Indonesia, and
another part of Indonesia, Bali. These are a selection of the
keywords that might be present in a document about Java
the island. The keywords that represent the beverage are a
type of coffee, espresso, a substance that is part of coffee,
caffeine, and an alternative to coffee, tea. These are a
selection of the keywords that might be present in a
document about Java the beverage.
The final stage of the concept IR model is to match the
concepts in a query with the concepts in the documents.
Documents are matched with queries using the concept ⇒
document index. The degree to which the concepts in a
query match the concepts in the documents is represented
by a numerical matching score that is used to rank the
results.
The concept IR model is more flexible than the strict
matching performed by the Boolean keyword model. The
Boolean model partitions documents into two sets: those
documents that contain the query keywords and those those
do not. This strict partitioning does not fit well with natural
language. The concept IR model enables documents to be
retrieved that match queries in varying degrees.
Five matching rules—based on the relations described in
section 3—are used to generate a matching score. The base
rule is that the same sense of a keyword always matches
itself.

Synonyms of the same sense of a keyword always match.

Concepts can be matched by the hyponym (generalization)
relation. For example, espresso and cappuccino are both
types of coffee, i.e. coffee is a generalization of both
espresso and cappuccino. Concepts can be matched by
applying a relation more than once.

Similarly, beer is a type of alcoholic beverage and that
cappuccino is a type of coffee. Alcoholic beverage and
coffee are both types of beverage: beverage is a
generalization of a generalization of beer and coffee.

Concepts can be matched by the meronym (part-of)
relation. For example, Java and Bali are parts of Indonesia.
Concepts can also be matched by more than one relation at
once.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 18

Java and Bali match Island with the hyponym relation, and
match Indonesia with the meronym relation.

Two concepts, A and B, are matched in the following
order:
1. check if A = B;
2. check if A is a synonym of B;
3. check if A and B are part of the same concept;
4. check if A and B have a common generalization;
5. check if A is a generalization of B.
The relation that matches two concepts determines the
matching score. For example, the meronym relation is
stronger than the hyponym relation. Concepts that are part
of a whole are more closely related that generalizations of
those parts. Java is more closely related to Bali than to
Australia, for example, because Java and Bali are part of
Indonesia, even though they are all islands.

Matching scores are weighted by the relation used to match
the concepts. The relations have different weights and are
weighted in the following order, from highest to lowest:
1. exact match;
2. synonyms;
3. parts;
4. specializations;
5. Generalizations.
Matching scores are also weighted by the number of
relations used to match the concepts; the larger the number
of relations used, the lower the score. For example,
espresso and cappuccino would have a higher matching
score than beer and cappuccino even though the three
concepts have a common generalization, beverage.
Espresso and cappuccino are matched with one application
of the hyponym relation; beer and cappuccino are matched
with two applications [7].

3- Feedback

To overcome query formulation and the inherent word
ambiguity in natural language problems, researchers have
focused on automatic query expansion to help the user
formulate what information is really needed, declared
before. Another widely used method of query expansion is
the use of relevance feedback from the user which gives
the relevance of documents to clarify the ambiguity. In fact,
these two techniques complement each other. However, the
mechanisms of relevance feedback based on words or
documents in the past research both have their own
deficiencies [8]. This involves the user performing a
preliminary search, then examining the documents returned
and deciding which are relevant. Finally, terms from these
documents are added to the query and the search is
repeated. This obviously requires human intervention and,
as a result, is inappropriate in many situations. However,
there is a similar approach, sometimes called pseudo-
relevance feedback, in which the top few documents from
an initial query are assumed relevant and are used for
automatic feedback [4].
Spink et al. (2000) present results from the use of
relevance feedback in the Excite search engine. Only about
4% of user query sessions used the relevance feedback
option, and these were usually exploiting the ``More like
this'' link next to each result. About 70% of users only
looked at the first page of results and did not pursue things
any further. For people who used relevance feedback,
results were improved about two thirds of the time [11].

