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Summary 
In this paper, the chained hexi codes (CHC) signature scheme is 
proposed. This scheme is based on the BCHS1 signature scheme 
(signature scheme based on BCH) which was proposed by Hamdi, 
Harari and Bouallegue in 2006. Here a family of hexi polynomial 
codes is used, instead of BCH codes. The newly proposed 
chained hexi codes signature scheme has lesser key size and 
better security; when compared to the signature scheme based on 
McEliece cryptosystem and the BCHS1 signature scheme. A 
variant of this chained hexi codes signature scheme, that has 
lesser space and time complexity is also introduced.   
Key words: 
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1. Introduction 

There have been many attempts to build secure public key 
cryptosystems based on error-correcting codes over the 
last three decades, however most of them have been 
proved to be insecure. The disadvantage of having a large 
public key is the major shortcoming of many code-based 
cryptosystems like the McEliece public key cryptosystem 
[19], the Stern's Identification scheme [21] and the 
Courtois, Finiasz, and Sendrier signature scheme (CFS 
signature scheme) [7].  
In 2006, Hamdi, Harari and Bouallegue, had introduced 
signature schemes using BCH codes known as BCHS1 and 
BCHS2 [10]. These schemes are secure, fast and more 
practical than the CFS signature scheme. The setback of 
large public key size can be overcome by using hexi based 
codes instead of the usual binary codes, without 
compromising the security. In this paper hexi code based 
digital signature scheme known as Chain Hexi Code (CHC) 
signature scheme is introduced. The proposed scheme is a 
variant of the BCHS1 signature scheme. This scheme 
makes use of a family of hexi polynomial codes, it has 
lesser public key size and better security; when compared 
to the signature scheme based on McEliece cryptosystem 
and the BCHS1 signature scheme. The rest of this paper is 
organised as follows: Section two discusses about code 
based signature schemes. Section three recalls the 
definition of hexi codes and other related hexi codes and 
their decoding algorithms. Section four introduces the 
signature scheme based on hexi polynomial codes known 
as CHC signature scheme. Section five introduces a 

variant of the CHC signature scheme. Security of the 
schemes are discussed in section six. Conclusions and 
further directions are provided in section seven. 

2. Code-based Signature Schemes 

Since the advent of code based cryptography, researchers 
have made several attempts to create a code based 
signature scheme that is secure. Most of the signature 
schemes have been proved to be insecure.  
In 1990, Xinmei Wang introduced a digital signature 
scheme based on error correcting codes [24]. The scheme 
is similar to McEliece public key cryptosystem, but its 
security was based on the difficulty involved in solving the 
factorization of large matrices. This system was attacked 
and modified in 1992 by Harn and Wang [11]. Later in 
1992, Alabbadi and Wicker [2] completely broke the 
Xinmei Wang digital signature scheme. Alabbadi and 
Wicker then proposed a digital signature scheme based on 
error correcting codes [1] in 1993.  
In the same year Johan van Tilburg has carried out the 
cryptanalysis of the Alabbadi Wicker digital signature 
scheme [23]. Jacques Stern successfully broke this 
signature scheme in 1994 [22]. Kabatianskii, Krouk, and 
Smeets proposed a signature scheme based on random 
codes in 1997 known as the KKS signature scheme and 
claimed it to be secure [15]. However, in 2007, Pierr-Louis 
Cayrel, Otmani and Verguand [6] showed that a passive 
attacker intercepting just a few signatures can efficiently 
find the private key.  
In 2011, Otmani and Tillich [20] had carried out an 
efficient attack on all concrete KKS proposals and broke 
the system. Courtois, Finiasz, and Sendrier [7] designed a 
code-based signature scheme in 2001, it still remains 
unbroken. The signature scheme is based on the 
Niederreiter cryptosystem and it uses Goppa code. The 
CFS signature scheme depends on two NP-complete 
problems for its security. Researchers have designed 
several variants of the CFS signature scheme.  
Hamdi, Harari and Bouallegue, [10] in 2006 had 
introduced a signature scheme which is practical, secure 
and fast. This signature scheme made use of a family of 
BCH codes. It involved chaining a family of BCH codes 
with various dimensions. This scheme was secure, faster 
and more practical than the CFS signature scheme.  
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In this paper, a variant of this signature scheme is 
presented. This scheme makes use of a family of hexi 
polynomial codes. The proposed new scheme has lesser 
key size and better security; when compared to the 
signature scheme based on McEliece cryptosystem and the 
BCHS1 signature scheme. 

