
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

 1

Manuscript received November 5, 2014
Manuscript revised November 20, 2014

Cluster-based In-networking Caching for Content-Centric
Networking

Chengming LI† and Koji OKAMURA††,

†Department of Advanced IT, Graduate School of ISEE, Kyushu University
††Research Institute for Information Technology, Kyushu University.

 Hakozaki 6-10-1, Higashi-ku, Fukuoka-shi, 812-8581, JAPAN

Summary
With the Internet architecture changing from host-centric
communication model to content-centric model, Content Centric
Networking (CCN) has emerged. One distinctive feature of CCN
infrastructure is in-networking caching. As cache capacities of
routers are relatively small compared with delivered data size,
one challenge of in-networking caching is how to efficiently use
the cache resources. In this paper, we proposed a cluster-based
in-networking caching mechanism to improve the cache hit ratio
and reduce caching redundancy for CCN. We designed the
improved K-medoids cluster algorithm to cluster the whole
network into k clusters and Virtual Distributed Hash Table
(VDHT) to efficiently control and manage the resources stored in
each cluster. We also proposed different policies for intra cluster
routing and inter cluster routing to effectively forwarding
requests. Compared with representative on-path caching schemes
and hash scheme by simulation, we concluded that our cluster-
based in-networking caching mechanism can improve the cache
hit ratio and reduce link load of networks.
Key words:
Content-Centric Networking; In-networking Caching; Cluster;
Cache Diversity;

1. Introduction

With the Internet architecture changing from host-centric
communication model to content-centric model, several
Information-Centric Network (ICN) architectures have
been proposed, e.g., TRIAD [1], DONA [2], CCN/NDN
[3]. As the CCN/NDN (Content-Centric Networking/
Named Data Networking) architecture is the most popular
one, in this paper, we carry our work under the framework
and the terminology of CCN/NDN. Furthermore, we use
CCN instead of NDN for the method we designed is
applicable to a wider class of CCN designs.

In CCN, contents are retrieved directly by their names,
instead of locations. CCN is designed inherently focused
on content distribution rather than host-to-host
connectivity. Content in CCN is distributed in a scalable,
cost efficient and secure manner. The change from host-
centric to content-centric has several attractive advantages,
such as network load reduction, low dissemination latency,

and energy efficiency [3]. While the general infrastructure
of CCN is in-networking caching, which allows any
elements in the network to store content temporarily acting
as servers.

The researches about catching have been widely carried
out in the past [4]. While catching in CCN has its own
content-oriented features. First of all, caching is a native
property of routers in CCN. In CCN, request catching and
content catching should be handled at a same network
layer. That makes content retrieval and replacement be
considered at line speed [5]. More clearly, a router should
check if its local content store has the requested content
before it sends a request to next hop. Secondly, the
placements of the ubiquitous caches are arbitrary, but not
hierarchical, which make caching in CCN different from
Web-catching and Content Delivery Network (CDN). At
last, as content chunks in CCN are identified by the unique
names, different applications could use same cache space
in a router at the same time. This is the most basic feature
of catching in CCN, which make it different from web,
CDN and P2P.

In-networking catching is the distinctive feature of CCN
infrastructure and plays an important role in terms of
system performance. In-network caching mechanism can
avoid wasting network bandwidth due to the repeated
delivery of popular content. Additionally, it can reduce
response time for content by placing the content closer to
users. The challenges surrounding in-networking caching
involves cache placement, cache replacement and network
cache model, etc. However, Kutscher, et al [6] define three
key issues which influence the performance of in-
networking caching system, i.e., cache placement, content-
placement, request-cache routing. Cache placement mainly
focus on deciding which nodes are supposed to upgrade for
in-networking caching in a domain, which are mainly
related with the whole network planning, such as, the
network topology, traffic and positions [7], [8]. As for
content-placement, it is an issue about the distribution
policy of contents across in-networking caches in a domain.
However, request-cache routing solves the problem of

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

2

actions took for a content request corresponding to node
caches. Above all, in this paper, we focus on the content
placement issue and the request-cache routing issue.

