
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014

50

Manuscript received September 5, 2014
Manuscript revised September 20, 2014

Algorithms for Data-Compression in Wireless Computing
Systems

Upasana Mahajan

Prashanth C.S.R
Prof & HOD, Dept. of CSE, NHCE,Bangalore,India

Abstract
Compression is a technique used for reducing data size by
manipulating data redundancy; so that the packet transmission
time and storage cost can be reduced. This can be achieved with
the use of suitable data compression algorithms. Choosing the
right algorithm can be accomplished by analyzing the
performance of the algorithm. This paper presents the survey of
various lossless data compression algorithms.
Keywords
Lossless data compression, irreducible substitution tables,
wireless sensor networks, compression algorithms, compression
ratio

1. INTRODUCTION

Data Compression can be defined as encoding the
information using the small number of bits rather than
original representation. There are two types of data
compression, lossless and lossy compression. The lossy
compression is a method of data encoding, in which
compression is done by discarding/losing some data. This
is commonly used in multimedia data, especially in
applications like streaming media and internet telephony.
In this some loss of information is acceptable. Dropping
nonessential detail from the data source can save storage
space. There are two basic lossy compression
schemes1lossy transform codecsand lossy predictive
codecs. The lossless data compression can be defined
as reducing the bits by identifying and
eliminating statistical redundancy. The lossless data
compression is reversible of lossy compression, such
thatthe exact original data to be reconstructed from the
compressed data. Lossless compression can be used for
images, audios etc. but mostly it is used for text data like
executable program, text documents and source code. In
this paper focus is only on the lossless data compression.
There are different types of lossless data compression
algorithms2 like Huffman’s coding, Run Length encoding,
Dictionary coders (LZW) etc. Based on the algorithm
performance factors10 like compression ratio, saving
percentage and compression time, we choose the
algorithm for compressing the data. The ultimate goal is to
study different algorithms and select the best for
compression.

2. LITERATURE SURVERY

2.1. Lossless Data Compression Algorithms Based
on Substitution Tables [3] [4]

This paper introduces a class of new lossless data
compression algorithm. Each algorithm first tries to
transforms the original data, which is to be compressed
into an irreducible table representation and then uses
anarithmetic code to compress the irreducible table
representation. These are generally known as universal
coding algorithms as they try to achieve the compression
rate. These new range of lossless data compression
algorithm has been developed to improve overall
compression rate and performance with the help of
different variants of hierarchical transformations.
Firstly, the tables are formed with the help of parallel
substitution which ends up with a unique string using the
reduction rules. In this research 5 different reduction rules
have been implemented and with the help of which, less
complex tables are formed. For example, Let x be a string
from A which is to be compressed. Starting from the table
T consisting of only one row (s, x), a hierarchical
transformation applies repeatedly the reduction rules 1-5
in some order to reduce T to an irreducible substitution
table. To compress x, the corresponding algorithm then
uses the zero order arithmetic code to compress the
irreducible table. After receiving the code word of T', one
can fully recover T' from which x can be obtained via
parallel substitution. Some examples of hierarchical
transformation are Greedy SequentialTransformation,
SEQUITUR Transformation, Multilevel Pattern Matching
Transformation (MPM),
The greedy sequential transformation parses the sequence,
into non-overlapping substring and build a sequentially an
irreducible table for each substring. This algorithm helps
in sequential compression. The SEQUITUR algorithm has
two main rules:
1. No pair of adjacent symbols appears more than once in
the grammar.
2. Every rule is used more than once.
This helps to build irreducible table for each prefix and
then append a substring to the end of the row at last apply

https://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/Redundancy_(information_theory)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 51

the reduction rules 1-5 to reduce the table. It transforms
the binary sequence.
The MPM transformation bisects each distinct substring
repeatedly, until the length of substring is 2. Then, assign
a unique token to each substring and create a substitution
table. The MPM code and Lempel-Ziv code have
similarities like both are pure pattern matching codes, so
they do not directly compress the data. But there are
differences like MPM is a hierarchical transformation so it
does pattern matching at multiple levels and the LZE is
non-hierarchical. The MPM code was developed for,
strictly for data of length a power of two, and named the
bisection algorithm.
This research helps in trying to solve a problem of
performance of an algorithm. It can be evaluated mainly
by calculating and comparing the two facts:Frequency of a
block of a sequence and Empirical Entropy of a sequence.