4- User interface and information visualization

User interfaces are a communication between human
information seekers and information retrieval systems.
Information seeking is an imprecise process. When users

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 19

approach an information access system they often have
only a fuzzy understanding of how they can achieve their
goals. Thus the user interface should aid in the
understanding and expression of information needs. It
should also help users formulate their queries, select
among available information sources, understand search
results, and keep track of the progress of their search [1].
The roles of user interface are:
1. Aiding in the understanding and expression of
information needs.
2. helping users formulate their queries, select among
available information sources, understand search results,
and keep track of the progress of their search.(formulate/
select/ understand/ keep track)
What makes an effective human- computer interface?
"Well designed, effective computer systems generate
positive feelings of success, competence, mastery, and
clarity in the user community. When an interactive system
is well-designed, the interface almost disappears, enabling
users to concentrate on their work, exploration, or pleasure
[1] ."………….Ben shneiderman
Below we discuss those principles that are of special
interest to information access systems.
1. Design principles
a. Offer informative feedback: users with feedback about
the relationship between their query specification and
documents retrieved, about relationships among retrieved
documents, and about relationships between retrieved
documents and metadata describing collections. If the user
has control of how and when feedback is provided, then
the system provides an internal locus of control.
b. Reduce working memory load: information access is an
iterative process, the goals of which shift and change as
information is encountered. one key way information
access interfaces can help with memory load is to provide
mechanisms for keeping track of choices made during the
search process, allowing users to return to temporarily
abandoned strategies, jump from one strategy to the next,
and retain information and context across search sessions.
Another memory-aiding device is to provide browsable
information that is relevant to the current stage of the
information access process. This includes suggestions of
related terms or metadata, and search starting points
including lists of sources and topic lists.
c. Provide alternative interfaces for novice and expert
users: an important tradeoff in all user interface design is
that of simplicity versus power. Simple interfaces are
easier to learn, at the expense of less flexibility and
sometimes less efficient use. Powerful interfaces allow a
knowledgeable user to do more and have more control
over the operation of the interface, but can be time-
consuming to learn and impose a memory burden on
people who use the system only intermittently. A common
solution is to use a "scaffolding" technique. The novice

user is presented with a simple interface that can be
learned quickly and that provides the basic functionality of
the application, but is restricted in power and flexibility.
Alternative interfaces are offered for more experienced
users, giving them more control, more options, and more
features, or potentially even entirely different interaction
models. Good user interface design provides intuitive
bridges between the simple and the advanced interfaces [1].
From the viewpoint of user interface design, people have
widely differing abilities, preferences, and predilections.
Important differences for information access interfaces
include relative spatial ability and memory, reasoning
abilities, verbal aptitude, and (potentially) personality
differences. Age and cultural differences can contribute to
acceptance or rejection of interface techniques. An
interface innovation can be useful and pleasing for some
users, and foreign and cumbersome for others. Thus
software design should allow for flexibility in interaction
style, and new features should not be expected to be
equally helpful for all users [1].
An important aspect of human-computer interaction is the
methodology for evaluation of user interface techniques.
Users require only a few relevant documents and do not
care about high recall to evaluate highly interactive
information access systems, useful metrics beyond
precision and recall include: time required to learn the
system, time required to achieve goals on benchmark tasks,
error rates, and retention of the use of the interface over
time [1].

Visualization

The human perceptual system is highly attuned to images,
and visual representations can communicate some kinds of
information more rapidly and effectively than text. For
example, the familiar bar chart or line graph can be much
more evocative of the underlying data than the
corresponding table of numbers. The goal of information
visualization is to translate abstract information into a
visual form that provides new insight about that
information. Visualization has been shown to be successful
at providing insight about data for a wide range of tasks.
The field of information visualization is a vibrant one, with
hundreds of innovative ideas burgeoning on the Web.
However, applying visualization to textual information is
quite challenging, especially when the goal is to improve
search over text collections. As discussed, search is a
means towards some other end, rather than a goal in itself.
When reading text, one is focused on that task; it is not
possible to read and visually perceive something else at the
same time. Furthermore, the nature of text makes it
difficult to convert it to a visual analogue.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 20

Proposed visualization engine

The idea was to select existing visualizations for text
documents and to combine them in a novel way. Our
selection of existing visualizations was based on the
assumption to find expressive visualizations keeping in
mind the target users, their tasks, their technical
environment (typical desktop PC and not a high end
workstation for extraordinary graphic representations) and
the type of data to be visualized (text documents). The idea
was to visualize additional information about the retrieval
documents to the user in a way that is intuitive, fast to
interpret and can scale to large document sets.
Another important difference of our VIZIR system with
existing retrieval systems for the Web is the
comprehensive visual support of different steps of the
information seeking process. The visual views used in
VIZIR supports the interaction of the user with the system
during the formulation of the query (e.g. visualization of
related terms of the query terms with a graph), during the
review of the search results (e.g. visualization of different
document attributes like date, size, relevance of the
document set with a scatter plot or visualization of the
distribution of the relevance of the query terms inside a
document with a TileBar), and during the refinement of the
query (e.g. visualization of new query terms based on a
relevance feedback inside the graph representing the query
terms).