As in-networking caching is so important for CCN, lots of
in-networking caching strategies have been presented till
now. There are mainly three caching strategies for in-
networking caching. The “on-path catching” strategy is the
one which allows contents to be cached temporarily at
nodes on the path from content providers to consumers.
This strategy reduces bandwidth consumption and content
retrieval time by allowing contents closer to consumers.
However, it has been demonstrated that this strategy is not
optimal as it may imply a high content replication that
limits the maximum number of contents that can be cached
inside a domain [9], [10]. Therefore, “off-path caching” is
an alternative strategy that can avoid duplications and can
significantly increase the overall hit radio [10]. While, the
“off-path caching” limited the scalability of CCN for its
per-content state required for routing. Hence, mixed
techniques were proposed, like SCAN [11], which mix
features of on-path and off-path techniques.

The idea in this paper is motivated by following
considerations. Due to content popularity, often, the same
content is accessed by many users, which makes network
traffic exhibit high redundancy. Furthermore, even CCN
enables individual nodes to reduce redundancy by
managing a local cache, redundancy can freely appear
across different nodes as the default ubiquitous LRU
caching scheme and the support of multi-path routing.
These two aspects motive us to consider that controlling
the redundancy level is a critical issue to improving the
systematic caching performance of CCN.

The goals, our scheme aim to achieve, are improving cache
hit, which means reduction in bandwidth usage, reducing
caching redundancy, efficient utilization of available cache
resources, and balancing distribution of content among the
available caches.

To achieve the above goals, we proposed the cluster-based
in-networking caching for CCN. Through dividing nodes
of network into clusters, we make sure that no cache
redundancy happens in a cluster to improve cache diversity.
In order to efficiently control and manage the state of
cache in a cluster, we use a distributed hash table.

The main contributions of this paper are:

• We proposed cluster-based in-networking caching
for CCN to improve cache hit, reduce cache
redundancy and improve efficient utilization of
available cache resources, and balance
distribution of content among the available caches.

• We also designed two kinds of routing policies
for cluster-based in-networking caching, i.e.,
inter-cluster routing and intra-cluster routing.

• We evaluate the effectiveness of cluster-based in-
networking caching scheme by extensive
simulations. The results show that our scheme
balance the cache hit radio and link load
compared with other schemes.

The rest of the paper is organized as follows. Section 2
presents a survey of related work and back ground. System
model and assumptions are detailed in Section 3 and
Section 4 introduced our proposal, cluster-based in-
networking caching for CCN. Section 5 is the simulation
evaluation. Finally, conclusions are summarized in Section
6.

2. Background

In this section, we will firstly introduce the architecture of
Content-Centric Networking briefly. Then, we are going to
focus on proposed schemes of inter-networking caching in
CCN. Though these descriptions, we built a basic
conception for our work.

2.1 Content-Centric Networking

In CCN, a node has three components: the Content Store
(CS), the Pending Interest Table (PIT) and the Forwarding
Information Base (FIB) [12]. And there are two types of
packets [3] in CCN: Interest and Data. Consumers use
Interests, which containing hierarchically structured
content names, to require desired data. Data stored in
nodes or servers are also named in hierarchical structures,
e.g., a movie produced by Youtube may have the name
/Youtube/movies/Example.rmvb, which similar to a URI.

Actions are taken as follows when an Interest packet
comes in a node from some faces:

1) By longest prefix matching, check whether the required
data stored in the CS or not, if exits, the router return
corresponding Data packet to faces the Interest coming
from;

2) If not exits, the node checks whether the PIT has the
name of requested Data packet. If exits, it adds the faces
that the Interest comes from into the corresponding entry
of PIT;

3) If not exits, the node creates a new entry and adds it into
the PIT. Then, the node forwards the Interest to face or
faces according the FIB to retrieve the requested data.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

3

Procedures will be taken as following when a Data packet
received by a node:

1) Sends the Data packet to the face or faces that marked
in the corresponding PIT entry, and delete the entry;

2) If the Data packet satisfies caching polices, the node
store it into CS.

