
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

41

Manuscript received November 5, 2014
Manuscript revised November 20, 2014

Split Transfer Omitting Redundant Dirty Pages to Accelerate a
Virtual Machine Migration

Jae-Geun Cha†, Chi-Hoon Shin††, and Hag-Young Kim††

†Computer Software, Science University of Science and Technology, Daejeon, Republic of Korea
††Cloud Computing Department, Electronics and Telecommunication Research Institute, Daejeon, Republic of Korea

Summary
The pre-copy method for live migration lead to redundant
transmission of data in the memory which has already been
transmitted. In addition, the migration efficiency decreases in the
memory intensive environment where the memory is frequently
modified because the rate of dirty page increases. Recently, these
problem appeared in memory-intensive environment because
Big-data and growing complexity of computing environment. In
order to address these problems, we propose a method which
splits the memory and omits redundant transmission. We
simulated our approach base on the pre-copy method to evaluate
the performance. In particular, we used static bandwidth for
migration and generated evenly dirty pages during migration to
show the effect of transferring the split memory. Simulation
result showed that the proposed method saved the total migration
time from 6% to 65% compared to pre-copy method. Also, when
the environment has dirty page rate of 90%, our approach took
less total migration time than MECOM which is the improvised
version of pre-copy method. Therefore, the proposed method is
able to alleviate system performance degradation because our
approach takes less migration time than previous method in Big-
data or multi-core environment.
Key words:
Virtual machine, Live migration, Pre-copy, Split memory data.

1. Introduction

The migration of a Virtual Machine (VM) between two
systems is to stop the VM, to move the VM from one
system (source) to another (destination) without any
modification, and to resume the VM [1]. The migration is
able to provide continuous VM service to a user no matter
when and where the user is or even when errors occur.
Figure 1 (a) shows a simple procedure of a VM migration.
First, the VM running on a source is stopped. Then, the
copy of the VM is transferred to a destination. The time
taken in this step is referred as downtime. The downtime
could be a few seconds depending on the network
bandwidth and the size of data to transfer. Because the out-
of-service for the several seconds could interrupt real time
services, many studies [2] to minimize downtime have
conducted; these studies have been categorized as live
migration.
The live migration for a real-time service moves a running
VM without halting. During the live migration from a

source to a destination, some pages of memory on the
source are modified because the VM keeps running on the
source. Therefore, the live migration has a synchronization
step to match the modified pages on the source and
transferred data on the destination. The modified memory
page on the source is referred to as dirty page(s).
According to a synchronization strategy, live migrations
are grouped into two categories - pre-copy and post-copy.
The pre-copy executes the synchronization stage – State
Migration in Figure 1- before the stop and copy; the post-
copy conducts that after the stop and copy. The Figure 1
(b) and (c) shows these procedures respectively [1],[3].

 Figure 1 migration timeline

The pre-copy transfers the full memory to destination at
the start of a migration. Thereafter, the dirty pages, which
occur during migration, are repeatedly transferred. This
process is called as iterative pre-copy. Generally, when the
dirty page size is less than the minimum size, which is set
by the administrator, the pre-copy stops the state migration
stage and starts the stop and copy stage. In the stop and
copy stage, the remains of dirty page are transferred to