Visualization engine component

Systems combing the functionality of retrieval systems
with the possibilities of information visualization systems
are called visual information seeking systems. The next
design decision after retrieving was to transform and save
all search results and their characteristics in a local
repository (RDBMS) with a specific data schema. The data
schema for each document is described in data tables and
represents additional information about the retrieved
documents. There are two categories of additional
information that could be visualized: visualization of
document attributes, and visualization of inter-document
similarities. It use predefined document attributes (e.g. title,
relevance, date, size, document type, server type), and
visualizations that show how the retrieved documents
relate to each of the terms used in the query (query terms`
distribution).
The next step in the development process was to find
visual mappings of the data tables to good visual structures.
All available attributes of each document are shown in
different columns of the table. Each row shows one
document. The user has the possibility to sort each
document attribute in an increasing or decreasing order or
to customize the table to his personal preferences (e.g. to

show only the attributes he is interested in or to rearrange
the order of the columns).the important design decision
was to use a multiple view approach offering the user the
possibility to choose the most appropriate visualization
view for his current demand or individual preferences.
In all different views we have made extensive use of
different interaction techniques (e.g. direct manipulation,
details- on - demand, zooming, dynamic queries, sorting)
to give the user control over the mapping of data to visual
structures [12].
Briefly each technique breaks down into four data stages,
three types of data transformation and four types of within
stage operators. The four data stages are: value, analytical
abstraction, visualization abstraction, and view, as seen in
table 1. Transforming data from one stage to another
requires one of the three types of data transformation
operators: data transformation, visualization
transformation, and visual mapping transformation, as seen
in table 2 [13].

Table 1: data stages in the data state model
Stages Description

Value The raw data
Analytical
abstraction

Data about data, or
information, meta data

Visualization
abstraction

Information that is
visualizable on the screen
using a visualization
technique

view The end-product of the
visualization mapping,
where the user sees and
interprets the picture
presented to her

Table 2: transformation operators
Processing step Description
Data
Transformation

Generates some forms of
analytical abstraction from
the value (usually by
extraction)

Visualization
Transformation

Takes an analytical
abstraction and further
reduces it into some form
of visualization abstraction,
which is visualizable
content.

Visual Mapping
Transformation

Takes information that is in
a
visualizable format and
presents a graphical view.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 21

Distributed Crawler, distributed search engine,
personalization

Distributed search is a search engine model in which the
tasks of Web crawling, indexing and query processing are
distributed among multiple computers and networks.
Originally, most search engines were supported by a single
supercomputer. In recent years, however, most have moved
to a distributed model. Google search, for example, relies
upon thousands of computers are crawling the Web from
multiple locations all over the world. Our proposed
distributed crawler is in detail in the next section.
In Google's distributed search system, each computer
involved in indexing crawls and reviews a portion of the
Web, taking a URL and following every link available
from it (minus those marked for exclusion). The computer
gathers the crawled results from the URLs and sends that
information back to a centralized server in compressed
format. The centralized server then coordinates that
information in a database, along with information from
other computers involved in indexing.
When a user types a query into the search field, Google's
domain name server (DNS) software relays the query to
the most logical cluster of computers, based on factors
such as its proximity to the user or how busy it is. At the
recipient cluster, the Web server software distributes the
query to hundreds or thousands of computers to search
simultaneously. Hundreds of computers scan the database
index to find all relevant records. The index server
compiles the results, the document server pulls together the
titles and summaries and the page builder creates the
search result pages.
Some projects, such as Wikia Search (formerly Grub) are
moving towards an even more decentralized search model.
Similarly to distributed computing projects such as
SETI@home , many distributed search projects are
supported by a network of voluntary users whose
computers run client software in the background [17].

5- Distributed crawler on client machine

The challenging task of indexing the web (usually referred
as web-crawling) has been heavily addressed in research
literature. However, due to the current size, increasing rate,
and high change frequency of the web, no web crawling
schema is able to pace with the web. While current web
crawlers managed to index more than 3 billion documents,
it is estimated that the maximum web coverage of each
search engine is around 16% of the estimated web size [14].
Distributed crawling was proposed to improve this
situation [19]. This has following benefits: (1) increased
resource utilization, (2) effective distribution of crawling
tasks with no bottle necks, (3) Configurability of the
crawling tasks [14].