2.2 In-networking Caching in CCN

Caching has been studied for Web system, P2P systems,
network system and so on, in order to improve
performance of systems by reducing bandwidth usage,
server load, and response time. Generally speaking,
caching schemes can be classified into two types, i.e.,
centralized caching and decentralized caching. Centralized
caching is one whose data are only distributed by a central
node and request will be responded by this central node.
One typical example is Web-caching. Centralized caching
mechanisms do better in controlling and managing network
resources. However, it not only increases communication
overhead for updating the content location, but also
reduces flexibility in terms of available cache locations.
Decentralized caching mechanisms cache the content at
any place of network and manage the cached data by
servers or routers locally, e.g., in-networking caching in
CCN. In-networking caching is one of main infrastructures
of CCN. As it needs no communication overhead and its
operation is location-independent, in-networking caching
improves system performance. In CCN, in-networking
caching schemes are mainly divided into three categories:
on-path caching, off-path caching [13], and hybrid
techniques.

On-path caching schemes have already been studied in the
past [15], which focus on the issue of cache placement [7,
16]. In CCN, Data packets in on-path caching schemes are
stored in any on-path nodes [3] or a subset of traversed
nodes [9, 14] as they travelling through the network.
Interests are delivered according to the defined forwarding
policies and Data packets will be returned in the inverse
way of Interests. Representative on-path routing schemes
are Leave Copy Everywhere (LEC) [12], Leave Copy
Down (LCD) [15], ProbCache [14], Centrality-based
caching [9]. The problems of the popularity-driven content
caching [17], content location [18] etc. are attracted lots of
attentions. Even the scalability of on-path caching is strong,
it limits cache hits due to redundant caching of contents.

Data packets in network using off-path caching are cached
to node according the defined rules. Interests must be
forwarded in the same rules, as Data packets are traveling
the reverse ways of Interests. Generally, Interests are
handled by nodes in network cooperatively [19][20].

Author Rosensweig et al. [21] proposed a method named
“Breadcrumbs”. By additionally storing minimal
information regarding caching history, they developed a
content caching, location, and routing system that adopts
an implicit, transparent, and best-effort approach towards
caching. Hash technologies are also studied for in-
networking caching of CCN. Author Saino et al. [13]
designed five different hash-routing schemes which
exploited in-network caches without requiring network
routers to maintain per-content state information. A
domain is considered as a whole by these five schemes. In
contrast to on-path caching, off-path caching owns a higher
cache hits, but has limited scalability due to per-content
state required for routing.

Hybrid techniques of on-path caching and off-path caching
are also explored. By exploiting nearby and multiple
content copies for the efficient delivery, SCAN [11]
exchanges the information of the cached contents using
Bloom filter. Compared with IP routing, SCAN can offer
reduced delivery latency, reduced traffic volume, and load
balancing among links. Hybrid techniques are supposed to
mix features of on-path and off-path techniques and
balance the performance of scalability and cache hits.

3. Problem Analysis

As mentioned above, both on-path caching and off-path
caching have advantages and disadvantages. Redundancy
of contents caching makes on-path caching have limited
cache hits even it do well in scalability. Oppositely, the
shortness of off-path caching is limited scalability which is
caused by per-content state required for routing. Problems
of on-path caching and hash caching are depicted in Fig. 1
and Fig. 2 respectively.

User A User B User C

Router 1

Router 2

Router 3

User A User B User C

Router 1

Router 2

Router 3

(a) (b)

Server Server

Fig. 1 Problem analysis of on-path caching.

Fig. 1 shows the problem happens in on-path caching. The
red line represents the request route and the blue line
indicates the data response route. In Fig. 1(a), User B
sends an Interest packet to request Data in the red line.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

4

After receiving Interest, Server returns Data packet
travelling the reverse path of Interest to B. During that
period, we assume that copies of that Data will be cached
in Router 1 and Router 3 according the on-path caching
methods. User B also stores the Data packet. When
another user, User A, wants to request the same Data
packet as B does, problem happens, as shown in Fig. 1(b).
When the Interest sent by User A comes in Router 2, it is
delivered to the direction of Router 1, and the request is
responded by Router 1, as previous stored the request Data.
However, we can see that, Router 3 also store the request
Data packet and it is closer to Router 2 compared with
Router 1. Ideally, we hope the closer router, Router 3, to
response the request, which will reduce the link load of
network.

Hash caching schemes proposed by Saino et al. [13] can
solve the above problem. However, it is more suitable for
small scale network. When use them in large scale
networks, there are also problems. Fig. 2 demonstrates one
problem happens in hash caching schemes. User sends an
Interest whose request Data is previously stored in Router
2 and in Server, of course. When the Interest comes in
Router 1, according to hash schemes, it is delivered to
Router 2 and is responded by Router 2, rather than the
Server, which is closer to Router 1.