3. Hexi Codes and Related Hexi Codes  

This section recalls some definitions regarding hexi codes 
and related hexi codes like hexi polynomial codes. Hexi 
codes and hexi polynomial codes were introduced along 
with other hexi codes in 2013 [12-14]. Quasi cyclic partial 
hexi codes, which are hexi codes have been used to 
introduce error correction in AES. Hexi polynomial codes 
have been used to reduce public key size in the hexi 
McEliece public key cryptosystem. Hexi rank codes have 
been used in variants of the GPT cryptosystem. The 
definition of hexi code and hexi polynomial code are 
recalled.  

3.1 Hexi Fields  

Let 42
=S Z  be a field of 16 elements which is isomorphic 

to  

 2
4

[ ]
1

x
x x〈 + + 〉

Z
 (1) 

where 4 1x x〈 + + 〉  is the ideal generated by the irreducible 
polynomial x4 + x +1 in 2[ ]xZ . Now the elements are 
given hexadecimal notation, where 0 = 0000, 1 = 0001, 
 

Table 1: Representations of the elements of the hexi field S  
Hexi 
representation 

4-Tuple  
representation 

Power 
representation 

Polynomial 
representation 

0 (0 0 0 0) 0 0 
1 (0 0 0 1) α 3 α 3 
2 (0 0 1 0) α 2 α 2 
3 (0 0 1 1) α 6 α 2 + α 3 
4 (0 1 0 0) α α 
5 (0 1 0 1) α 9 α +α 3 
6 (0 1 1 0) α 5 α + α 2 
7 (0 1 1 1) α 11 α + α 2 +α 3 
8 (1 0 0 0) 1 1 
9 (1 0 0 1) α 14 1 +α 3 
A (1 0 1 0) α 8 1+ α 2 
B (1 0 1 1) α 13 1+ α 2 + α 3 
C (1 1 0 0) α 4 1 + α 
D (1 1 0 1) α 7 1 + α + α 3 
E (1 1 1 0) α 10 1 + α + α 2 
F (1 1 1 1) α 12 1+α + α 2 + α 

3 
 

Table 2: Addition table ⊕ of the hexi field S  
⊕ 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 1 2 3 4 5 6 7 8 9 A B C D E F 
1 1 0 3 2 5 4 7 6 9 8 B A D C F E 
2 2 3 0 1 6 7 4 5 A B 8 9 E F C D 

3 3 2 1 0 7 6 5 4 B A 9 8 F E D C 
4 4 5 6 7 0 1 2 3 C D E F 8 9 A B 
5 5 4 7 6 1 0 3 2 D C F E 9 8 B A 
6 6 7 4 5 2 3 0 1 E F C D A B 8 9 
7 7 6 5 4 3 2 1 0 F E D C B A 9 8 
8 8 9 A B C D E F 0 1 2 3 4 5 6 7 
9 9 8 B A D C F E 1 0 3 2 5 4 7 6 
A A B 8 9 E F C D 2 3 0 1 6 7 4 5 
B B A 9 8 F E D C 3 2 1 0 7 6 5 4 
C C D E F 8 9 A B 4 5 6 7 0 1 2 3 
D D C F E 9 8 B A 5 4 7 6 1 0 3 2 
E E F C D A B 8 9 6 7 4 5 2 3 0 1 
F F E D C B A 9 8 7 6 5 4 3 2 1 0 