The paper describes the design and implementation of a
crawler on client machine and delivery of the information
from a web browser to search engine’s central database,
and preprocessing, storage and retrieval of the information
at the central location. The crawler scales to (at least)
several hundred pages per second, is resilient against
system crashes and other events, and can be adapted to
various crawling applications. We present a new model
and architecture of the Web Crawler using multiple HTTP
connections to WWW. The multiple HTTP connection is
implemented using multiple threads and asynchronous
downloader module so that the overall downloading
process is optimized. Unloads search engine’s crawling
task to the millions of client machines that continuously
scour the web, allows using processing power of these
remote machines to extract the information from a web site
that is being currently visited by a web browser. Since the
extraction of information from visited pages is occurring in
the web browser, there is no need to store these pages on
the central location computers of the search engine. Thus,
the proposed approach may significantly alleviate three
difficult problems of retrieval of information from the web
– insufficient efficiency to harvest information from the
web by crawlers, enormous requirements for storage of
harvested pages, and requirements for processing power to
extract the information from the pages.
The new model for the process of information retrieval
from the web has the process consisting of the three major
conceptual stages: information harvesting by a web
browser at a client’s location, delivery of the information
from a web browser to search engine’s central database,
and preprocessing, storage and retrieval of the information
at the central location.
 The user specifies the start URL from the GUI provided.
It starts with a URL to visit. As the crawler visits the URL,
it identifies all the hyperlinks in the web page and adds
them to the list of URLs to visit, called the crawl frontier.
URLs from the frontier are recursively visited and it stops
when it reaches more than five levels from every home
pages of the websites visited and it is concluded that it is
not necessary to go deeper than five levels from the home
page to capture most of the pages actually visited by the
people while trying to retrieve information from the
internet. The web crawler system is designed to be
deployed on a client computer, rather than on mainframe
servers which require a complex management of resources,
still providing the same information data to a search engine
as other crawlers do, discuss the performance bottlenecks,
and describe efficient techniques for achieving high
performance [14, 15, and16].

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 22

The proposed distributed crawler

Crawlers consume resources: network bandwidth to
download pages, memory to maintain private data
structures in support of their algorithms, CPU to evaluate
and select URLs, and disk storage to store the text and
links of fetched pages as well as other persistent data.
A crawler for a large search engine has two major
components, see figure 4. First, it has to have a good
crawling strategy i.e. a strategy to decide which pages to
download next, it called crawling application. Second,
crawling system, it needs to have a highly optimized
system architecture that can download a large number of
pages per second while being robust against crashes,
manageable, and considerate of resources and web servers.

 Figure 4: two basic component of crawler

A model of a crawler on the client side with a simple PC,
which provides data to any search engines as other crawler
provide. To retrieve all webpage contents, the HREF links
from every page will result in retrieval of the entire web’s
content
1. Start from a set of URLs
2. Scan these URLs for links
3. Retrieve found links
4. Index content of pages
5. Iterate
The crawler designed has the capability of recursively
visiting the pages. The web pages retrieved is checked for
duplication i.e. a check is made to see if the web page is
already indexed if so the duplicate copy is eliminated. This
is done by creating a data digest of a page (a short, unique
signature), then compared to the original signature for each
successive visit as given in figure 5. From the root URL
not more than five links are visited and multiple seed
URLs are allowed. The indexer has been designed to
support HTML and plain text formats only. It takes not
more than three seconds to index a page. Unusable
filename characters such as “?” and “&” are mapped to
readable ASCII strings. The WWW being huge, the
crawler retrieves only a small percentage of the web.

Input: Start URL. ; say u
1. Q = {u}. { assign the start URL to visit}
2. while not empty Q do
3. Dequeue u ∈Q
4. Fetch the contents of the URL asynchronously.
5. I = I ∪ {u} {Assign an index to the page visited
and pages indexed are considered as visited}
 6. Parse the HTML web page downloaded for
text and other links present. {u1, u2, u3, ...}
 7. for each {u1, u2, u3, …} є u do
 8. if u1 ∉I and u1 ∉Q then
 9. Q = Q ∪{u1}
 10. end if
 11. end for
12. end while

Figure 5: web crawler algorithm

We have considered two major components of a crawler -
collecting agent, and searching agent. The collecting agent
downloads web pages from the WWW and indexes the
HTML documents and storing the information to a
database, which can be used for later search. Collecting
agent includes a simple HTML parser, which can read any
HTML file and fetch useful information, such as title, pure
text contents without HTML tag, and sub-link. The
searching agent- searching agent is responsible for
accepting the search request from user, searching the
database and presenting the search results to user. When
the user initiates a new search, database will be searched
for any matching results, and the result is displayed to the
user, it never searches over WWW but it searches the
database only. A high level architecture of a web crawler
has been analyzed as in figure 6 for building web crawler
system on the client machine. Here, the multi-threaded
downloader downloads the web pages from the WWW,
and using some parsers the web pages are decomposed into
URLs, contents, title etc. The URLs are queued and sent to
the downloader using some scheduling algorithm. The
downloaded data are stored in a database.