2.2. A Simple Algorithm for Data Compression in
Wireless Sensor Networks [5] [6]

Sensor Nodes have small batteries which cannot be
changed or recharged frequently, so the WSN have an
issue of Energy. Power saving can be done by either duty
cycling (coordinated sleep/wakeup schedules between
nodes) or by in-network processing
(compression/aggregation techniques). Data compression
is the best option and appreciated only if the execution of
compression algorithms requires lesser amount of energy
than the one saved in reducing transmission. This paper
introduces the algorithm known as Lossless Entropy
Compression (‘.,LEC), which shows the correlation
between the data collected by sensor nodes and the
entropy compression. This algorithm follows same
scheme used in baseline JPEG algorithm for compressing
the DC-coefficients of a digital image. The Huffman table
proposed in JPEG to entropy encoding the groups has
been adopted.

Encode (di, Table)
 IF di=0 THEN
 SET ni = 0
 ELSE
 SET ni = ┌ log2(|di |) ┐
ENDIF
 SET si TO Table [ni]
IF ni= 0 THEN
 SET bsi = si
ELSE
 IF di > 0 THEN
 SET ai= (di)|ni
ELSE
 SET ai = (di – 1)|ni
 ENDIF
 SET bsi TO <<si, ai>>
 ENDIF
RETURN bs

Pseudo-code of the encode algorithm

ni si di

0 00 0
1 010 -1,+1
2 011 -3,-2,+2,+3
3 100 -7..-4,+4..+7
4 101 -15..-8,+8..+15
5 110 -31..-16,+16..+31
6 1110 -63..-32,+32..+63
7 11110 -127..-64,+64..+127
8 111110 -255..-128,+128..+255
9 1111110 -511..-256,+256..+511
10 11111110 -1023..-512,+512..+1023
11 111111110 -2047..-1024,+1024..+2047
12 1111111110 -4095..-2048,+2048..+4095
13 11111111110 -8191..-4096,+4096..+8191
14 111111111110 -16383..-8192,+8192..+16383

Table: The Huffman variable length codes used in
the experiment.

The difference di computed by algorithm for the input to
an entropy encoder. The di = bsi(bit sequence) = si|ai, si
codifies the number niand ai represents di. If

i. di> 0, ai = ni low order bits of the 2’s
complement representation of di.

ii. di< 0, ai = ni low order bits of the 2’s
complement representation of di – 1.

iii. di = 0, siis coded as 00 and ai is not represented.

EXPERIMENTAL RESULTS:

The performance of a compressed algorithm can be
defined by compression ratio as shown below:

With the help of datasheets given in SHT11 for
temperature & relative humidity and using the above
formula, following ratios are obtained. Thus the
comparison between other compression algorithm ratios
as per following results shows that the LEC algorithm
performs better.

Temprature Relative Humidity

Comp_siz
e

Comp_rat
io

Comp_siz
e

Comp_r
atio

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014

52

LEC 7605bits 66.99% 7527bits 67.33%
S-

LZW 16760bits 27.25% 13232bits 42.57%

gzip 15960bits 30.73% 13320bits 42.19%

Bzip2 15992bits 30.59% 13120bits 43.05%

2.3. Online Adaptive Compression in Delay
Sensitive Wireless Sensor Networks [7] [8]

In wireless sensor networks (WSN), compression reduces
the data size by exploiting the redundancy residing in
sensing data. This reduction of the data can be measured
as compression ratio which is calculated as original data
size divided by the compressed data size. The higher the
compression ratio means more data reduction is done and
results in shorter communication delays. To understand
the effect of compression, firstly obtain the processing
time of compression, which depends on several factors
like compression algorithm, CPU frequency, processor
architecture and compression data. There are so many
compression algorithm have been developed, but one of
the best is Lempel-Ziv-Welch (LZW). LZW is a
dictionary based lossless compression algorithm suitable
for sensor nodes which replaces the strings of characters
with single codes in the dictionary. To calculate the
compression delay, the software estimation approach is
adopted. The source code of this algorithm is written in C
and then converted into the assembly codes, which have
fixed number of execution cycles.

