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Summary 
Mining problem is to discover valuable patterns from large data 
set, such as item sets and graph traversals. This paper extends 
such mining problems to the case where vertices of graph are 
attached with weights to reflect their importance. Under such 
weight settings, traditional mining algorithms can not be adopted 
directly any more. To cope with the problem, this paper proposes 
new algorithms to discover weighted-frequent patterns from the 
traversals. Specifically, we devise support bound paradigms for 
candidate generation and pruning during the mining process. 
Key words: 
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1. Introduction 

Data mining is to find significant patterns from huge 
amount of data sets, i.e., large databases. The significance 
of patterns may be defined in several ways. The simplest 
and traditional one is the frequency of patterns, which has 
been adopted for the mining of un-weighted settings. More 
valuable one may be weighted-frequency of patterns, 
which can be adopted for the mining of weighted settings. 
The mining problem this paper focus is the later and 
defined as follows. Given a set of traversals on a graph 
with weighted vertices, discover all patterns contained in 
the traversals weighted-frequently. Main issue on such 
mining problem is how to generate candidates, from which 
solutions can be obtained. Another issue is how to keep the 
number of candidates as small as possible. To cope with 
these issues, we will devise new paradigms to prune 
unnecessary candidates as many as possible.  

The overall structure of our mining algorithm is similar 
to the Apriori algorithm [1], but the detailed steps contain 
some differences. To begin with, the algorithm runs in a 
level-wise manner with increasing sizes. However, since 
the subpattern of a weighted-frequent pattern may not be 
weighted-frequent, we cannot generate candidate (k+1)-
patterns simply from the k-patterns as in the Apriori 
algorithm. Instead, we should find a way to keep the k-
patterns which may possibly become some weighted-
frequent l-patterns, for l > k, in the coming passes. In order 
to find such k-patterns, we will propose support bound 
paradigms. During the operation, support count and l-

support bounds are estimated for each candidate k-pattern. 
If the support count is less than all the l-support bounds, 
we can say the k-pattern cannot be any weighted-frequent 
patterns in the coming passes, therefore it can be pruned. 
Otherwise, the k-pattern has a possibility to be weighted-
frequent patterns in the coming passes, therefore it should 
be kept. The performance of this mining process is heavily 
relied on the performance of the support bound estimations. 
To cope with this problem, three estimation methods will 
be proposed, two of them take into account the graph 
topology intensively.  

This paper is organized as follows. Section 2 reviews 
previous works related with traversal pattern mining and 
weight settings. In Section 3, we formulate weighted-
frequent mining problem of graph traversals, and then 
propose new algorithm. Section 4 includes three methods 
for the estimation of support bound. In Section 5, we 
experiment and analyze the methods on synthetic data. 
Finally, Section 6 contains the conclusion and future works. 

2. Related Works 

Our work is related to the mining problem of traversal 
patterns with weight settings. For the traversal pattern 
mining, Chen et al. [2] proposed mining algorithms with 
hashing and pruning techniques. However, they did not 
consider graph structure, on which the traversals occur. 
Nanopoulos et al. [3,4] defined new criteria for the support 
and subpath containment, and then proposed algorithms 
with a trie structure. However the above works did not take 
into account any weight on the traversals.  

For the mining with weight settings, most of previous 
works are related to the mining of association rules and its 
sub-problem, the discovery of frequent itemsets.  Cai et al. 
[5] generalized the discovery of frequent itemsets to the 
case where each item is given an associated weight. They 
introduced new criteria to handle the weights in the process 
of finding frequent itemsets, such as the weighted support 
for the measurement of support, and the support bound for 
the pruning of candidates. Wang et al. [6] extended the 
problem by allowing weights to be associated with items in 
each transaction. Their approach ignores the weights when 
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finding frequent itemsets, but considers during the 
association rule generation. Tao et al. [7] proposed an 
improved model of weighted support measurement and the 
weighted downward closure property. Although the above 
works take into account the notion of weight, they can not 
be applied directly to the mining problem of traversal 
patterns.  