Router 1
Router 2

Server

User

Fig. 2 Problem analysis of hash caching.

To solve above problems, the goals we are going to
achieve are as follows:

• Improving cache hit: increase of cache hit means
reduction in bandwidth usage;

• Reducing caching redundancy: caching has been
traditionally used to reduce traffic redundancy;
Efficient utilization of available cache resources
can improve cache diversity and routing
robustness;

• Balancing distribution of content among available
caches.

4. Cluster-based In-networking Caching

As mentioned earlier, the same content will be accessed by
many users due to popularity. Thus, network traffic
exhibits high redundancy. Although CCN allows individual

nodes manage local caches in order to reduce redundancy,
redundancy can freely appear across different nodes, i.e.,
different nodes store copies of the same content. This is
caused by the default ubiquitous LRU caching scheme and
the support of multi-path routing. Motivated by these, we
will introduce our solution, Cluster-based In-networking
Caching, in this section.

4.1 Overview

We assume that topologies of networks are plane. Let
G = V E（ ，） be the graph representing the network where V
(|V| = N, N is the number of nodes in network) are the
nodes and E are the edges in the graph. By using cluster
algorithm, we divide the network into K clusters.
Furthermore, we design corresponding routing polices for
inter-cluster and intra-cluster.

b.file

c.file

Cluster 1

a.file

d.file e.file

Cluster 2

User

Server

Fig. 3 An example of cluster-based in-networking caching

User A User B User C

Router 1

Router 2

Router 3

Server

Fig. 4 Cluster-based caching solves the problem of on-path caching

In each cluster, there is no cache redundancy. To assure
that, not only contents in a node are different from each
other, but content in different nodes of a cluster are not
same. However, content stored in different clusters could
be same. Through this rule, we increase the cache diversity
of the network. As shown in Fig. 3, there are two clusters
in the network, Cluster 1 and Cluster 2. In Cluster 2,
different nodes cache different content, while content
cached by Cluster 1 can be same with content stored in
Cluster 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

5

Virtual distributed hash table is used to effectively control
and manage chunks caching in each cluster. Nodes in a
cluster use a same hash function to calculate location of
caching node for a specific content.

Cluster-based in-networking caching can solve the
problems described in Section 3. The problem, which
happens in Fig. 1, can be solved as shown in Fig. 4. Here
we assume the Router 2 and Router 3 are in the same
cluster. After User B captured Data, same as Fig. 1(a),
User A sends Interest to request the same Data. When the
Interest delivered to Router 2, Router 2 forwards the
Interest to Router 3 by the distributed hash routing table.
Router 3 sends back the Data packet.

Fig. 5 details how cluster-based caching solves the
problem happens in hash caching schemes. Firstly, the
network is divided into two clusters, Cluster 1 and Cluster
2. Router 1, Router 3 and Router 4 are in Cluster 1, while
Router 2 is in Cluster 2. When Router 4 receives the
Interest sent by User, it firstly calculates the location of
caching node for the requested Data packet, which is
assumed Router 3. Then Router 2 forwards the Interest to
Router 3. After receiving the Interest, Router 3 check
whether the Data stored locally. If it not hits, Router 3
forwards the Interest to Server by the shortest path. At last,
Server returns the Data packet by reverse path of the
Interest.

Router 1
Router 2

Server

User

Cluster 1
Cluster 2

Router 3

Router 4

Fig. 5 Cluster-based caching solves the problem of hash caching

4.2 Improved K-medoids cluster algorithm

The cluster algorithm is descried in Algorithm 1, the
improved K-medoids cluster algorithm. It needs two input
parameters: K and G. The parameter K is currently assumed
to be predefined based on the scale of the network, while
the parameter G = V E（ ， ） demonstrates the graph of the
network, | |V N= , N is number of network nodes and E is
edges of the network. The result of the algorithm is K parts
division of the network, i.e., K clusters. We replace the
Euclidean distance in k-medoids clustering with new
defined distance with Eq. 1 between two nodes. The reason
is that Euclidean distance cannot reflect the real
relationship between nodes in networks.

