
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

126

Manuscript received November 5, 2014

Manuscript revised November 20, 2014

Functional Validation of Inter Processor Communication
through Dynamic Analysis

Euteum Jo, Pyeongsoo Mah
Department of Computer Software, University of Science & Technology, Daejeon, Republic of Korea

Department of Embedded SW Research, ETRI, Daejeon, Republic of Korea
Summary
The major role of inter processor communication(IPC) driver is
to transfer data between an application processor and a
communication processor. In order to sustain a stabilized
performance of the upper framework of radio interface layer and
telephony application, the driver should be thoroughly examined.
In traditional method, however, the driver software have been
developed without any standard validation tools. As a result,
developing an IPC driver was a time consuming process and it
was difficult to obtain reliable validation result from the test. In
this paper, we present a tool, called DLCTest, that can be used
for the dynamic analysis of IPC driver software. The tool can
enhance both the observability and the coverage of IPC driver
testing. The tool is actually used during the development process
of commercial smartphones structured with dual processors. The
proposed tool enables an early validation of the IPC driver
through easier and quicker detection of software defects.
Key words:
Radio Interface Layer, Inter Processor Communication,
Smartphone Development, Device Driver Validation

1. Introduction

In dual-processor architectures for mobile devices, inter
processor communication(IPC) takes a role of exchanging
data between two processors. These two processors are
usually the combination of an application processor(AP)
and a communication processor(CP) in smartphones. In
order to ensure the normal operation of the applications
that is required for telephony functions, the IPC function
should be stabilized in advance and validated thoroughly
from the perspective of radio interface layer(RIL)[1]
developers.
 Since IPC driver works on kernel domain, system panic
can occur when there are some defects in the IPC driver
codes. Therefore, testing engineers have to understand the
IPC driver codes completely and know various scenarios
well.
By now, most of IPC driver testing methods have been

performed manually by running telephony applications.
With such a manual method, however, long-time repetitive
tests are unavoidable and the possibility of detecting
software defect is relatively low. In addition, performance
related testing becomes very difficult in case the software
is updated by adding several patch software. In that case,
the response speed can be slower in tens of millisecond

unit, even though the function of the updated software is
correct. However, the slowed response speed is hard to
detect without a testing tool.
Some testing tools are already used in other domain.

Windbg[2] is used for kernel mode driver validation at
Microsoft Windows and Memset86[3] is in use for
memory failure detection. Iperf[4] which is a network
testing tool and LDV[5] for Linux Driver are another
examples that used automated tools in testing. However, to
the best of my knowledge, a testing tool for IPC driver has
never been published.
 IPC validation tool should be independent from radio

interface layer(RIL) framework as IPC device driver
belongs to the lower level of RIL. To demonstrate the
correctness of IPC function independently, communication
processor(CP) and ATcommand should be transmitted and
received without the RIL framework.
 We present a tool, called DLCTest(Data Link

Connection Test), that can be used for enhancing both the
observability and the coverage of IPC driver testing. The
proposed tool is designed to work on hardware abstraction
layer(HAL) for Android smartphones. It contains
ATcommand module for Vendor RIL not only for enabling
IPC feature but also for checking whether communication
processor(CP) is in a normal operating state or not. The
tool we implemented is applied to the development process
for smartphones with two processors. The proposed tool
shows shortened validation time and improved driver
performance.

2. Background

2.1 Two types of IPC architecture

There are two types of IPC architecture; direct
communication scheme having interface bridge and
indirect communication scheme using shared memory.
SOCs that integrate an application processor(AP) and a
communication processor(CP) into one chip use a shared
memory mode and indirect communication schemes. The
architecture shows better stability(debugging becomes
much easier and outbreak of unidentified errors were less
frequent) and high throughput.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

127

 Nonetheless, direct communication scheme with
interface bridge mode is often preferred to reduce the cost
of mass production. This scheme has an advantage that
various kinds of application processor(AP) and
communication processor(CP) from different vendors can
be combined.
 Hardware designer may establish interface bridge mode

with secure digital input output(SDIO)[6], serial peripheral
interface(SPI)[7], mobile industry processor
interface(MIPI)[8], or high speed inter-chip(HSIC)[9]. The
interface bridge mode is determined according to minimum
bandwidth requirement. CDMA smartphones usually use
SPI for the interface bridge, whereas WCDMA
smartphones use MIPI and LTE smartphones use HSIC.

