
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014

20

Manuscript received October 5, 2014
Manuscript revised October 20, 2014

Mining Weighted-Frequent Traversal Patterns using Graph
Topology

Hyu Chan Park

Department of Computer Engineering, Korea Maritime and Ocean University, Korea

Summary
Mining problem is to discover valuable patterns from large data
set, such as item sets and graph traversals. This paper extends
such mining problems to the case where vertices of graph are
attached with weights to reflect their importance. Under such
weight settings, traditional mining algorithms can not be adopted
directly any more. To cope with the problem, this paper proposes
new algorithms to discover weighted-frequent patterns from the
traversals. Specifically, we devise support bound paradigms for
candidate generation and pruning during the mining process.
Key words:
Data mining, Graph, Traversal, Weighted-frequent pattern.

1. Introduction

Data mining is to find significant patterns from huge
amount of data sets, i.e., large databases. The significance
of patterns may be defined in several ways. The simplest
and traditional one is the frequency of patterns, which has
been adopted for the mining of un-weighted settings. More
valuable one may be weighted-frequency of patterns,
which can be adopted for the mining of weighted settings.
The mining problem this paper focus is the later and
defined as follows. Given a set of traversals on a graph
with weighted vertices, discover all patterns contained in
the traversals weighted-frequently. Main issue on such
mining problem is how to generate candidates, from which
solutions can be obtained. Another issue is how to keep the
number of candidates as small as possible. To cope with
these issues, we will devise new paradigms to prune
unnecessary candidates as many as possible.

The overall structure of our mining algorithm is similar
to the Apriori algorithm [1], but the detailed steps contain
some differences. To begin with, the algorithm runs in a
level-wise manner with increasing sizes. However, since
the subpattern of a weighted-frequent pattern may not be
weighted-frequent, we cannot generate candidate (k+1)-
patterns simply from the k-patterns as in the Apriori
algorithm. Instead, we should find a way to keep the k-
patterns which may possibly become some weighted-
frequent l-patterns, for l > k, in the coming passes. In order
to find such k-patterns, we will propose support bound
paradigms. During the operation, support count and l-

support bounds are estimated for each candidate k-pattern.
If the support count is less than all the l-support bounds,
we can say the k-pattern cannot be any weighted-frequent
patterns in the coming passes, therefore it can be pruned.
Otherwise, the k-pattern has a possibility to be weighted-
frequent patterns in the coming passes, therefore it should
be kept. The performance of this mining process is heavily
relied on the performance of the support bound estimations.
To cope with this problem, three estimation methods will
be proposed, two of them take into account the graph
topology intensively.

This paper is organized as follows. Section 2 reviews
previous works related with traversal pattern mining and
weight settings. In Section 3, we formulate weighted-
frequent mining problem of graph traversals, and then
propose new algorithm. Section 4 includes three methods
for the estimation of support bound. In Section 5, we
experiment and analyze the methods on synthetic data.
Finally, Section 6 contains the conclusion and future works.

2. Related Works

Our work is related to the mining problem of traversal
patterns with weight settings. For the traversal pattern
mining, Chen et al. [2] proposed mining algorithms with
hashing and pruning techniques. However, they did not
consider graph structure, on which the traversals occur.
Nanopoulos et al. [3,4] defined new criteria for the support
and subpath containment, and then proposed algorithms
with a trie structure. However the above works did not take
into account any weight on the traversals.

For the mining with weight settings, most of previous
works are related to the mining of association rules and its
sub-problem, the discovery of frequent itemsets. Cai et al.
[5] generalized the discovery of frequent itemsets to the
case where each item is given an associated weight. They
introduced new criteria to handle the weights in the process
of finding frequent itemsets, such as the weighted support
for the measurement of support, and the support bound for
the pruning of candidates. Wang et al. [6] extended the
problem by allowing weights to be associated with items in
each transaction. Their approach ignores the weights when

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014

21

finding frequent itemsets, but considers during the
association rule generation. Tao et al. [7] proposed an
improved model of weighted support measurement and the
weighted downward closure property. Although the above
works take into account the notion of weight, they can not
be applied directly to the mining problem of traversal
patterns.