Eq. 1 is used to calculate distance value of any node i to
centroid node of cluster k:

i i
k i

i i

d B Cdis h
D b c

= × × ×
 (1)

Where i k≠ and D is average delay of all pair nodes in
network. id is the delay from node i to node k by the
shortest path; B is average bandwidth of all pair nodes in
network, ib is the average bandwidth from node i to node
k by the shortest path; C is average cache size of all nodes
on the path of each pair nodes in network; ic is the cache
size of nodes on the shortest path from node i to node k; ih
is the hops from node i to node k by the shortest path.

Algorithm 1 The improved K-medoids cluster algorithm
Input: K , predefined according the scale of networks;

 G = V E（ ，）, the graph of the network, | |V N= ,

 N is number of nodes of the whole network.

Output: K clusters, divide the network into K parts
1 Delete nodes with only one edge;
2 Choose K nodes who have most number of edges;

 Set the K nodes as initial centroids of K clusters;
3 For each node i, calculate its i

kdis from centroid

 node of cluster k ([]1,k K∈) by Eq. 1; add node i

 into the cluster with the smallest distance value;
4 For each cluster k, ∀ node i, j∈ k, calculate i

kDis
 by Eq. 2; set the node with smallest i

kDis value as

 the new centroids of cluster k;
5 Repeat 3 and 4 until centroids are not change.

The following equation is used to calculate average
distance from node i to other nodes in cluster k.

| || |

1 1

1
| |

j ki k
iji

j ij
i j i ij ij

d B CDis h
k D b c

≤<

= = +

= × × ×∑ ∑ (2)

4.3 Virtual Distributed Hash Table (VDHT)

To control and manage the contents stored in each cluster,
each cluster holds only one Virtual Distributed Hash Table
(VDHT). The VDHT is made up of CSs of all nodes in the
cluster. Each CS of the node is indicated by the node ID.
In a cluster, all nodes have a same hash function. When an
Interest comes in a cluster through any nodes of the cluster,
the receiving node calculates the location of caching node,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

6

node ID, by the hash function according to the ID of
requested chunk. Then the Interest will be delivered to the
corresponding node.

Node 1 Node 2 Node 3 Node 4

Virtual Distributed Hash Table

chunk Hash(ID)

Fig. 6. An example of VDHT of a cluster

A simple VDHT of that cluster is shown in Fig. 6. To
illustrate the components and functions of VDHTs, we
assume there are four nodes in a cluster. The CSs of Node
1, Node 2, Node 3 and Node 4 construct VDHT as a whole.
Each CS of the four nodes is indicated by node ID, Node 1,
Node 2, Node 3 and Node 4, in the VDHT. When a
Interest for chunk comes in the cluster through any of them,
such as Node 3, then Node 3 calculates the node ID
according the chunk ID by hash function, Node 1 for
example. After that, the Interest will be forwarded from
Node 3 to Node 1 and Node 1 checks the CS to make sure
whether the requested chunk is cached here or not.

4.4 Intra-cluster and Inter-cluster forwarding

Before introducing routing polices, we first present the
components of redesigned Interest packet and Data packet.
An Interest packets consists content name, version,
sequence number, cluster ID, node ID and other filed.
Content name, version and sequence number is named as
chunk ID. An example of Interest packet is shown in Fig. 7.
Similarly, the header of a Data packet is similar with
Interest.

content name version sequence
number cluster ID node ID

chunk ID

other
filed

Fig. 7 An example of Interest packet

In cluster-based caching, we use Algorithm 2, the intra-
cluster forwarding algorithm, to route Interest between
nodes belonging to the same cluster.

When an Interest received by a node, the node firstly check
if the cluster ID of Interest is same with its own cluster ID.
If they are not same, it means that it is the first time that the
Interest comes in the cluster. Then the node copies its
cluster ID to Interest.clusterID, calculates a hash value
using the Hash function according to the Interest.chunkID
and gives it to Interest.nodeID, then forwards the Interest
to the node with Interest.nodeID. However, if
Interest.clusterID equals the cluster ID of the node, it

means that this is intra-cluster forwarding. Then the node
checks whether Interest.nodeID equals its own ID or not.
This step is check whether the node is the location of the
chunk that Interest request. If they are not equal, the node
forwards the Interest to the node with Interest.nodeID.
Conversely, the node is the location of the requested chunk,
and then the node checks its CS to find the requested
chunk. If the chunk exits, the node returns it, or the node
forwards the Interest to the direction of the server.