Figure 1. Direct communication scheme(Interface bridge)

2.2 Logical channels for various applications

The physical interface between application processor(AP)
and communication processor(CP) provides only one
channel in general. Therefore, a separate driver which
logically establishes channels to the upper layer of physical
interface is required for the provision of multiple channels
for diverse user space applications like Phone Call, VT,
SMS, Ethernet. Radio interface layer(RIL) incorporates
this multiplexer driver into the range of IPC layer. The
most common logical interfaces are 3GPP TS 27.010[10]
Multiplexer and HSI Logical Channels. According to TS
27.010 standard, Linux kernel provides 32 TTY interfaces
to the user space applications to communicate with
communication processor(CP). Those interfaces
correspond to 32 different TS 27.010 DLCs(Data Link
Connections). The 32 TTY interfaces are controlled by
Vendor RIL on user space. (Figure 2)

3. Necessity of an IPC validation tool in each
development stage

Development process of IPC function in mobile devices
can be classified into three stages; porting, patch and
debugging, and validation.
Porting : A tool for IPC driver supports the validation of
the normal operations for IPC device driver by controlling
TTY device interface on user space in the absence of
Vendor RIL. Without such a tool, it is still possible to test
the IPC driver by Vendor RIL having minimum
operational functions. However, the repetitive transmission
of a certain ATcommand is difficult because the execution

flow occurs only one time after booting. Without a tool,
repetitive rebootings are unavoidable. To meet the time to
market requirement, IPC function should be stabilized
within a short period of time because Vendor RIL, RIL
framework, and user applications can be tested after the
test of IPC functions is completed.

Figure 2. Radio Interface Layer(RIL) Architecture

Patch and Debugging : In traditional manual debugging
method that uses Vendor RIL, only one time test is
possible and repetitive rebooting is unavoidable. For
example, if a new handler is added at a communication
processor(CP) side for a new ATcommand, the
modification of Vendor RIL at an application
processor(AP) side is inevitable to test the new handler. As
a result, rebuilding of AP images and reinstallation process
should be followed. This process requires quite a bit of
time.

Validation : Validation of IPC functions includes both
examining its normal operation and checking stability of a
communication processor(CP). In traditional method, user
applications are used to validate IPC functions. The
weakness of such method is that the test coverage is too
broad and can only be done when the test of IPC and all
the radio interface layer(RIL) related components are
finished. From the perspective of IPC developer, the test
range needs to be adjusted and narrowed down only to the
IPC layer. The applicability of traditional test method that
uses user applications is limited. If there are any defects

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

128

indeed, debugging is hardly achievable because the
reproducing ratio of the same error is very low.
 A certain tool that can validate IPC function is needed
when issues are related to radio interface layer(RIL). The
developers of upper layer desire to validate IPC functions
first when there are issues related to their applications
because IPC is positioned on the lowest level of radio
interface layer(RIL). Traditionally, the source code of
Vendor RIL has to be rebuild and reinstalled again. It takes
at least 30 minutes to do so even in the case that
incremental build method is used.

4. Conceptual approach

The basic principle of DLCTest is transmitting and
receiving data continuously via IPC interface. Empirically,
the durability of data transmission is very important when
it comes to IPC function test. Without a proper tool, it is
almost impossible to detect all the errors in the IPC driver
software. Figure 3 shows that DMA timeout errors can be
detected only at a specific time.

Figure 3. Possibility of DMA related error detection(By hand vs By tool)

Validation of IPC function is activated within physical
interface and logical interface. In this study, logical
interface will be explained based on 3GPP TS 27.010
standard and physical interface will be based on Android
mobile smartphones having dual processors, which are
composed of serial peripheral interface(SPI).
Requirements reflected for the development of the tool are
as follows:

1. IPC should be controlled independently from
Vendor RIL.

2. Must be implemented to execute on HAL.
3. Independent execution is necessary without

connecting to PC host.
4. Random ATcommand transmission and validation

of normality of its response should be possible.
5. Average response time for ATcommand should be

measurable.
6. Log function is essential. The time and aspect

should be recorded when a certain event or
abnormality occurs.

5. Implementation details of the proposed tool

We implemented a dynamic analysis tool for IPC driver. It
has a high portability and the dependency to Android
platform is low because it is implemented with C and
POSIX library. The structure of the implemented tool is
shown in Figure 4.
The tool is divided into a server module and a client

module. The server module is responsible for testing on
device and the client module is used for real-time
monitoring of testing status. The purpose of placing the
client module separately is to obtain an easier detection of
any related defects because, if USB cable is attached, it
does not enter to sleep mode in case of aging testing. In the
case of any other test except from aging test, the server
module provides the developer the user console. The role
of each module is summarized as follows.

Figure 4. DLCTest Block Diagram

Test Manager : Thread which responsible for testing IPC
function according test scenarios.
DLC Lib : Utility functions are implemented.
Behavior Analyzer : Predict the root cause of problems by
analyzing resource states in system and kernel log with the
patterns of problems, when abnormal symptoms are found
during the test.
Logger : Collect and record all necessary information for
the analysis of test result.
Model DB : Retaining hardware information for each
model and parameters that is needed for the test appointed
in prior accordingly.
Property Scanner : Parser is implemented to detect specific
name of model from property files.