3. Mining Weighted-Frequent Traversal 
Patterns 

This section describes definitions to be used, and then 
formulates the mining problem of weighted-frequent 
traversal patterns. According to the formulations, mining 
algorithm will be proposed.  
 

A base graph is a weighted directed graph, on which 
traversals occur. For example, the following base graph 
has 6 vertices and 8 directed edges, in which each vertex is 
attached with a weight value.  
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Fig. 1 Base graph  

 
A traversal is a sequence of consecutive vertices along 

a sequence of edges on the base graph. A traversal 
database is a set of traversals. The following traversal 
database has totally 6 traversals, each of which has an 
identifier and a sequence of consecutive vertices. 
 

Tid Traversal 
1 
2 
3 
4 
5 
6 

<A, B> 
<B, C, E, F> 
<A, C> 
<B, C, E> 
<A> 
<A, C, E, D> 

Fig. 2 Traversal database 
 

A subtraversal is any subsequence of consecutive 
vertices in a traversal. If a traversal pattern P is a 
subtraversal of a traversal T, then we say that P is 
contained in T, and vice versa T contains P. Given a 
traversal of length k, there are only two subtraversals of 
length k-1. For example, given a traversal of length 4, <B, 

C, E, F>, there are only two subtraversals of length 3, that 
is <B, C, E> and <C, E, F>. Note that non-consecutive 
sequences, such as <B, C, F>, are not subtraversals.  
 

The support count of a pattern P, scount(P), is the 
number of traversals containing the pattern. The support of 
a pattern P, support(P), is the fraction of traversals 
containing the pattern. Given a traversal database D, let |D| 
be the number of traversals. 

 

D
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Given a base graph with a set of vertices V = {v1, v2, 
…, vn}, in which each vertex vj is assigned with a weight 
wj ≥ 0, the weighted support of a pattern P, wsupport(P),  
is 
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A pattern P is said to be weighted-frequent when the 
weighted support is greater than or equal to a given 
minimum weighted support threshold, minwsup. 

 
minwsup)wsupport(P ≥                  (3) 

 
For example, given a base graph and traversal database 

of Fig. 1 and 2, and minwsup of 5.0, then the pattern <B, C, 
E> is weighted-frequent since (5.0 + 7.0 + 4.0) × 2/6 = 5.3 
≥ 5.0, but the pattern <B, C> is not since (5.0 + 7.0) × 2/6 
= 4.0 < 5.0. 

 
From equation (1), (2) and (3), a pattern P is weighted-

frequent when its support count satisfies 
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We can consider the right hand side of (4) as the lower 
bound of the support count for a pattern P to be weighted-
frequent. Such lower bound, called support bound, 
sbound(P), is given by 
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We take the ceiling of the value since the support 

bound is an integer. From Equation (4) and (5), we can say 
a pattern P is weighted-frequent when the support count is 
greater than or equal to the support bound. 
 

scount(P)   ≥   sbound(P)                       (6) 
 

The problem concerned in this paper is stated as 
follows: Given a weighted directed graph(base graph) and 
a set of path traversals on the graph(traversal database), 
find all weighted-frequent patterns. 
 

To cope with the problem, we propose a mining 
algorithm based on the Apriori algorithm. The reason why 
Apriori algorithm works is due to the downward closure 
property, which says all the subpatterns of a frequent 
pattern are also frequent. With weight settings, however, it 
is not necessarily true for all the subpatterns of a weighted-
frequent pattern being also weighted-frequent. For example, 
although <B, C> is a subpattern of weighted-frequent 
pattern <B, C, E>, it is not weighted-frequent as shown in 
the previous. Therefore, we can not directly adopt Apriori 
algorithm. Instead, we will extend Apriori algorithm with 
the notion of support bound. Fig. 3 shows the extended 
algorithm, which performs in a level-wise manner.  
 