Algorithm 2 The Intra-cluster Interest forwarding Algorithm

Input: Interest;
Output: Forwarding decision

1 if Interest.clusterID ≠ my.clusterID then
2 Interest.clusterID ← my.clusterID;
3 Interest.nodeID ← Hash(Interest.chunkID);
4 Forward the Interest to the node with nodeID;
5 else
6 if Interest.nodeID ≠ my.nodeID then
7 Forward the Interest to the node with

 Interest.nodeID;
8 else
9 if the request Data cached in CS then

10 return Data;
11 else
12 Forward the Interest to Server;
13 End if
14 End if
15 End if

Fig. 8 An example of inter cluster routing

After Data packet generated, the Data packet is forwarded
by reverse route of the Interest and stored in the node with
Data.nodeID on the first cluster it passed through.

Among clusters, we use on-path caching. Here we use
LCD. In inter-cluster forwarding case, when data already
cached in current cluster, data packet will be cached in the
next cluster data packet passed through. Fig. 8 shows an
example of inter cluster routing. After someone has
requested a.file, a.file was cached in node 7 in Cluster 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

7

When other users request a.file through nodes in Cluster 1,
a.file will be delivered to Cluster 1 and stored in node 5 as
depicted.

5. Performance Evaluation

We evaluate the performance of cluster-based in-
networking caching by extending the ccnSim [22], which is
a CCN simulator based on OMNET++ [23]. For the
comparison, we also implement Hash scheme, ProbCache,
LCE on the ccnSim simulator.

5.1 Simulation Settings

In simulation, a network is modeled as a graph (),G n p ,
where n is the number of nodes in the network and p is the
probability of a connecting link exists between two nodes.
GT-ITM [24] is used to generate a topology simulating the
Internet, whose n = 50, p = 0.3. Links between nodes are
characterized by their bandwidth and propagation delay.
The bandwidth of each link is randomly chosen from a set
{ }100Mbs,150Mbs,200Mbs and link propagation delays range
from 1ms to 5ms. We divide the network into 6 clusters.

Table 1: Simulation parameters

Para Value Explanation

n 50 Number of nodes

p 0.3 Connectivity probability

b {100,150, 200}Mbs Link bandwidth

d [1,5]ms Link delay

𝛼 0.9 content popularity
distribution skewness

q 0.25 content popularity
distribution skewness

Chunk
size 10KB CCN chunk size

Cache
size 10GB Cache size of each node

Catalog
size

710 files each file is 103 chunks

(Cache/
Catalog
) ratio

-41 10∗ C/(|F|F)

We use the Mandelbrot-Zipf distribution model to
calculate the content popularity. Unless otherwise specified,
we set 𝛼=0.9 and q=0.25. There are two repositories which
store the same content. Among the nodes, we randomly
select 2 nodes which are connected to repository. The
network has 10 client users which are connected to its
border nodes. Users perform File-level requests according

to a Poisson process with exponentially distributed arrival
times at a 2 Hz rate.

All caching schemes have been evaluated assuming that
the chunk size is 10KB; file size is about 310 chunks;
catalog size is up to 710 files. We select cache sizes of 10
GB and keep the ratio of cache over catalog on the order
of 410− (4/ 10Cache Catalog −=). The contents are evicted
according to a Least Recently Used (LRU) policy (evicts
the least recently used packet) and are cached by decision
ALWAYS policy (caches every chunk it receives). For
clarity, we list parameters described above and other
parameters in Table 1.

In order to assess the performance of the cluster-based
caching, we implement following schemes:

• Cluster: Cluster-based caching scheme proposed
in this paper;

• Hash: Symmetric hash routing proposed in [13];

• ProCache: cache content along the path by
probability;

• LCE: cache everything everywhere.

We compare the four schemes by focusing on two metrics:
1) cache hit radio, which represents the capability of the
caching scheme to reduce the amount of redundant traffic;
2) link load, which is used to evaluate the efficiency of
data transmission on network; 3) average data retrieve time,
which denotes performance of network in user view.

Cache hit radio and link load are measured for four
schemes under varying content popularity distribution
skewness and cache over catalog radio. Content popularity
distribution skewness is represented by parameter 𝛼 and q
of the Mandelbrot-Zipf.