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

42

destination. After that, the virtual machine resumes on the
destination [1].
The pre-copy can minimize the downtime by reducing the
size of the dirty pages over Iterative pre-copy. But the
memory data that has already been transferred should be
retransferred if it is modified. Additionally, if the VM
produces more dirty pages than the capacity of data
transmission, the iterative pre-copy takes too long time or
reaches deadlock [2],[3]. Lately, because of increasing the
complex and a large-scale computing environment [4],[5],
these problems hamper the performance severely so we
need a novel way to improve it.
Recently, a scale of the data grows larger in science,
healthcare, social field and so on [4]. The computing
environment is continually advanced to handle these data.
For example, number of CPU cores increases, and the data
processing rate of memory is improved 55% per year [5].
This trend affects the performance of the migration.
Z.Ibrahim [6] showed that the migration time gets longer if
CPU cores assigned to the VM increase. Generally, the
more cores share a memory, the more memory access
occurs [7]. In this circumstance, the production rate of the
dirty page will grow higher.
Previous works to improve pre-copy focused on reducing
the migration time and downtime. Ma [8], Hu [9] proposed
the way to transfer a dirty page which is frequently
modified in the last iteration of Iterative pre-copy. Jin [10]
proposed the data compression method on transmission
data. However, these methods could take excessive time
for a migration with large-scale of data and the high
production rate of dirty page (i.e. memory intensive
environment).
In this paper, we propose improved pre-copy method by
splitting the transmission data and omitting redundant
dirty page in the memory intensive environment. As
previously mentioned, the dirty page is the modified
memory data during each iteration time. Therefore, we
consider saving the time of each iteration to reduce the
production rate of dirty page. For this purpose, we conduct
splitting the transmission data to save the time of
transmission. It will avoid degradation of migration
performance in the memory intensive environments during
live migration.
This paper is organized as follows. In section 3, we
explain the proposed methods in detail. Also, we describe
the design of our improved pre-copy approach. Then, we
present the experimental results in section 4. Finally, we
conclude and give our future work in section 5.

2. Split transfer Omitting Redundant Dirty
pages method

2.1 Split transfer Omitting Redundant Dirty pages
method

Figure 2 Iterative pre-copy procedure

In this section, we explain our approach, the Split Transfer
Omitting Redundant Dirty-pages (STORD), designed to
improve the typical pre-copy migration. The conventional
pre-copy greedily sends dirty pages until the size of the
pages grows small enough to download. The Figure 2
shows the typical pre-copy executes iterative procedures.
The 1st iteration consists of two steps. In the first step, a
source VM transfers the full memory, which is a copy of
the starting memory, to a destination VM. Simultaneously,
the source VM accessing to the main memory generates
dirty pages. In the second step, the source VM checks the
dirty pages, and prepares to move them to the destination
VM [1].
The 2nd iteration has the same steps as the 1st iteration:
transfer and check. In the transfer of the 2nd iteration, the
source VM transfers the dirty pages, which are checked in
the 1st iteration, instead of the full memory. In the check
step of the 2nd iteration, the source VM identifies recent
dirty pages during transferring the old dirty pages. This
two-step iteration can repeat n times. The mechanism of an
nth iteration is identical to the iterations abovementioned.
The VM in the nth iteration moves the dirty pages checked
in the previous iteration, i.e. (n-1)th. Then the source VM
checks recent dirty pages [1].
The iterations can continue until the size of dirty pages
becomes smaller than the constraint defined by the
migration administer. In other words, the size of dirty page
decides when to stops the iterative procedures and starts
the down downtime procedure [1].
Also, the dirty pages is direct proportion in memory data
transfer time in previous iteration if the workload of virtual
machine is static. Therefore, if a memory data decreases or
a network bandwidth increases, the dirty pages rate

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

43

decreases. And it reduces total migration time and
downtime.
In this paper, we propose the STORD that reduces a
reducing transfer memory data to reduce the dirty page
rate during each iteration. The details of the STORD are
illustrated in the Figure 3.

Figure 3 proposed method procedure

Before moving in the iterative flow, the STORD splits the
starting memory into k pieces; the k is predefined split
number (e.g. if the k is two, the memory will be split into
two pieces). During the first iteration, the STORD
transfers one split piece of memory to destination node. At
the same time, it checks dirty pages during transferring the
piece of memory.
In the 2nd iteration, the STORD transfers next piece of
split memory and dirty pages to destination node. The
dirty pages is just related transferred memory data in
previous iteration. It is to omit redundant transfer. These
procedure such as transfer, check and transfer continues as
long as existing a remaining memory data which is split
before the first iteration. If the STORD transfers last
remaining memory data to destination node, the STORD
considers a dirty page which is checked at the same time to
split memory data using split number. And then, it repeats
the procedure. A condition to stop the repeat procedure is
same as pre-copy. The repeat procedure stop depending on
a dirty page size.