The total count of cycles can be obtained at the
completion of LZW algorithm. The processing time of the
algorithm can be calculated by dividing the total execution
cycles by the working (i.e. CPU) frequency. There are

different experiments conducted in the NS-2 simulator to
check out the effect of compression on the packet delays.
The results of the experiments shows that delay can cause
severe performance degradation underlight traffic load and
if traffic loadis heavy than compression reduces the delay
of packet, increase the maximum throughput. So the
compression is favored only when the packet generation
rate is higher than the threshold rate. Therefore to
determine whether the compression of data is required or
not the online adaptive algorithm has been developed.
The adaptive compression algorithm is distributively
implemented on each sensor node as ACS (Adaptive
Compression Service) in an individual layer created in a
network stack. The main goal of this algorithm is to take a
right decision, that whether packet transmission is
required or not at a particular node. Before moving to
algorithm, let’s have a look of the architecture of ACS.
There are 4 functional units: 1) Controller manages the
traffic flow and makescompression decisions on each
incoming packet in this layer.2) The LZW compressor
performs actual compression of packet with the help of
LZW algorithm.3) The information collector helps in
collecting local statics information about network and
hardware conditions. 4) The packet buffer helps in
temporarily storing the packets to be compressed.
As compression is managed by the node state, so the
adaptive algorithm helps to determine the node state. In
this algorithm the utilization of the queuing model is done
for estimation of the node state conditions. The queuing
model includes the network model and the MAC model.
The network model defines the network topology and
traffic (i.e. estimates the arrival rates of each node). The
MAC model defines the packet service time with the help
of DCF (Distributed Coordination Function), which can be
calculated as the time when packet enters the MAC layer
to the time when packet is successfully transmitted or
discarded.
The Adaptive Compression Algorithm is divided into two
stages: Information collection and State determination.
Firstly, in ACS the information collector collects the
statistics information like compression statistics
(compression ratio rc, average compression processing
time Tp, the coefficient of variance of processing time cp),
MAC layer service time and packet arrival rates. Once the
collector finishes its job, the controller in the ACS defines
the state of the node i.e. whether compression is required
or not. For making the decision the following State
Determination Procedure has been adopted which is
performed at the end of each time slot for a node in a No-
Compression state.

LZW Compression Algorithm

STRING = get the first character

whilethere are still input character

 C = get next character

look up STRING + C in the dictionary
ifSTRING+C is in the dictionary
 STRING = STRING + C
else
 output the code for STRING
 add STRING+C to the dictionary
 STRING = C
 end if
end while
output the code for STRING

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 53

Tcom the average packet waiting time at the
compression queue.
ΔTmin lower bound of total delay reduction

ΔTmac MAC layer service time
ΔTmac (i) Delay reduction in level i

λcArrival rate compression
λi Mean arrival rate for nodes in level i

With help of the queuing model, it is possible
to calculate the terms/equation used in algorithm. So the
outcome this paper is that using the online adaptive
compression algorithm, each node can decide whether the
packet is compressed or not, adapting to the current
network and hardware environment.

2.4. A Statistical Lempel-Ziv Compression
Algorithm for Personal Digital Assistant (PDA) [9]

This paper introduces a compression algorithm named as
Statistical Lempel-Ziv Compression algorithm (SLZ),
which is suitable for the applications of hand held PDAs
and can be viewed as a variant of LZ77.

The first step of the algorithm is to build a dictionary
which may include up to 2|c| entries (supposing each fixed
length codeword c contains |c| bits). To build a good
dictionary, a two pass approach is adopted. The first pass
is to collect most useful phrases from the file for building
a dictionary. The second pass is to do compression by
creating codewords that refer to the phrases in the
dictionary. While building a dictionary, there must be a
balance between the dictionary size and codeword length
to avoid large number of phrases. Therefore for a file of T
symbols long, the total number of phrases will be:

 T-1∑ i=0 T-i =T2 + T ≈ O(T2)
 2
The sliding window approach which has been used in
LZ77 can be adopted to reduce the number of phrases.
Let’s imagine the sliding window of size W symbols, such
that W<<T then