5.2 Simulation Results

The simulation results are depicted from Fig. 9 to Fig. 12.
Fig. 9 and Fig. 10 show the changing curves of cache hit
ratio of four schemes with varying cache over catalog ratio
and varying content popularity skewness. The affections of
changing cache over catalog ratio and varying content
popularity skewness on the link load of the network are
represented on Fig. 11 and Fig. 12.

From the Fig. 9, we can get that with the increase of cache
over catalog ratio, the cache hit radio of all schemes
increased. Further, all the off-path schemes, Cluster-based
caching and Hash routing, have higher cache hit ratio than
on-path schemes, ProbCahe and LCE. More specifically,

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

8

Cluster-based caching scheme outperforms than ProCache
and LCE, while it does worse than Hash routing scheme.
This phenomenon is caused by that cluster-based caching
using cluster method to improve the cache diversity of the
network compared with ProCache and LCE, while hash
routing has higher cache diversity than that of cluster-
based caching by making all contents of the network stored
are different.

Fig. 9 cache hit ratio as function of cache over catalog ratio

Fig. 10 Cache hit ratio as function of content popularity skewness

The results showed in Fig. 10 are similar with Fig. 9.
However, the difference between them is that the gaps
between lines in Fig. 10 are smaller than that in Fig. 9.
From that we can conclude that cache over catalog ratio
does more effect on the cache hit ratio than content
popularity skewness does.

Fig. 11 shows that link load decreasing with increasing
cache over catalog ratio. Conversely to cache hit ratio, all
on-path schemes has lower values than off-path schemes
have. In other words, on-path caching schemes outperform
than off-path schemes in terms of link load. This is because
the on-path schemes use the shortest path method at cost of
throughput reducing to get data, which decrease link load.

Comparing the two off-path schemes, link loads of cluster-
based caching are extraordinarily smaller than that of hash
scheme. The reason for that is cluster reducing the
redundant routes as Fig. 5 depicted.

Link loads are varying with changing content popularity
skewness is shown in Fig. 12. As we can see the changing
lines are similar with lines in Fig. 11.

Fig. 11 Link load as function of cache over catalog ratio

Fig. 12 Link load as function of content popularity skewness

6. Conclusion

In this paper, we proposed a cluster-based caching
mechanism to improve cache hit, reduce caching
redundancy, and balance distribution of content among
available caches. In the cluster-based caching mechanism,
we designed the improved K-medoids cluster algorithm to
cluster the whole network into clusters. Virtual Distributed
Hash Table (VDHT) was designed to efficiently control
and manage the resources and contents stored in each
cluster. We also proposed different policies for intra
cluster routing and inter cluster routing to effective routing.
Through simulations, our cluster-based in-networking

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

9

caching outperforms than on-path caching schemes,
ProCache and LCE in terms of cache hit radio. It also do
better in link load compared with hash schemes. To
conclude, our cluster-based in-networking caching
mechanism improves the cache hit ratio and reduce link
load of the network.

We plan to extend our work on automatically generating
the scale of clusters and the number of clusters of a
network.

References
[1] Gritter M, Cheriton D R. An Architecture for Content

Routing Support in the Internet[C]//USITS. 2001, 1: 4-4.
[2] Koponen T, Chawla M, Chun B G, et al. A data-oriented

(and beyond) network architecture[J]. ACM SIGCOMM
Computer Communication Review, 2007, 37(4): 181-192.

[3] Jacobson V, Smetters D K, Thornton J D, et al. Networking
named content[C]//Proceedings of the 5th international
conference on Emerging networking experiments and
technologies. ACM, 2009: 1-12.

[4] Breslau L, Cao P, Fan L. Web caching and zipf-like
distributions: evidence and implications. In: INFOCOM' 99.
Proceedings of the IEEE 18th annual joint conference of the
IEEE computer and communications societies, vol.1.IEEE;
1999.p.126–34.

[5] Rossi D, Rossini G, Caching performance of content centric
networks under multi path routing (and more). Technical
report, Telecom ParisTech; 2011.

[6] D. Kutscher and et al. Icn research challenges. IRTF, draft-
kutscher-icnrg-challenges-00, Februady 2013.