Algorithm. Mining weighted-frequent traversal patterns 
 
Inputs: Base graph G, Traversal database D, Minimum weighted 

support minwsup 

Output: List of weighted-frequent patterns Lk 
 
{ 
        // 1. maximum length of weighted-frequent patterns 
    u = max(length(t)), t ∈ D; 
 
        // 2.  initialize candidate patterns of length 1 
    C1 = V(G); 
 

    for (k = 1; k ≤ u and Ck ≠ ∅; k++) { 
 
             // 3. obtain support counts of candidate patterns 
          for each pattern p ∈ Ck { 
               for each traversal t ∈ D 
                    if p is contained in t, then p.scount++; 
          } 
 

// 4. determine weighted-frequent patterns  
         Lk = {p | p ∈ Ck,  p.wsupport ≥ minwsup}; 
                              (equivalently, p.scount ≥ p.sbound) 
 

// 5.  prune candidate patterns 
         C’k = pruneCandidates(Ck, G); 
 
              // 6. generate new candidate patterns for next pass 

for each P = <p1, p2, …, pk> in C’k { 
               for each edge <pk, v> in G 
                     P is extended to <p1, p2, …, pk, v>; 
         } 
    } 
} 

Fig.3 Algorithm for mining weighted-frequent traversal 
patterns 

 
In the algorithm, each step is outlined as follows. Step 

1 is to find out the maximum possible length of weighted-
frequent patterns, which is limited by the maximum length 
of traversals. Step 2 initializes candidate patterns of length 
1 with the vertices of base graph. In Step 3, traversal 
database is scanned to obtain the support counts of 
candidate patterns. Step 4 is to determine weighted-
frequent patterns if the weighted support is greater than or 
equal to the specified minimum value. Equivalently, if the 
support count is greater or equal to the support bound.  In 
Step 5, the subroutine pruneCandidates(Ck, G) is to prune 
candidate patterns, which will be described in the next 
section. Step 6 generates new candidate patterns of length 
k+1 from the pruned candidate patterns of length k for next 
pass. 

4.  Pruning by Support Bound 

The cornerstone to improve the mining performance is to 
devise a pruning method which can reduce the number of 
candidates as many as possible. We must prune such 
candidates that have no possibility to become weighted 
frequent in the future. On the contrary, we must keep such 
candidates that have a possibility to become weighted-
frequent in the future. Main concern is how to decide such 
possibility.  
 
Definition 1. A pattern P is said to be feasible if it has a 
possibility to become weighted-frequent in the future when 
extended to longer patterns. In other words, if some future 
patterns containing P will be possibly weighted-frequent. 
 

Now, the pruning problem is converted to the 
feasibility problem. For the decision of such feasibility, we 
will first devise the weight bound of a pattern. Let the 
maximum possible length of weighted-frequent patterns be 
u, which may be the length of longest traversal in the 
traversal database. Given a k-pattern P, suppose l-pattern 
containing P, denoted by (P, l), where k < l ≤ u. For the 
additional (l – k) vertices, if we can estimate upper bounds 
of the weights as klrrr www −,,, 21 2 , then the upper bound 
of the weight of the l-pattern (P, l) is given by 
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We call this upper bound as l-weight bound of P. The 

first sum is the sum of the weights for the k-pattern P. The 
second one is the sum of the (l − k) estimated weights, 
which can be estimated in several ways. We will propose 
three estimation methods in the following subsections. 

 
From (5) and (7), we can derive the lower bound of the 

support count for l-pattern containing P to be weighted-
frequent. Such lower bound, called l-support bound of P, 
is given by 
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With these formulations, we can say a pattern P is 

feasible if scount(P) ≥ sbound(P, l) for some k < l ≤ u, but 
not feasible if scount(P) < sbound(P, l) for all k < l ≤ u. If 
a pattern P is feasible then some l-patterns containing P 
will be possibly weighted-frequent. In other word, P has a 
possibility to be subpatterns of some weighted-frequent l-
patterns. Therefore, P must be kept to be extended to 
longer patterns for possible weighted-frequent patterns in 
the coming passes. On the contrary, if a pattern P is not 
feasible, then all l-patterns containing P will not be 
weighted-frequent. In other word, P certainly has no 
possibility to be subpattern of any weighted-frequent l-
patterns. Therefore, P must be pruned. 