W-1∑ i=0 T-i =W(2T – W + 1) ≈ O(WT)
2

Once done with the number of phrases, time is to decide
which phrases have to collect. If the phrase collected from
the file is found in the dictionary, then there is no need to
add that phrase in the dictionary but the number of counts/
frequency of that phrase is incremented. On the other hand,
two identical phrases having overlap in the input file must
be counted as single occurrence instead of two. This
overlap detection can be done by adding a time stamp (last
time at which the phrase occurred in the file) to each entry
in the dictionary. When a phrase is fetched from the input

For each node at level i:

if state = No-Compression then
read statistics from the information collector
compute Tcom, ΔTmin
if Tcom ≤ ΔTmin then
set state to Compression
else
 set i to the node’s level number

ΔTmac = 0
 while i > 0
 calculate λi and
compute reduction ΔTmac (i)
 add λi ΔTmac (i) to ΔTmac

 decrease i by one
 end while
 if λc Tcom ≤ ΔTmac then
 set state to Compression
 end if
end if

For each node at level i:
if state = No-Compression then
read statistics from the information collector
compute Tcom, ΔTmin
if Tcom ≤ ΔTmin then
set state to Compression
else
 set i to the node’s level number

ΔTmac = 0
 while i > 0
 calculate λi and
compute reduction ΔTmac (i)
 add λi ΔTmac (i) to ΔTmac

 decrease i by one
 end while
 if λc Tcom ≤ ΔTmac then
 set state to Compression
 end if
end if

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014

54

file and an identical phrase is found in the dictionary,
compare the timestamp of that phrase in the dictionary
with the current time stamp. If time stamp difference is
less than the phrase length, overlap is detected.
After collecting the phrases, time to put all phrases in the
dictionary with respect of dictionary size. The size of
dictionary should not be too large and too small; it must
contain all useful phrases. The number of entries in the
dictionary can be reduced by pruning the phrases having
unit frequency. Which means prune the phrases which
occur once in a file not the phrases that are one symbol
long, and it can be done at end of the first pass. With this
method most of the time the newly appears phrases are
purged. So to avoid this problem another method of
pruning the phrases known as Move-To-Front approach is
used.
In this approach, when a new phrase inserted it is move to
the front of the dictionary.The time dictionary is full,
discard the phrase at the end of the dictionary. With this
method the phrases which have high frequency will be at
the front and phrases with least frequency located at the
end of the dictionary. Once the dictionary has been build,
it’s time for compression which can be done with the help
of entropy coding method. The symbols of the file are
shifted into the sliding window and once it’s full, the
symbol sequence in window is compared with the phrases
one by one in the dictionary in the order of entropy. When
matched phrase is found, the matched symbols in the
window are coded by the index of that phrase. The
symbols that matched the phrases are removed from the
sliding window and new symbols are moved to sliding
window. As soon as window is full repeat the process
again until all the symbols get coded.
We can’t say that this is the best compression algorithm
but a simple entropy coding scheme designed using the
prefix codes to eliminate look-up table for decoding.
Using the combination of dictionary based algorithm and
sliding window approach, the overall compression ratio
decreases.

2.5. Comparison of Lossless Data Compression
Algorithms for Text Data[10]

Data compression helps in reducing the size of the file, in
other words compression represents the information in a
compact form rather than its original form without any
data loss. When data compression is done while
transmitting the data, the main concern is speed. Speed of
the transmission depends upon the number of bits sent, the
time required for the encoder to generate the coded
message and the time required for the decoder to recover
the original message. Sometimes the lossless compression
algorithms are also known as reversible algorithms, as the
original message can achieve by the decompression
process. Some of the famous lossless compression

algorithms are Run-Length Encoding (RLE), Huffman
Encoding, Adaptive Huffman Encoding, Shannon Fano
algorithm, Arithmetic Encoding and Lempel Zev Welch
algorithms.
This paper introduces the comparison of performances of
above algorithms, based on different factors. There are
many different ways to measure the performance of a
compression algorithm. The main concern is space and
time efficiency, while measuring the performance.
Following are some factors used to evaluate the
performances of the lossless algorithms.