[7] P. Krishnan, D. Raz, and Y. Shavitt. The cache location
problem. IEEE/ACM Trans. Netw., 8(5), 2000.

[8] V. Pacifici and G. Dan. Content-peering dynamics of
autonomous caches in a content-centric network. In IEEE
INFOCOM, 2013.

[9] Chai W K, He D, Psaras I, et al. Cache “less for more” in
information-centric networks [M]//NETWORKING 2012.
Springer Berlin Heidelberg, 2012: 27-40.

[10] Saucez D, Kalla A, Barakat C, et al. Minimizing bandwidth
on peering links with deflection in named data
networking[J]. INRIA Sophia Antipolis Méditerranée, Tech.
Rep, 2012.

[11] Lee M, Cho K, Park K, et al. Scan: Scalable content routing
for content-aware networking[C]//Communications (ICC),
2011 IEEE International Conference on. IEEE, 2011: 1-5.

[12] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. Thornton, D.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos,
et al. Named data networking (ndn) project. NDN-0001,
Xerox Palo Alto Research Center-PARC, 2010.

[13] Saino L, Psaras I, Pavlou G. Hash-routing schemes for
information centric networking[C]//Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric
networking. ACM, 2013: 27-32.

[14] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-
network caching for information-centric networks. In
Proceedings ICN Sigcomm workshop, pages 55–60, New
York, NY, USA, 2012. ACM.

[15] N. Laoutaris, H. Che, and I. Stavrakakis. The lcd
interconnection of lru caches and its analysis. Perform. Eval.,
63(7), July 2006

[16] J. Wang. A survey of web caching schemes for the internet.
SIGCOMM Comput. Commun. Rev., 29(5), Oct. 1999.

[17] J. Li and et al. Popularity-driven coordinated caching in
named data networking. In Proceedings of ANCS, New
York, NY, USA, 2012. ACM.

[18] G. Tyson and et al. A trace-driven analysis of caching in
content-centric networks. In Proc of ICCCN, 2012.

[19] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design
considerations for distributed caching on the internet. In
Proceedings of ICDCS, Washington, DC, USA, 1999.

[20] K. Katsaros, G. Xylomenos, and G. C. Polyzos. Multicache:
An overlay architecture for information-centric networking.
Comput. Netw., 55(4):936–947, Mar. 2011.

[21] Rosensweig E J, Kurose J. Breadcrumbs: Efficient, best-
effort content location in cache networks[C]//INFOCOM
2009, IEEE. IEEE, 2009: 2631-2635.

[22] G. Rossini, D. Rossi, et al. Large scale simulation of ccn
networks. Large scale simulation of CCN networks, pages
1–4, 2012.

[23] Omnet++ network simulation framework.
http://www.omnetpp.org/, 2013.

[24] Zegura E W. GT-ITM: Georgia Tech internetwork topology
models (software)[J]. Georgia Tech,” http://www. cc. gatech.
edu/fac/Ellen. Zegura/gt-itm/gt-itm/tar. gz, 1996.

Chengming Li received the B.S. degree in
software engineering from Dalian
University of Technology and M.S. degree
in computer application technology from
Dalian University of Technology in 2009
and 2011, respectively. Now he is a Ph.D.
candidate in Kyushu University, supported
by China Governmental Scholarship. His
research interests include virtualization
technologies and future internet.

Koji Okamura is a Professor at
Department of Advanced Information
Technology and also at Computer Center,
Kyushu University, Japan. He received B.S.
and M.S. Degree in Computer Science and
Communication Engineering and Ph.D. in
Graduate School of Information Science
and Electrical Engineering from Kyushu
University, Japan in 1988, 1990 and 1998,
respectively. He has been a researcher of
MITSUBISHI Electronics Corporation,

Japan for several years and has been a Research Associate at the
Graduate School of Information Science, Nara Institute of
Science and Technology, Japan and Computer Center, Kobe
University, Japan. He is interested in Internet and Next
Generation Internet, Multimedia Communication and Processing,
Multicast/IPv6/QoS, Human Communications over Internet and
Active Networks. He is a member of WIDE, ITRC, GENKAI,
HIJK projects and Key person of Core University Program on
Next Generation Internet between Japan and Korea sponsored by
JSPS/KOSEF.

	Value
	Explanation

	Para