 
For example, referring to Fig. 1 and Fig. 2, given a 2-

pattern <B, C>, suppose 3-pattern <B, C, −>. For the 
additional vertex ‘−’, we can estimate a possible upper 
bound of the weight as 12.0, which is the greatest weight 
among the remaining vertices besides B and C. Therefore, 
the 3-support bound of <B, C> is 

2
)0.12()0.70.5(
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It means if the support count of <B, C> is greater than 

or equal to 2, some 3-patterns will be possibly weighted-
frequent. In other word, <B, C> has a possibility to be 
subpatterns of some weighted-frequent 3-patterns. Because 
the support count of the pattern <B, C> is actually 2, the 
pattern must be kept and extended to 3-patterns for 
possible weighted-frequent patterns. According to the 
formulations, we can devise a pruning algorithm as follows. 
 

Algorithm. Pruning by support bounds 
 

      for each pattern P in candidates set Ck { 
for each l from k+1 to u { 

                   estimate sbound(P, l); 
                   if (scount(P) ≥  sbound(P, l)) 
                          break;    // P is feasible. Keep it 
            } 
            if (l > u)  
                   Ck = Ck – {P};    // P is not feasible. Prune it 
      } 

Fig.4 Algorithm for pruning by support bounds 
 

In the algorithm, the key problem is how to estimate the 
support bound. We propose three methods in the 
followings.  

 

4.1 Support Bound by All Vertices 

Given a k-pattern P, suppose l-pattern containing P, where 
k < l ≤ u. Let V be the set of all vertices in the base graph. 
Among the remaining vertices (V − P), let the vertices with 
the (l − k) greatest weights be .21 ,,, klrrr vvv −2  Then, the l-
weight bound, wbound(P, l), and the l-support bound, 
sbound(P, l), of P are defined same as Equation (7) and (8), 
respectively. 
 

For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 

2
)0.70.12()0.2(
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Example. 
 
From Fig. 1 and 2, we will show how the weighted-
frequent patterns are generated from the traversal database. 
Suppose the minimum weighted support threshold, 
minwsup, is 5.0. 
 
1. In the upperLimit() subroutine, the algorithm will scan 
the length of traversals, and returns the maximum length, 
which is 4 in this example. The maximum length is the 
upper limit of the length of weighted-frequent patterns. 
 
2. During the initialization step, the candidate patterns of 
length 1 are generated with all vertices of the base graph. 

C1 = {<A>, <B>, <C>, <D>, <E>, <F>} 
 
3. The algorithm repeats as follows. 
 
pattern 

P scount(P) sbound(P) 
(wbound(P)) 

weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 
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l = 2 l = 3 l = 4 
<A> 4 15(2)  3(14) -   
<B> 3 6(5)  2(17) - -  
<C> 4 5(7)  2(19) - -  
<D> 1 5(6)  2(18) 2(25) 1(30)  
<E> 3 8(4)  2(16) - -  
<F> 1 3(12)  2(19) 2(25) 1(30)  

In the above table, ‘-’ denotes ‘no need’. 
 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 
l = 3 l = 4 

<A, B> 1 5(7)  2(19) 2(26)  
<A, C> 2 4(9)  2(21) -  
<B, C> 2 3(12)  2(24) -  
<B, D> 0 -  - -  
<C, E> 3 3(11)  - -  
<D, F> 0 -  - -  
<E, D> 1 3(10)  2(22) 2(29)  
<E, F> 1 2(16)  2(23) 2(29)  

 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

l = 4 
<A, C, E> 1 3(13)  2(25)  
<B, C, E> 2 2(16)  -  
<C, E, D> 1 2(17)  2(29)  
<C, E, F> 1 2(23)  2(29)  

 
pattern 

P scount(P) sbound(P) 
(wbound(P)) 

weighted- 
frequent 

<B, C, E, D> 0 -  
<B, C, E, F> 1 2(28)  

 
The weighted-frequent patterns are {<C, E>, <B, C, E>}. 