2.2 Pseudo Code

Table 1 shows that pseudo code on the proposed method.
It conducts a same way as Figure 3. The proposed method
implements the line 7-8 one time to get the virtual machine
memory size to be migrated. And then, it split the transfer
memory data according to predefined memory split

number. A count on the line 13 is used to check a
remaining memory data. If the count value is same as split
number, the proposed method consider that the remaining
memory data is not exist and the previous procedure
repeats from line 10 And a omitting redundant dirty page
is implemented in line 17.

Table 1: Pseudo Code of STORD

2.3 Relationship of pre-copy and the STORD

Next, we discuss the relationship of pre-copy and the
STORD. The analysis would further direct the design of
our approach.

 First, some notations are defined as following:

 : the total memory size of virtual machine.
 : the growth rate of dirty pages in the migration
virtual machine.
 : the split number to split transfer memory data.
 : the transfer memory data and dirty page size in
first iteration of pre-copy.

 : the total transfer memory data size during pre-
copy.
 : the transfer memory data and dirty page size in
first n times iteration of the STORD.
 : the total transfer memory data size during

STORD.

If network bandwidth is static, total migration time is
direct proportion in total transfer memory data size by
migration procedure. Therefore, we compare the total
transfer memory data size with pre-copy and the STORD.

The total transfer memory data size with pre-copy is (1).
As shown (1), the total transfer memory data size is sum of
geometric sequence, first term is and common ratio is

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

44

. And if a number of iteration is infinite, we can get
(2).

In case of the STORD, a transfer memory data and dirty
page size in first iteration of pre-copy are respectively
represented by vector . Also a
growth dirty page rate are respectively represented by
vector And k is split
number to split transfer memory data.
Similarly the pre-copy methods, the total transfer memory
size of the STORD is sum of geometric sequence. But this
case, first term and common ratio is different because our
approach splits a transfer memory data size. So we can get
(3) and (4) as the split number is k. Also if a number of k
is infinite, is inverse proportion by split number(3).
As noted earlier, the total transfer memory size is sum of
geometric sequence so it is represented by (5). It indicates
that the total transfer memory size is direct proportion in a
split number.

From (4), we observes that width of decrease of a dirty
page rate is the largest when the memory split number is 2.
And the dirty page rate increases even though width of
decrease decreases when the memory split number.
In the relationship of pre-copy and our approach, we can
consider , . Therefore if a
network bandwidth to migrate virtual machine, the total
transfer memory size of the STORD is smaller than the
pre-copy, it means that the STORD improve the total
migration time of pre-copy(6).

3. Evaluation

To demonstrate the validity of the STORD, we have
designed and implemented a modeling based on iterative
pre-copy procedure of the conventional method. And we
considered a static network bandwidth and dirty page rate
to evaluate the proposed method without other factors
which impacts on migration performance.
Our test environment consist of a virtual machine with
4GB memory and a network bandwidth 120MB/S on the
Ethernet. In particular, the dirty page rates range from 20%
to 90%. It used to appraise the STORD in the memory
intensive environment.

Fig.4 Downtime and total migration time for various split number

The Figure 4 displays downtime and the total migration
time for various number in 90% rate of the dirty page.
From this data, we observe that the pre-copy takes about
350 seconds with the total migration time. But the STORD
takes at most 120 seconds, it saves the total migration time
up to minimum 65% rather than the pre-copy.
In case that predefined number to split memory size is two,
the downtime according to total migration time shows two
type of gradient. If the procedure of split transfer is halted,
our method regards remaining a split memory which has
not transferred to destination as dirty page. So a falling
rate of downtime depends on whether or not a split
memory remains.
Also, we observe that the total migration time has little
difference even between two and ten split memory. As we
mentioned in equation (4) in Section 2, width of decrease
of a dirty page rate is the largest when the memory split
number is 2. After that, the rate of dirty page decrease.
Therefore, additional split number does not dramatically
help save the total migration time after two of split number.
The Figure 5 illustrates the rate of total migration time in
different dirty page rates. The STORD saves the total
migration time up to 65% compare to the pre-copy in 90%
rate of the dirty page. And in case of 50%, 20%, it reduces
respectively 20%, 10%. It indicates that the STORD
improves migration performance in the memory intensive
environment rather than another. Because the size of dirty

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

45

page during each iteration is bigger in the memory
intensive environment.