3. Mining Weighted-Frequent Traversal
Patterns

This section describes definitions to be used, and then
formulates the mining problem of weighted-frequent
traversal patterns. According to the formulations, mining
algorithm will be proposed.

A base graph is a weighted directed graph, on which
traversals occur. For example, the following base graph
has 6 vertices and 8 directed edges, in which each vertex is
attached with a weight value.

A

B D

F

C E

2.0

5.0

7.0 4.0

12.0

6.0

Fig. 1 Base graph

A traversal is a sequence of consecutive vertices along

a sequence of edges on the base graph. A traversal
database is a set of traversals. The following traversal
database has totally 6 traversals, each of which has an
identifier and a sequence of consecutive vertices.

Tid Traversal
1
2
3
4
5
6

<A, B>
<B, C, E, F>
<A, C>
<B, C, E>
<A>
<A, C, E, D>

Fig. 2 Traversal database

A subtraversal is any subsequence of consecutive
vertices in a traversal. If a traversal pattern P is a
subtraversal of a traversal T, then we say that P is
contained in T, and vice versa T contains P. Given a
traversal of length k, there are only two subtraversals of
length k-1. For example, given a traversal of length 4, <B,

C, E, F>, there are only two subtraversals of length 3, that
is <B, C, E> and <C, E, F>. Note that non-consecutive
sequences, such as <B, C, F>, are not subtraversals.

The support count of a pattern P, scount(P), is the
number of traversals containing the pattern. The support of
a pattern P, support(P), is the fraction of traversals
containing the pattern. Given a traversal database D, let |D|
be the number of traversals.

D
PscountPsupport)()(=

 (1)

Given a base graph with a set of vertices V = {v1, v2,
…, vn}, in which each vertex vj is assigned with a weight
wj ≥ 0, the weighted support of a pattern P, wsupport(P),
is

())()(PsupportwPwsupport
Pv

j

j

= ∑

∈ (2)

A pattern P is said to be weighted-frequent when the
weighted support is greater than or equal to a given
minimum weighted support threshold, minwsup.

minwsup)wsupport(P ≥ (3)

For example, given a base graph and traversal database

of Fig. 1 and 2, and minwsup of 5.0, then the pattern <B, C,
E> is weighted-frequent since (5.0 + 7.0 + 4.0) × 2/6 = 5.3
≥ 5.0, but the pattern <B, C> is not since (5.0 + 7.0) × 2/6
= 4.0 < 5.0.

From equation (1), (2) and (3), a pattern P is weighted-

frequent when its support count satisfies

∑
∈

×
≥

Pv

j

j

w

Dminwsup
Pscount)(

 (4)

We can consider the right hand side of (4) as the lower
bound of the support count for a pattern P to be weighted-
frequent. Such lower bound, called support bound,
sbound(P), is given by

×

=
∑
∈Pj

j

v
w

Dminwsup
Psbound)(

 (5)

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014 22

We take the ceiling of the value since the support

bound is an integer. From Equation (4) and (5), we can say
a pattern P is weighted-frequent when the support count is
greater than or equal to the support bound.

scount(P) ≥ sbound(P) (6)

The problem concerned in this paper is stated as
follows: Given a weighted directed graph(base graph) and
a set of path traversals on the graph(traversal database),
find all weighted-frequent patterns.

To cope with the problem, we propose a mining
algorithm based on the Apriori algorithm. The reason why
Apriori algorithm works is due to the downward closure
property, which says all the subpatterns of a frequent
pattern are also frequent. With weight settings, however, it
is not necessarily true for all the subpatterns of a weighted-
frequent pattern being also weighted-frequent. For example,
although <B, C> is a subpattern of weighted-frequent
pattern <B, C, E>, it is not weighted-frequent as shown in
the previous. Therefore, we can not directly adopt Apriori
algorithm. Instead, we will extend Apriori algorithm with
the notion of support bound. Fig. 3 shows the extended
algorithm, which performs in a level-wise manner.