Figure 6: High-level architecture of a standard Web crawler.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 23

Soft ware architecture

The architecture and model of our web crawling system is
broadly decomposed into four stages. The figure 7 depicts
the flow of data from the World Wide Web to the crawler
system. The user gives a URL or set of URL to the
scheduler, which requests the downloader to download the
page of the particular URL. The downloader, having
downloaded the page, sends the page contents to the
HTML parser, which filters the contents and feeds the
output to the scheduler. The scheduler stores the metadata
in the database. The database maintains the list of URLs
from the particular page in the queue. When the user
request for search, by providing a keyword, it’s fed to the
searching agent, which uses the information in the storage
to give the final output.

Figure 7: Software Architecture

1. HTML parser

We have designed a HTML parser that will scan the web
pages and fetch interesting items such as title, content and
link. Other functionalities such as discarding unnecessary
items and restoring relative hyperlink (part name link) to
absolute hyperlink (full path link) are also to be taken care
of by the HTML parser. During parsing, URLs are
detected and added to a list passed to the downloader
program. At this point exact duplicates are detected based
on page contents and links from pages found to be
duplicates are ignored to preserve bandwidth. The parser
does not remove all HTML tags. It cleans superfluous tags
and leaves only document structure. Information about
colors, backgrounds, fonts is discarded. The resulting file
sizes are typically 30% of the original size and retain most
of the information needed for indexing.

2. Creating an efficient multiple HTTP connection

Multiple concurrent HTTP connection is considered to
improve crawler performance. Each HTTP connection is
independent of the other so that the connection can be used
to download a page. A downloader is a high performance
asynchronous HTTP client capable of downloading
hundreds of web pages in parallel. We use multi-thread
and asynchronous downloader. We use the asynchronous
downloader when there is no congestion in the traffic and
are used mainly in the Internet-enabled application and
activeX controls to provide a responsive user-interface
during file transfers. We have created multiple
asynchronous downloaders, wherein each downloader
works in parallel and downloads a page. The scheduler has
been programmed to use multiple threads when the number
of downloader object exceeds a count of 20.

3. Scheduling algorithm

As we are using multiple downloaders, we propose a
scheduling algorithm to use them in an efficient way. The
design of the downloader scheduler algorithm is crucial as
too many objects will exhaust many resources and make
the system slow, too small number of downloader will
degrade the system performance. The scheduler algorithm
is as follows:
System allocates a pre-defined number of downloader
objects (20 in our experiment).
User input a new URL to start crawler.
If any downloader is busy and there are new URLs to be
processed, then a check is made to see if any downloader
object is free. If true assign new URL to it and set its status
as busy; else go to 6.
After the downloader object downloads the contents of
web pages set its status as free.
If any downloader object runs longer than an upper time
limit, abort it. Set its status as free.
If there are more than predefined number of downloader
(20 in our experiment) or if all the downloader objects are
busy then allocate new threads and distribute the
downloader to them.
Continue allocating the new threads and free threads to the
downloader until the number of downloader becomes less
than the threshold value, provided the number of threads
being used be kept under a limit.
Go to 3.
This mode is using a least amount of resources on the
client machine. When a browser-crawler is site oriented
then it crawls in a background the site that the user pointed
a browser to. The crawling is performed while the user is
viewing already downloaded page, it stops when the user
points to a different page, and resumes when the page
requested by a user is downloaded and can be viewed by

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 24

the user. Hence, the crawling is transparent to a user and
the only difference besides sending of the downloaded
pages to the central location is that the client’s CPU cycles
are utilized that would be wasted with conventional
browser. When the site is completely crawled then a
browser-crawler continues breadth-first search (BFS)
crawling of sites connected to the one that was completely
harvested until a user points the browser to a new web site.
The immediate benefit to the user would be a cache of the
crawled pages. Since it is likely that a user will want to
view more than one page of a visited web site then his/her
surfing experience will be enhanced by loading pages
faster from the cache.