 

4.2 Support Bound by Reachable Vertices  

To prune unnecessary candidates as many as possible, the 
support bounds need to be estimated as high as possible. It 
means that we must estimate the weight bounds as low as 
possible. The previous method, however, has a tendency to 
over-estimate the weight bounds. This tendency is mainly 
due to the non-consideration of the topology of base graph. 
Specifically, the vertices with greatest weights are chosen 
one after one, even though they cannot be reached from the 
corresponding pattern. To cope with this limitation, we 
will propose another method which takes into account the 
graph topology, specifically reachable vertices. 
   
Definition 2. Given a base graph G, r-reachable vertices 
from a vertex v is all the vertices reachable from v within 
the distance r. Such r-reachable vertices can be regarded as 
the vertices within the radius r from v. Therefore, r-
reachable vertices include all the (r-1)-reachable vertices.  

 

With this definition, we can find reachable vertices of a 
pattern as follows: Given a k-pattern P, let R(P, l), k < l ≤ 
u, be the (l-k)-reachable vertices from the head vertex of P. 
They can be obtained by a level wise manner. For example, 
from Fig. 1, R(<A>, 2) is {B, C}, and R(<A>, 3) is {B, C, 
D, E}.  

 
Algorithm. Reachable vertices: R(P, l) 
 

       S = {head vertex of P} for l = k+1, 
Nl-1 for l > k+1; 

       Nl = ∅; 
       for each vertex v in S 
             for each edge <v, w> in G 
                    if w is not in P and R(P, l-1) and Nl, then 

append w to Nl; 
       R(P, l) = R(P, l-1) ∪ Nl 

Fig.5 Algorithm for reachable vertices 
 

Among the vertices in R(P, l), let the vertices with the 
(l − k) greatest weights be klrrr vvv −,,, 21 2 . Then, the l-
weight bound, wbound(P, l), and the l-support bound, 
sbound(P, l), of P are obtained by Equation (7) and (8), 
respectively.  

 
For example, refer to Fig. 1 and Fig. 2, the 3-support 

bound for the pattern <A> is 

2
)0.60.7()0.2(

60.5)3,( =







++

×
=>< Asbound  

 
Example. 
 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

l = 2 l = 3 l = 4 
<A> 4 15(2)  4(9) - -  
<B> 3 6(5)  3(12) - -  
<C> 4 5(7)  3(11) - -  
<D> 1 5(6)  2(18) × ×  
<E> 3 8(4)  2(16) - -  
<F> 1 3(12)  × × ×  

In the above table, ‘×’ denotes ‘not applicable’. 
 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 
l = 3 l = 4 

<A, B> 1 5(7)  3(14) 2(26)  
<A, C> 2 4(9)  3(13) 2(27)  
<B, C> 2 3(12)  2(16) -  
<B, D> 0 -  - -  
<C, E> 3 3(11)  - -  
<E, D> 1 3(10)  2(22) ×  
<E, F> 1 2(16)  × ×  
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pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

l = 4 
<A, C, E> 1 3(13)  2(25)  
<B, C, E> 2 2(16)  -  
<C, E, D> 1 2(17)  2(29)  
<C, E, F> 1 2(23)  ×  

 
pattern 

P scount(P) sbound(P) 
(wbound(P)) 

weighted- 
frequent 

<B, C, E, D> 0 -  
<B, C, E, F> 1 2(28)  

 
The weighted-frequent patterns are {<C, E>, <B, C, E>}. 

 

4.3 Support Bound by Reachable Paths 

The previous method, however, still has a tendency to 
over-estimate the weight bounds. This tendency is mainly 
due to the non-consideration of reachable paths in the base 
graph. Specifically, the vertices with greatest weights are 
chosen one after one, even though they are not on the same 
path. To cope with this limitation, we will propose yet 
another method which takes more into account the graph 
topology, specifically reachable paths. 
  
Definition 3. Given a base graph G, r-reachable paths 
from a vertex v are all the paths of length r from v to other 
vertices. The weight of a r-reachable path from v is the 
sum of weights of the vertices in the path excluding v itself. 
 

With this definition, we can find reachable paths of a 
pattern as follows: Given a k-pattern P, let F(P, l), k < l ≤ 
u, be the (l-k)-reachable paths from the head vertex of P. 
They can be obtained by a level wise manner. For example, 
from Fig. 1, F(<A>, 2) is {<A, B>, <A, C>}, and F(<A>, 
3) is {<A, B, C>, <A, B, D>, <A, C, E>}.   
 