Fig.5 Rate of total migration time for various number of memory

partition

Fig.6 Rate of total migration time for different dirty page rate during

migration
The Figure 6 shows the result of the STORD compare to a
previous improved method of pre-copy which is memory
compression (MECOM) by Jin [9]. From the data, if the
rate of dirty page decreases, the performance gap between
our approach and MECOM decreases. Even though
MECOM’s shows 2% performance better than two split
memory number in 20% rate of dirty page. Because
MECOM has compression and decompression in every
iteration and that time increase according to a transmission
size of memory data.

4. Conclusion

This paper describes the improved method of live
migration to acceleration a virtual machine migration in
the memory intensive environment. Base on dirty page
characteristics, we designed splitting memory data for live
migration VM. Because the dirty page occur depending on
transmission data size when the network bandwidth is
static. The study indicated that our approach saves the total
migration time by at least 65% and at most 75% in the
memory intensive environment. This is in contrast to
previous work in which, in the memory intensive

environment, migration takes a long time or reaches a
deadlock [6],[8],[9],[10]. In same environment, our
approach can reduce more the total migration time
compared to MECOM as much as 40%. Because MECOM
has a overhead such as compression or decompression and
the overhead increase in the memory intensive
environment. In the future, we will extend the method to
real-migration environment. Furthermore, we plan to apply
our approach to migration on wide area network(WNAs).
Because migration in WAN should provide a way to keep
the network connection [11]. Several method has been
studied such as IP tunneling, Virtual Private
Network(VPNs) [11]. Also, WAN has low available
bandwidth so this is a challenge of migration in the
memory intensive environment.

References
[1] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,

I. Pratt and A. Warfield, “Live Migration of Virtual
Machine,” 2nd Symposium on NSDI, pp.273-286, 2005.

[2] V. Medina and J. Manuel, “A Survey of Migration
Mechanisms of Virtual Machine,” ACM Computing
Surveys(CSUR), vol.46, 2014.

[3] M. Hines and K. Gopalan, “Post-Copy Based Live Virtual
Machine Migration Using Adaptive Pre-Paging and
Dynamic Self-Ballooning,” 2009 ACM SIGPLAN/SIGOPS
conf. on VEE 09, pp.51-60, 2009.

[4] K. Kambatla, G. Kollias, V. Kumar and A. Grama, “Trend
in Big Data Analytics,” Journal of Parallel and Distributed
Computing, vol.74, pp.2561-2573, 2014.

[5] S. Oliveira, K. Furlinger and D. Kranzlmiiller, “Trend in
Computation, Communication and Strage and the
Consequences for Data-Intensive Science,” 2014 IEEE 14th
International Conference on HPPC-ICESS, pp.572-579,
2012.

[6] K. Z.Ibrahim, S. Hofmeyr, C. Iancu and E. Roman,
“Optimized Pre-copy Live Migration for Memory Intensive
Applications,” 2011 International Conference for HPC,
No.40, 2014.

[7] A. Alhammad and R. Pellizzoni, “Schedulability Analysis
of Global Memory-Predictable Scheduling,” the
14th International Conference on Embedded Software,
pp.12-17, 2014.

[8] F. Ma, F. Liu and Z. Liu, “Live Virtual Machine Migration
based on Improved Pre-copy Approach,” 2010 IEEE
ICSESS, pp.230-233, 2010.

[9] B. Hu, Z. Lei, Y. Lei, D. Xu and J. Li, “A Time-Series
Based Precopy Approach for Live Migration of Virtual
Machines,” the 2011 IEE 17th ICPDS, pp.947-952, 2011.

[10] H. Jin, L. Deng, S. Wu, X. Shi and X. Pan, “Live Virtual
Machine Migration with Adaptive Memory Compression,”
CLUSTER 09 IEEE ICCC, pp.1-10, 2009.

[11] R. Bradford, E. Kotsovinos, A. Feldmann, H. Schioberg,
“Live Wide-Area Migration of Virtual Machines including
Local Persistent State,” the 3rd ICVEE, pp.169-179, 2007.