6. Use cases of the proposed tool

DLCTest provides an automated aging test. With this tool,
we are able to detect abnormal operation of IPC layer. It
can also perform a radio interface layer(RIL) scenario

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.11, November 2014

129

instead of a RIL framework before RIL framework is ready.
With user console interface, the developer can generate
any RIL commands and obtain responses from
communication processor(CP) at any time without
modifying the RIL framework. This means that the time for
rebuilding and reinstalling is no longer necessary for
testing purpose.

6.1 Major defects observed by DLCTest

6.1.1 Memory leak in TS 27.010 multiplexer driver
After 3 days of aging test, a bug on system memory
leakage was found. It was very small size of memory leak
that is very difficult to detect using the traditional manual
method.

6.1.2 Packet stuck by binary semaphore in multiplexer
driver
Lock related errors were detected and it is also very
difficult to detect using the traditional manual method.

6.1.3 Delayed response time between multiplexer and SPI
driver
Side effect can easily be detected after code patch. The
tool allows to check digitalized figures.

6.1.4 Identifying reproduction scenario of specific issues
based on log pattern analysis
In some cases, it is difficult to find out the reproduction
scenario of some test cases. For example, when the
communication processor(CP) is rebooted unexpectedly,
there are only application processor(AP) logs. By using the
proposed tool, it was possible to analyze the exchanged
data between CP and AP and the unexpected error
situation was reproduced.
We also found that the values of response parameters

from CP in some erroneous situations are different from
those of normal conditions. Such patterns that indicate the
possibility of CP crash are utilized by the tester to correct
hidden errors in the codes.

6.1.5 DMA timeout in SPI device driver
A quick check on abnormality that is related to DMA and
power management is possible using the developed tool.
The DMA related errors are almost impossible to
reproduce through the traditional manual method.

6.2 Reduced time for problem solving

Due to independent control of IPC driver from radio
interface layer(RIL) framework, the time consumed for
inserting test codes to the framework and the time for
rebuilding the modified IPC driver can be saved.
Furthermore, it can be said that the overall time for solving

many issues is reduced in consequence of a quicker
diagnose of defects, compared to the traditional manual
method.

6.3 Reduced Time for IPC driver porting

Development time can be reduced significantly, since the
errors in the codes are corrected at an early stage of
development with the use of proposed tool.

6. Conclusion

In this paper, we proposed a tool for IPC function
validation that overcomes the limits of non-automatic
testing method. By using the proposed tool, the
development and validation time for IPC driver is
shortened and the quality of the developed software
product is improved significantly. More importantly, the
effectiveness of the proposed tool is proved through the
development of mass production model of commercial
smartphones.
References
[1] Radio Interface Layer. (2014, May). Wikipedia. Retrieved

November 20, 2014 from http://en.wikipedia.org/wiki/Radio_
Interface_Layer

[2] Testing Device Drivers on Windows Platforms. (2012, April
24). Microsoft Developer Network. Retrieved November 20,
2014 from http://msdn.microsoft.com/en-us/library/dd873575.
aspx

[3] An Advanced Memory Diagnostic Tool. (2013, September
27). Memset86 Official. Retrieved November 20, 2014 from
http://www.memtest.org

[4] Iperf User Docs. (2014). Iperf forum. Retrieved November 20,
2014 from http://iperf.frs

[5] Linux kernel Space Verification. (2014). Verification Center
of the Operating System Linux. Retrieved November 20, 2014
from http://linuxtesting.org

 [6] SDIO Simplified Specification. (2011, February). SD
Association. Retrieved November 20, 2014 from
http://www.sdcard.org/downloads/pls/simplified_specs/archiv
e/partE1_300.pdf

[7] Serial Peripheral Interface Bus. (2014, November).
Wikipedia. Retrieved November 20, 2014 from
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

[8] High-speed Syncronous Serial Interface(HSI) Specification.
(2014, May). Mipi alliance. Retrieved November 20, 2014
from http://mipi.org/specifications/high-speed-syncronous-
serial-interface-hsi

[9] High-Speed Inter-Chip. (2012, May). Universal Serial Bus.
Retrieved November 20, 2014 from
http://usb.org/developers/docs/usb20_docs

[10] Terminal Equipment to User Equipment (TE-UE)
multiplexer protocol. (2014, September 17). The Mobile
Broadband Standard. Retrieved November 20, 2014 from
http://www.3gpp.org/DynaReport/27010.htm