Algorithm. Reachable paths: F(P, l) 
 

       S = {<head vertex of P>} for l = k+1, 
   F(P, l-1) for l > k+1; 

       for each path t = < …, v> in S 
             for each edge <v, w> in G 
                   if w is not in P and t, then append <…, v, w> 

to F(P, l); 

Fig.6 Algorithm for reachable paths 
 

Among the paths in F(P, l), let the vertices of the 
greatest weight path be klrrr vvv −,,, 21 2 , exclusive of the 
head vertex of P. Then, the l-weight bound, wbound(P, l), 
and the l-support bound, sbound(P, l), of P are defined 
same as Equation (7) and (8), respectively. 
 

For example, refer to Fig. 1 and Fig. 2, the 3-support 
bound for the pattern <A> is 

3
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Example. 
 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

l = 2 l = 3 l = 4 
<A> 4 15(2)  4(9) - -  
<B> 3 6(5)  3(12) - -  
<C> 4 5(7)  3(11) - -  
<D> 1 5(6)  2(18) × ×  
<E> 3 8(4)  2(16) - -  
<F> 1 3(12)  × × ×  

 

pattern 
P scount(P) 

sbound(P) 
(wbound(P)) 

weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

  l = 3 l = 4 
<A, B> 1 5(7)  3(14) 2(25)  
<A, C> 2 4(9)  3(13) 2(25)  
<B, C> 2 3(12)  2(16) -  
<B, D> 0 -  - -  
<C, E> 3 3(11)  - -  
<E, D> 1 3(10)  2(22) ×  
<E, F> 1 2(16)  × ×  

 

pattern 
P scount(P) sbound(P) 

(wbound(P)) 
weighted- 
frequent 

sbound(P,l) 
(wbound(P,l)) feasible 

l = 4 
<A, C, E> 1 3(13)  2(25)  
<B, C, E> 2 2(16)  -  
<C, E, D> 1 2(17)  2(29)  
<C, E, F> 1 2(23)  ×  

 
pattern 

P scount(P) sbound(P) 
(wbound(P)) 

weighted- 
frequent 

<B, C, E, D> 0 -  
<B, C, E, F> 1 2(28)  

 
The weighted-frequent patterns are {<C, E>, <B, C, E>}. 

5. Experimental Results 

This section presents experimental results of the mining 
algorithm, and compares three support bound estimation 
methods, All vertices, Reachable vertices, and Reachable 
paths using synthetic dataset. During the experiment, base 
graph is generated synthetically according to the 
parameters, i.e., number of vertices and average number of 
edges per vertex. And then, we assigned distinctive weight 
to each vertex of the base graph. All the experiments use a 
base graph with 100 vertices and 300 edges, i.e., 3 average 
edges per vertex. The number of traversals is 10,000 and 
the minimum weighted support is 2.0. We generated six 
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sets of traversals, in each of which the maximum length of 
traversals varies from 5 to 10. 

Fig. 7 shows the trend of the number of feasible 
patterns with respect to the max length of traversals. We 
measured the number of feasible patterns when their length 
is (max length of traversals – 1). As shown in the figure, 
the number of feasible patterns for Reachable paths is 
smaller than those of All vertices and Reachable vertices. 
The difference of the number of feasible patterns between 
three methods becomes smaller as the max length of 
traversals increases.  
 

 
Fig. 7 Number of feasible patterns w.r.t diferrent max 

length of traversals 

6. Conclusions 

This paper extended mining problem to the discovering of 
weighted-frequent traversal patterns on graph. Differently 
from previous approaches, vertices of graph are attached 
with weights which reflect their importance. With these 
weight settings, we presented the mining algorithm which 
takes into account the weights in the measurement of 
support. The algorithm is based on the notion of support 
bound. For the estimation of support bound, three methods 
were also proposed, and then experimented. The method 
using graph topology resulted in better performance. 
Future works may include other weight settings, such as 
edge weights and traversal weights. 
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