Algorithm. Mining weighted-frequent traversal patterns

Inputs: Base graph G, Traversal database D, Minimum weighted

support minwsup

Output: List of weighted-frequent patterns Lk

{
 // 1. maximum length of weighted-frequent patterns
 u = max(length(t)), t ∈ D;

 // 2. initialize candidate patterns of length 1
 C1 = V(G);

 for (k = 1; k ≤ u and Ck ≠ ∅; k++) {

 // 3. obtain support counts of candidate patterns
 for each pattern p ∈ Ck {
 for each traversal t ∈ D
 if p is contained in t, then p.scount++;
 }

// 4. determine weighted-frequent patterns
 Lk = {p | p ∈ Ck, p.wsupport ≥ minwsup};
 (equivalently, p.scount ≥ p.sbound)

// 5. prune candidate patterns
 C’k = pruneCandidates(Ck, G);

 // 6. generate new candidate patterns for next pass

for each P = <p1, p2, …, pk> in C’k {
 for each edge <pk, v> in G
 P is extended to <p1, p2, …, pk, v>;
 }
 }
}

Fig.3 Algorithm for mining weighted-frequent traversal
patterns

In the algorithm, each step is outlined as follows. Step

1 is to find out the maximum possible length of weighted-
frequent patterns, which is limited by the maximum length
of traversals. Step 2 initializes candidate patterns of length
1 with the vertices of base graph. In Step 3, traversal
database is scanned to obtain the support counts of
candidate patterns. Step 4 is to determine weighted-
frequent patterns if the weighted support is greater than or
equal to the specified minimum value. Equivalently, if the
support count is greater or equal to the support bound. In
Step 5, the subroutine pruneCandidates(Ck, G) is to prune
candidate patterns, which will be described in the next
section. Step 6 generates new candidate patterns of length
k+1 from the pruned candidate patterns of length k for next
pass.

4. Pruning by Support Bound

The cornerstone to improve the mining performance is to
devise a pruning method which can reduce the number of
candidates as many as possible. We must prune such
candidates that have no possibility to become weighted
frequent in the future. On the contrary, we must keep such
candidates that have a possibility to become weighted-
frequent in the future. Main concern is how to decide such
possibility.

Definition 1. A pattern P is said to be feasible if it has a
possibility to become weighted-frequent in the future when
extended to longer patterns. In other words, if some future
patterns containing P will be possibly weighted-frequent.

Now, the pruning problem is converted to the
feasibility problem. For the decision of such feasibility, we
will first devise the weight bound of a pattern. Let the
maximum possible length of weighted-frequent patterns be
u, which may be the length of longest traversal in the
traversal database. Given a k-pattern P, suppose l-pattern
containing P, denoted by (P, l), where k < l ≤ u. For the
additional (l – k) vertices, if we can estimate upper bounds
of the weights as klrrr www −,,, 21 2 , then the upper bound
of the weight of the l-pattern (P, l) is given by

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014

23

∑∑
−

=∈

+=
kl

j
r

Pv
j j

j

wwlPwbound
1

),(
 (7)

We call this upper bound as l-weight bound of P. The

first sum is the sum of the weights for the k-pattern P. The
second one is the sum of the (l − k) estimated weights,
which can be estimated in several ways. We will propose
three estimation methods in the following subsections.

From (5) and (7), we can derive the lower bound of the

support count for l-pattern containing P to be weighted-
frequent. Such lower bound, called l-support bound of P,
is given by

 ×
=

),(
),(

lPwbound
Dminwsup

lPsbound (8)

With these formulations, we can say a pattern P is

feasible if scount(P) ≥ sbound(P, l) for some k < l ≤ u, but
not feasible if scount(P) < sbound(P, l) for all k < l ≤ u. If
a pattern P is feasible then some l-patterns containing P
will be possibly weighted-frequent. In other word, P has a
possibility to be subpatterns of some weighted-frequent l-
patterns. Therefore, P must be kept to be extended to
longer patterns for possible weighted-frequent patterns in
the coming passes. On the contrary, if a pattern P is not
feasible, then all l-patterns containing P will not be
weighted-frequent. In other word, P certainly has no
possibility to be subpattern of any weighted-frequent l-
patterns. Therefore, P must be pruned.