4. Storing the web page information in a database

After the downloader retrieves the web page information
from the internet, the information is stored in a database.
The information harvesting that is performed by a web
browser of a user surfing the web can also involve
information extraction. This means that text of the
downloaded page is processed to extract words that will be
part of the index of the search index at the central location.
The only thing that is different from conventional browser
is that the downloaded pages are sent to the central
location.
The delivery of the information from a web browser to
search engine’s central database can either be mandatory
one-way communications or it could be regulated delivery
using two-way communications. When using mandatory
delivery client-crawler sends information extracted from
each page to the central location unless the page is
revisited during the same session and is the same as the
one in the cache. When using regulated delivery, client-
crawler sends a single request per site to the central
location with the URL of the site that the user points to.
The central location checks in the database to determine
whether the site needs to be crawled (if the site has never
been indexed before or if the information has not been
updated recently), and sends response to the
browser/client-crawler. If the site needs to be crawled then
the browser-crawler continues with the BFS crawl. If the
site has already been indexed recently, then browser-
crawler starts crawling sites that are connected to the
current one (if the central location indicates that these sites
need to be crawled) until the user points the browser to a
different site. This scheme avoids sending duplicate
information and generating associated unnecessary traffic
that would be resultant of situation when many users visit
the same popular sites.
Another opportunity for optimization may be capability of
the central location to direct client-crawlers to crawl web
sites of interest while user browses a web site that is
already completely harvested by other browser-crawlers.

Evaluation

The current model for information retrieval from the web
is found to be flawed and inefficient:
A significant portion of the web cannot be accessed by
crawlers and, thus, is not available to retrieve information
from.
Crawlers have relatively low harvesting rate that translates
into low refresh rate for indexed pages that leads to ‘stale’
pages that are out of date.
Crawlers generate huge amount of traffic that impedes
useful communications
Crawlers require significant resources such as enormous
computer farms to harvest and store pages.
The new model for information retrieval from the web has
been proposed where web browsers are used as main tool
to harvest web pages and extract information from the
pages. The extracted information is sent by the browser-
crawlers to a central location where it is indexed, stored,
and is accessible for retrieval by end users. Traditional
crawlers are used as an auxiliary tool to harvest pages from
portions of the web that are not currently being harvested
by browser-crawlers. Given a large user base of browser-
crawlers the new model can provide the following benefits:
Our crawling system which can be deployed on the client
machine to browse the web concurrently and autonomously,
it combines the simplicity of asynchronous downloader
and the advantage of using multiple threads.
It reduces the consumption of resources as it is not
implemented on the mainframe servers as other crawlers
also reducing server management. The proposed
architecture uses the available resources efficiently to
make up the task done by high cost mainframe servers.
The coverage of the web can be significantly improved
where browser-crawlers can harvest pages that could not
be retrieved by traditional crawlers such as static HTML
pages that are not reachable to traditional crawlers,
dynamic pages that require user interaction, and pages that
are prohibited to crawlers
The harvesting rate can be significantly improved given a
large user base of browser-crawlers that may lead to
decreased level of ‘staleness’ of the indexed pages.
The new model provides near real time dynamic view of
the usage of the web providing wealth of information about
web usage patterns and statistics.
The new model may significantly speed up discovery of
new web sites since during deployment of a new web site
its web pages are accessed with browser-crawlers to test
the site.
The new model may allow reduction in resources required
for the process of information retrieval since the tasks of
harvesting pages from the web and extracting information
from the pages is off loaded to computers hosting browser-
crawlers

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 25

The use of browser as a crawler may noticeably improve
its user’s web-surfing experience by providing a large
cache of harvested pages.

Personalization

In the modern Web, as the amount of information available
causes information overloading, the demand for
personalized approaches for information access increases.
Personalized systems address the overload problem by
building, managing, and representing information
customized for individual users. This customization may
take the form of filtering out irrelevant information and/or
identifying additional information of likely interest for the
user.
In the paper, the user can get the personalization benefits
in customize his search or his profile, or in indirect way by
displaying the suitable visualization technique according
his resource's ability. In the following sections, the paper
describes how user profile improves retrieval process and
helps other users. Section 1 explains what user profile,
discusses user profiles specifically designed for providing
personalized information access. Section 2 handle regional
crawler that not conflict with distributed crawler, and don’t
mean boundaries with regional word.
There are a wide variety of applications to which
personalization can be applied and a wide variety of
different devices available on which to deliver the
personalized information. Early personalization research
focused on personalized filtering and/or rating systems for
e-mail, electronic newspapers, Use net newsgroups, and
Web documents. More recently, personalization efforts
have focused on improving navigation effectiveness by
providing browsing assistants, and adaptive Web sites.
Because search is one of the most common activities
performed today, many projects are now focusing on
personalized Web search.
Most personalization systems are based on some type of
user profile, a data instance of a user model that is applied
to adaptive interactive systems. User profiles may include
demographic information, e.g., name, age, country,
education level, etc, and may also represent the interests or
preferences of either a group of users or a single person.
Personalization of Web portals, for example, may focus on
individual users, for example, displaying news about
specifically chosen topics or the market summary of
specifically selected stocks, or a groups of users for whom
distinctive characteristics where identified, for example,
displaying targeted advertising on e-commerce sites.
In order to construct an individual user’s profile,
information may be collected explicitly, through direct
user intervention, or implicitly, through agents that monitor
user activity. Although profiles are typically built only
from topics of interest to the user, some projects have