Compression Ratio =size after compression
sizebefore compression

Compression Factor = size before compression
size after compression

Saving Percentage =
size before compression –size after compression %
size before compression

Compression Time can be defines as time taken to
compress particular file. Time taken for the compression
and decompression should be considered separately. For a
particular file, if the compression and decompression time
is less and in an acceptable level, it means that algorithm
is acceptable with respect to time.

Entropy can be used as a performance factor, if the
compression algorithm is based on statistical information
of the source file. Let set of event be S=
{s1,s2,s3 ,…sn}for an alphabet and each sj is a symbol
used in this alphabet. Let the occurrence probability of
each event be pjfor event sj. Then the self-information I(s)
is defined as follows:

I(s) = logb 1/ pjor I(s) = - logb 1/ pj

The first order Entropy value H(P) can be calculated as
follows:
H(P) = n∑ j=1pj I(sj) or H(P) = - n∑ j=1pj I(sj)

Code Efficiency is the ratio between the entropy of the
source and the average code length.

 E (P,L) = H (P) 100% ,
 ¯l(P, L)
E (P,L) is the code efficiency, H(P) is entropy and ¯l(P,L)
is average code length.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.9, September 2014 55

Average code length defined as the average number of bits
required to represent a single code word. It can be
calculated as: ¯l = n∑ j=1 pjlj, where pjis the occurrence
probability of jth symbol of the source message, lj is the
length of the particular code word for that symbol and L
= {l1, l2, ……,ln}.

In order to test the performance of above mentioned
lossless compression algorithms, first step is to implement
them and then test them with some set of files.
Performances evaluated by computing above mentioned
factors. After the implementation and testing the results
shows that the Adaptive Huffman algorithm needs larger
time period for processing, because the tree should be
updated or recreated. LZW works better as the file size
grows up to certain limit, because there are more chances
of replacing the words by using the small index number.
But it cannot be used for all cases, so can’t say it is one of
the efficient algorithms.
Arithmetic Encoding algorithm has an Underflow problem,
which gives an erroneous result after few numbers of
iterations. Therefore it is not suitable for comparison.
Huffman Encoding and Shannon Fano algorithm shows
similar results except in compression times. Shannon Fano
algorithm has faster compression time than Huffman
Encoding, so this factor can be used to determine the more
efficient algorithm from these two.
While considering the major performance factors like
compression time, decompression time and saving
percentages of the all the selected algorithms. The
Shannon Fano algorithm is considered as the most
efficient algorithm, as the values of this algorithm lies
acceptable range and it also shows better results for the
large files.

3. CONCLUSION

This study introduces data compression and simple
algorithms for compression. Each algorithm has its own
advantages and disadvantages. With the help of various
performance factors, it is easy to choose algorithms that
are more efficient. This paper demonstrates that if we use
the right data compression techniques, it will certainly be
helpful in reducing the storage space and the
computational resources. This is definitely more critical in
the case of wireless systems where network bandwidth is
always a cause for concern.

REFERENCES
[1] https://en.wikipedia.org/wiki/Lossy_compression.
[2] https://en.wikipedia.org/wiki/Lossless_compression.
[3] John.C.Kieffer and En-hui Yang, “Lossless Data

Compression Algorithms Based on Substitution Tables”,
IEEE,1998.

[4] J.C.Kieffer, E-H.Yang, G.Nelson, and P.Cosman, “Lossless
data compression via multi-level pattern matching,” IEEE,
1996.

[5] Massimo Vecciho, “A Simple Algorithm for Data
Compression in Wireless Sensor Networks”, IEEE,June
2008.

[6] https://en.wikipedia.org/wiki/Huffman_coding.
[7] Xi Deng and Yuanyuan Yang, “Online Adaptive

Compression in Delay Sensitive Wireless Sensor Networks”,
IEEE, October 2012.

[8] https://en.wikipedia.org/wiki/Lempel–Ziv–Welch.
[9] S.Kwong and Y.F.Ho , “A Statistical Lempel-Ziv

CompressionAlgorithm for Personal Digital Assistant
(PDA)”, IEEE, February 2001.

[10] S.R.Kodituwakku and U.S.Amarasinghe, “Comparison of
Lossless Data Compression Algorithms for Text Data”,
Indian Journal of Computer Science and Engineering, Vol 1
No. 4 416-425.

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lempel–Ziv–Welch