For example, referring to Fig. 1 and Fig. 2, given a 2-

pattern <B, C>, suppose 3-pattern <B, C, −>. For the
additional vertex ‘−’, we can estimate a possible upper
bound of the weight as 12.0, which is the greatest weight
among the remaining vertices besides B and C. Therefore,
the 3-support bound of <B, C> is

2
)0.12()0.70.5(

60.5)3,,(=

++
×

=>< CBsbound

It means if the support count of <B, C> is greater than

or equal to 2, some 3-patterns will be possibly weighted-
frequent. In other word, <B, C> has a possibility to be
subpatterns of some weighted-frequent 3-patterns. Because
the support count of the pattern <B, C> is actually 2, the
pattern must be kept and extended to 3-patterns for
possible weighted-frequent patterns. According to the
formulations, we can devise a pruning algorithm as follows.

Algorithm. Pruning by support bounds

 for each pattern P in candidates set Ck {
for each l from k+1 to u {

 estimate sbound(P, l);
 if (scount(P) ≥ sbound(P, l))
 break; // P is feasible. Keep it
 }
 if (l > u)
 Ck = Ck – {P}; // P is not feasible. Prune it
 }

Fig.4 Algorithm for pruning by support bounds

In the algorithm, the key problem is how to estimate the
support bound. We propose three methods in the
followings.

4.1 Support Bound by All Vertices

Given a k-pattern P, suppose l-pattern containing P, where
k < l ≤ u. Let V be the set of all vertices in the base graph.
Among the remaining vertices (V − P), let the vertices with
the (l − k) greatest weights be .21 ,,, klrrr vvv −2 Then, the l-
weight bound, wbound(P, l), and the l-support bound,
sbound(P, l), of P are defined same as Equation (7) and (8),
respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

2
)0.70.12()0.2(

60.5)3,(=

++

×
=>< Asbound

Example.

From Fig. 1 and 2, we will show how the weighted-
frequent patterns are generated from the traversal database.
Suppose the minimum weighted support threshold,
minwsup, is 5.0.

1. In the upperLimit() subroutine, the algorithm will scan
the length of traversals, and returns the maximum length,
which is 4 in this example. The maximum length is the
upper limit of the length of weighted-frequent patterns.

2. During the initialization step, the candidate patterns of
length 1 are generated with all vertices of the base graph.

C1 = {<A>, , <C>, <D>, <E>, <F>}

3. The algorithm repeats as follows.

pattern

P scount(P) sbound(P)
(wbound(P))

weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014 24

l = 2 l = 3 l = 4
<A> 4 15(2) 3(14) -
 3 6(5) 2(17) - -
<C> 4 5(7) 2(19) - -
<D> 1 5(6) 2(18) 2(25) 1(30)
<E> 3 8(4) 2(16) - -
<F> 1 3(12) 2(19) 2(25) 1(30)

In the above table, ‘-’ denotes ‘no need’.

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible
l = 3 l = 4

<A, B> 1 5(7) 2(19) 2(26)
<A, C> 2 4(9) 2(21) -
<B, C> 2 3(12) 2(24) -
<B, D> 0 - - -
<C, E> 3 3(11) - -
<D, F> 0 - - -
<E, D> 1 3(10) 2(22) 2(29)
<E, F> 1 2(16) 2(23) 2(29)

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

l = 4
<A, C, E> 1 3(13) 2(25)
<B, C, E> 2 2(16) -
<C, E, D> 1 2(17) 2(29)
<C, E, F> 1 2(23) 2(29)

pattern

P scount(P) sbound(P)
(wbound(P))

weighted-
frequent

<B, C, E, D> 0 -
<B, C, E, F> 1 2(28)

The weighted-frequent patterns are {<C, E>, <B, C, E>}.

4.2 Support Bound by Reachable Vertices

To prune unnecessary candidates as many as possible, the
support bounds need to be estimated as high as possible. It
means that we must estimate the weight bounds as low as
possible. The previous method, however, has a tendency to
over-estimate the weight bounds. This tendency is mainly
due to the non-consideration of the topology of base graph.
Specifically, the vertices with greatest weights are chosen
one after one, even though they cannot be reached from the
corresponding pattern. To cope with this limitation, we
will propose another method which takes into account the
graph topology, specifically reachable vertices.