explored including information about non-relevant topics
in the profile. In these approaches, the system is able to use
both kinds of topics to identify relevant documents and
discard non-relevant documents at the same time.
Profiles that can be modified or augmented are considered
dynamic, in contrast to static profiles that maintain the
same information over time. Dynamic profiles that take
time into consideration may differentiate between short-
term and long-term interests. Short-term profiles represent
the user’s current interests whereas long-term profiles
indicate interests that are not subject to frequent changes
over time. For example, consider a musician who uses the
Web for her daily research. One day, she decides to go on
vacation, and she uses the Web to look for hotels, airplane
tickets, etc. Her user profile should reflect her music
interests as long-term interests, and the vacation-related
interests as short-term ones. Once the user returns from her
vacation, she will resume her music-related research, and
the vacation information in her profile should eventually
be forgotten. Because they can change quickly as users
change tasks, and less information is collected, short-term
user’s interests are generally harder to identify and manage
than long-term interests. In general, the goal of user
profiling is to collect information about the subjects in
which a user is interested, and the length of time over
which they have exhibited this interest, in order to improve
the quality of information access and infer user’s intentions.

Figure 8: overview of user-profile – based personalization

As shown in Figure 8, the user profiling process generally
consists of three main phases. First, an information
collection process is used to gather raw information about
the user. The second phase focuses on user profile
construction from the user data. The final phase, in which a
technology or application exploits information in the user
profile in order to provide personalized services.

2- Regional distributed crawler
2.1- Regional Crawler Method

In this method, the crawling strategy is based on users'
interests and needs in certain domains. These needs and
interests are determined according to common
characteristics of the users like geographical location, age,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 26

membership and job. Regional Crawler uses these interests
as basic data for crawling strategy. In the other words,
people in the same region are more likely to search for
similar subjects and ignore the other categories that may be
important for people in other areas. For example, people in
Iran are usually searching for information about soccer and
Middle East news, but in the U.S users are more likely to
search for baseball events. Even people in a CS department
usually look for similar information, (computer science
articles for example), so the region could even be defined
as small as a LAN. The more a document contains
common interests of different domains; the more is its
chance for getting crawled.

2.2- Searching and user profile:

The Architecture of most Agent-Based search is based on a
Three-Layer Model. The main idea of this Three-Layer
model is to divide the internet structure into three layers
and devote some particular activities to each layer.

Figure 9: Three Layer Architecture

According to figure 9, the requesters are the users who
enter the query into the system and have an individual
unique user profile. User profile contains the user interests
and the results of previous searches. Providers section also
contains the services and information of the providers that
are being searched for pages related to users' queries.
Intermediaries are responsible for matching the users'
requests with the information available from the providers
or information which have become accessible by the other
users according to their user profile.

2.3- Regional Crawler and personalization benefits

As we explained before, current distributed and Agent-
Based search engines are usually constructed based on a
Three-Layer structure. Generally the main structure of a
Personal Agent in most of Agent-Based search engines is
just like figure 10.

Figure 10: Personal Agent in Agent-Based Search Engines

Search Agent will search the internet and User Interface
Agent acts as an interface between the user and the whole
Personal Agent structure and enables the collaboration
between the user and Agents for searching and entering the
queries. Middle Agent plays the most important role in this
architecture. It's a bridge between users and providers in
the way that providers would announce the services that
they provide and users will ask for their needs on the other
hand and the Middle Agent would act as a Match Maker
between those groups. The Advantage of this methodology
is that some user profiles would be devoted to the users
which show their needs, interests and past search results.
When a query entered by a user and got ready for the
search. Middle Agent would get the query and specify the
subject of it, then it would search through the user profiles
and User Agents to find a similar user according to the
public profiles and get information from its past search
results for the same or similar queries and send these
results as an answer for the user who has entered the query.
By adding the Regional Crawler as a Regional Agent to the
above architecture we would have Figure 11:

Figure 11: Regional Crawler in Agent-Based Architecture

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 27

Regional Agent is responsible for collecting the users'
interests of a specific region. Users with similar User
Profile will be gathered together by Reinforcement
Learning methods or Supervised learning depending on the
Middle-Agent architecture. Regional Agent will search for
users with similar interests and gather them in a unique
public agent. Then we devote a special crawler for each
regional agent and ask it to crawl the web in the way that it
can satisfy the users' interests. This means that the crawler
should look for the pages related to region interests before
the other topics available on the web. Since the crawlers
are in cooperation with Search Agents, Regional Agent
will ask Search Agents to update the important web pages
(look for important new pages) by announcing the user
interests and needs to them. The important point in this
architecture is that by implementing the RL methods,
regions domain will be unlimited and as an example two
Fans of a particular soccer club in two different locations
of the world would be in the same region. So by adding a
regional Agent to the Architectures above, we expect the
important pages from the users (user agents) perspective
become updated more frequently [14].