Definition 2. Given a base graph G, r-reachable vertices
from a vertex v is all the vertices reachable from v within
the distance r. Such r-reachable vertices can be regarded as
the vertices within the radius r from v. Therefore, r-
reachable vertices include all the (r-1)-reachable vertices.

With this definition, we can find reachable vertices of a
pattern as follows: Given a k-pattern P, let R(P, l), k < l ≤
u, be the (l-k)-reachable vertices from the head vertex of P.
They can be obtained by a level wise manner. For example,
from Fig. 1, R(<A>, 2) is {B, C}, and R(<A>, 3) is {B, C,
D, E}.

Algorithm. Reachable vertices: R(P, l)

 S = {head vertex of P} for l = k+1,
Nl-1 for l > k+1;

 Nl = ∅;
 for each vertex v in S
 for each edge <v, w> in G
 if w is not in P and R(P, l-1) and Nl, then

append w to Nl;
 R(P, l) = R(P, l-1) ∪ Nl

Fig.5 Algorithm for reachable vertices

Among the vertices in R(P, l), let the vertices with the
(l − k) greatest weights be klrrr vvv −,,, 21 2 . Then, the l-
weight bound, wbound(P, l), and the l-support bound,
sbound(P, l), of P are obtained by Equation (7) and (8),
respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support

bound for the pattern <A> is

2
)0.60.7()0.2(

60.5)3,(=

++

×
=>< Asbound

Example.

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

l = 2 l = 3 l = 4
<A> 4 15(2) 4(9) - -
 3 6(5) 3(12) - -
<C> 4 5(7) 3(11) - -
<D> 1 5(6) 2(18) × ×
<E> 3 8(4) 2(16) - -
<F> 1 3(12) × × ×

In the above table, ‘×’ denotes ‘not applicable’.

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible
l = 3 l = 4

<A, B> 1 5(7) 3(14) 2(26)
<A, C> 2 4(9) 3(13) 2(27)
<B, C> 2 3(12) 2(16) -
<B, D> 0 - - -
<C, E> 3 3(11) - -
<E, D> 1 3(10) 2(22) ×
<E, F> 1 2(16) × ×

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014

25

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

l = 4
<A, C, E> 1 3(13) 2(25)
<B, C, E> 2 2(16) -
<C, E, D> 1 2(17) 2(29)
<C, E, F> 1 2(23) ×

pattern

P scount(P) sbound(P)
(wbound(P))

weighted-
frequent

<B, C, E, D> 0 -
<B, C, E, F> 1 2(28)

The weighted-frequent patterns are {<C, E>, <B, C, E>}.

4.3 Support Bound by Reachable Paths

The previous method, however, still has a tendency to
over-estimate the weight bounds. This tendency is mainly
due to the non-consideration of reachable paths in the base
graph. Specifically, the vertices with greatest weights are
chosen one after one, even though they are not on the same
path. To cope with this limitation, we will propose yet
another method which takes more into account the graph
topology, specifically reachable paths.

Definition 3. Given a base graph G, r-reachable paths
from a vertex v are all the paths of length r from v to other
vertices. The weight of a r-reachable path from v is the
sum of weights of the vertices in the path excluding v itself.

With this definition, we can find reachable paths of a
pattern as follows: Given a k-pattern P, let F(P, l), k < l ≤
u, be the (l-k)-reachable paths from the head vertex of P.
They can be obtained by a level wise manner. For example,
from Fig. 1, F(<A>, 2) is {<A, B>, <A, C>}, and F(<A>,
3) is {<A, B, C>, <A, B, D>, <A, C, E>}.

Algorithm. Reachable paths: F(P, l)

 S = {<head vertex of P>} for l = k+1,
 F(P, l-1) for l > k+1;

 for each path t = < …, v> in S
 for each edge <v, w> in G
 if w is not in P and t, then append <…, v, w>

to F(P, l);

Fig.6 Algorithm for reachable paths

Among the paths in F(P, l), let the vertices of the
greatest weight path be klrrr vvv −,,, 21 2 , exclusive of the
head vertex of P. Then, the l-weight bound, wbound(P, l),
and the l-support bound, sbound(P, l), of P are defined
same as Equation (7) and (8), respectively.

For example, refer to Fig. 1 and Fig. 2, the 3-support
bound for the pattern <A> is

3
)0.70.5()0.2(

60.5)3,(=

++

×
=>< Asbound

Example.

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

l = 2 l = 3 l = 4
<A> 4 15(2) 4(9) - -
 3 6(5) 3(12) - -
<C> 4 5(7) 3(11) - -
<D> 1 5(6) 2(18) × ×
<E> 3 8(4) 2(16) - -
<F> 1 3(12) × × ×

pattern
P scount(P)

sbound(P)
(wbound(P))

weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

 l = 3 l = 4
<A, B> 1 5(7) 3(14) 2(25)
<A, C> 2 4(9) 3(13) 2(25)
<B, C> 2 3(12) 2(16) -
<B, D> 0 - - -
<C, E> 3 3(11) - -
<E, D> 1 3(10) 2(22) ×
<E, F> 1 2(16) × ×

pattern
P scount(P) sbound(P)

(wbound(P))
weighted-
frequent

sbound(P,l)
(wbound(P,l)) feasible

l = 4
<A, C, E> 1 3(13) 2(25)
<B, C, E> 2 2(16) -
<C, E, D> 1 2(17) 2(29)
<C, E, F> 1 2(23) ×

pattern

P scount(P) sbound(P)
(wbound(P))

weighted-
frequent

<B, C, E, D> 0 -
<B, C, E, F> 1 2(28)

The weighted-frequent patterns are {<C, E>, <B, C, E>}.

5. Experimental Results

This section presents experimental results of the mining
algorithm, and compares three support bound estimation
methods, All vertices, Reachable vertices, and Reachable
paths using synthetic dataset. During the experiment, base
graph is generated synthetically according to the
parameters, i.e., number of vertices and average number of
edges per vertex. And then, we assigned distinctive weight
to each vertex of the base graph. All the experiments use a
base graph with 100 vertices and 300 edges, i.e., 3 average
edges per vertex. The number of traversals is 10,000 and
the minimum weighted support is 2.0. We generated six

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.10, October 2014 26

sets of traversals, in each of which the maximum length of
traversals varies from 5 to 10.

Fig. 7 shows the trend of the number of feasible
patterns with respect to the max length of traversals. We
measured the number of feasible patterns when their length
is (max length of traversals – 1). As shown in the figure,
the number of feasible patterns for Reachable paths is
smaller than those of All vertices and Reachable vertices.
The difference of the number of feasible patterns between
three methods becomes smaller as the max length of
traversals increases.

Fig. 7 Number of feasible patterns w.r.t diferrent max

length of traversals

6. Conclusions

This paper extended mining problem to the discovering of
weighted-frequent traversal patterns on graph. Differently
from previous approaches, vertices of graph are attached
with weights which reflect their importance. With these
weight settings, we presented the mining algorithm which
takes into account the weights in the measurement of
support. The algorithm is based on the notion of support
bound. For the estimation of support bound, three methods
were also proposed, and then experimented. The method
using graph topology resulted in better performance.
Future works may include other weight settings, such as
edge weights and traversal weights.

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules”, Proc. of International Conference on
Very Large Databases (VLDB), Chile, Sep. 1994.

[2] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data Mining
for Path Traversal Patterns”, IEEE Trans. on Knowledge

and Data Engineering, vol. 10, no. 2, pp. 209-221, Mar.
1998.

[3] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized
Path Patterns for Web Log Data Mining”, Proc. of East-
European Conf. on Advanced Databases and Information
Systems (ADBIS), Sep. 2000.

[4] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns
from Graph Traversals”, Data and Knowledge Engineering,
vol. 37, no. 3, pp. 243-266, Jun. 2001.

[5] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W.
Kwong, “Mining Association Rules with Weighted Items”,
Proc. of International Database Engineering and
Applications Symposium (IDEAS), UK, Jul. 1998.

[6] W. Wang, J. Yang and P.S. Yu, “Efficient Mining of
Weighted Association Rules (WAR)”, Proc. of ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), USA, Aug. 2000.

[7] F. Tao, F. Murtagh and M. Farid, “Weighted Association
Rule Mining using Weighted Support and Significance
Framework”, Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), USA, Aug. 2003.