Conclusion

Search engine and web information retrieval field still in
developing circle not stopped at any station until user's
need not curb and World Wide Web expand. Despite new
and effective solutions for web information retrieval
system are suitable and solved many problems in the past,
now, they consider bad and generated problems. For
example, WordNet tool that widely used in proposed
system, it not suitable for proximity search. The proposed
system handle some problems such as: low precision and
recall, lack of personalization of information and limited
customization to individual users, vocabulary, user search
behavior, query formulation, information overload, speed,
resources consuming. We will continue to wait problems
of new solutions and newer solutions for the previous.

References
[1] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, "modern

information retrieval", ISBN 0-201-39829-X, chapter 10 "
user interfaces and visualization" pages 257:

[2] Marti Hearst, "search user interfaces" ,ISBN
9780521113793, copyright @ 2009, chapter 3 "models of
information seeking process".

[3] Djoerd Hiemstra, "information retrieval models" published
in Goker, A., and Davies, J. " Information Retrieval:
Searching in the 21st Century. John Wiley and Sons, Ltd.,
ISBN-13: 978-0470027622, November 2009.

[4] Changwoo Yoon, "Domain – specific knowledge-base
information retrieval model using knowledge reduction", a
dissertation presented to the graduated school of the

university of Florida in partial fulfillment of the
requirements for the degree of doctor of philosophy, 2005.

[5] Jyotsna Gharat, Jayant Gadge, "web information retrieval
using WordNet", international journal of computer
applications (0975-8887), volume 56 – no.13, October 2012.

[6] Diana Inkpen, "Information Retrieval on the Internet", 2008
[7] usabilityetc.com/articles/information-retrieval-concept-

matching/, last visit May 28, 2013
[8] Chia-Hui Chang, Ching-Chi Hsu, "Integrating Query

Expansion and Conceptual Relevance Feedback for
Personalized Web Information Retrieval", Computer
Networks volume 30(1-7):621-623.

[9] Queryexpansion,p://en.wikipedia.org/wiki/Query_expansion,
last visit June 1, 2013

[10] WordNet, http://en.wikipedia.org/wiki/Wordnet, last visit
June 3, 2013

[11] Christopher D. Manning, Prabhakar Raghavan and Hinrich
Schütze, "Introduction to Information Retrieval", ISBN:
0521865719, Cambridge University Press. 2008

[12] Harald Reiterer, Thomas M. Mann, "Visual Information
Retrieval for the Web", Proceedings of the Ninth
International Conference on Human-Computer Interaction,
2001.

[13] Ed H. Chi, "A Taxonomy of Visualization Techniques using
the Data State Reference Model", Proceeding INFOVIS '00
Proceedings of the IEEE Symposium on Information
Visualization 2000 page 69, ISBN:0-7695-0804-9

[14] Pirooz Chubak, Milad Shokouhi, "Designing a Regional
Crawler for Distributed and Centralized Search
Engines" ,http://ausweb.scu.edu.au/ aw04/papers/refereed/
shokouhi/ paper.html, last visit June 13, 2013

[15] Vladislav Shkapenyuk, Torsten Suel, " Design and
Implementation of a High-Performance Distributed Web
Crawler"

[16] Rajashree Shettar, Dr. Shobha G, "Web Crawler On Client
Machine", Proceedings of the International Multi-
Conference of Engineers and Computer Scientists 2008
Volume II IMECS 2008, 19-21 March, 2008, Hong Kong.

[17] Margaret rouse, "distributed search" april 2008,
http://whatis.techtarget.com/definition/distributed-search",
last visit June 23, 2013

[18] Mamoon H. Mamoon, Hazem M. El-Bakry, Amany A.
Salama, " Interactive Visualization of Retrieved
Information", International Journal of Knowledge
Engineering and Research, Vol 2 Issue 4 April 2013 ,ISSN
2319 – 832X

[19] Odysseas Papapetrou, George Samaras, "Minimizing the
Network Distance in Distributed Web Crawling", Springer-
Verlag Berlin Heidelberg 2004, LNCS 3290, pp. 581–596,
2004.