 
Table 3: Multiplication table ⊗ of the hexi field S  

⊗ 0 1 2 3 4 5 6 7 8 9 A B C D E F 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 8 9 A B C D E F 
2 0 2 4 6 8 A C E 3 1 7 5 B 9 F D 
3 0 3 6 5 C F A 9 B 8 D E 7 4 1 2 
4 0 4 8 C 3 7 B F 6 2 E A 5 1 D 9 
5 0 5 A F 7 2 D 8 E B 4 1 9 C 3 6 
6 0 6 C A B D 7 1 5 3 9 F E 8 2 4 
7 0 7 E 9 F 8 1 6 D A 3 4 2 5 C B 
8 0 8 3 B 6 E 5 D C 4 F 7 A 2 9 1 
9 0 9 1 8 2 B 3 A 4 D 5 C 6 F 7 E 
A 0 A 7 D E 4 9 3 F 5 8 2 1 B 6 C 
B 0 B 5 E A 1 F 4 7 C 2 9 D 6 8 3 
C 0 C B 7 5 9 E 2 A 6 1 D F 3 4 8 
D 0 D 9 4 1 C 8 5 2 F B 6 3 E A 7 
E 0 E F 1 D 3 2 C 9 7 6 8 4 A B 5 
F 0 F D 2 9 6 4 B 1 E C 3 8 7 5 A 

 
2 = 0010, 3 = 0011, 4 = 0100, 5 = 0101, 6 = 0110, 7 = 
0111, 8 = 1000, 9 = 1001, A = 1010, B = 1011, C = 1100, 
D = 1101, E = 1110 and F = 1111. In short S= {0, 1, …, 9, 
A, …, F}. Clearly ( S, ⊕ , ⊗ ) is a field of order 16. The 
operator ‘ ⊕ ’ denotes addition XOR modulo 2, is given in 
Table II and each element is inverse of itself with respect 
to ⊕ . The operator ‘⊗’ denotes multiplication modulo 

4 1x x+ +  is given in Table III. This operator ‘⊗’ 
multiplication modulo 4 1x x+ +  was used in Mini AES 
and also described in [14]. This field is called as hexi field 
or 4(2 )GF , the elements of it and their representations are 
given in the Table 1.  
Let Vn = {(x1 … xn) | xi ∈ S; 1 ≤  i ≤ n} be a n-dimensional  
vector space defined over the hexi field S.  

3.2 Hexi Codes  

Definition 1: A block code of length n with (24)k 
codewords is called a hexi (n, k) block code, denoted by 

( , )n kHC , if and only if its (24)k codewords form a k-
dimensional subspace of the vector space V n of all n tuples 
over the hexi field S.  
The method for generating the ( , )n kHC  code using the 
generator matrix G is as follows. G is given in the 
following matrix;  
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−
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 
 
 
 
  

2

2

   

2

 

 
,i jg ∈ S; for 0 ≤ i ≤ k − 1 and 0 ≤ j ≤ n − 1. Consider u = 

(u0 u1 … uk-1), the message to be encoded, the 
corresponding codeword v is given by v = u.G. Every 
codeword v in ( , )n kHC  is a linear combination of k 
codewords.  
The decoding, error detection and error correction capacity 
of hexi codes and hexi polynomial codes are discussed in 
detail. Some definitions are recalled from [12-14] to make 
this paper a self contained one. The Hamming metric of 
the hexi code is given in the following:  
  
Definition 2: For any 2 vectors x = (x1… xn) and y = (y1 
… yn) in Vn, the Hamming distance dH(x, y) and Hamming 
weight wH(x) are defined as follows:  

( , ) = { : ; ; }
( ) = { : 0; } .

H i i i i i

H i i i

d x y | x x y x x y y |
w x | x x x x |

≠ ∈ ∈
≠ ∈

 (2) 

If HC  is a hexi code, the sum of two codewords is also a 
codeword in HC . It follows that dH(x, y) = wH(x, y), that is 
the Hamming distance between two codewords is equal to 
the Hamming weight of some other codeword.  

 
Definition 3:The minimum distance Hmin

d  of a hexi code 

HC  is defined as  
             

,
= ( , ).H Hmin x y

x y

d d x ymin
∈

≠

CH

 (3) 

The error correcting capacity of hexi code is discussed.  
 

Theorem 1: [12] The number of errors a hexi code can 
correct is = ( 1)/2Hmin

t d −  , and this code can detect l 

errors where 1 Hmin
t l d+ + ≤  and  l > t.  

  
Proof. Proof is similar to that of linear block code [17]. 
Since the shift to hexadecimal system from binary does not 
alter the calculation of Hamming weight, Hamming 
distance or Hmin

d  and the error correcting capacity remains 

same.  
Correction of errors in any code is a complicated process. 
There are 24k error patterns that result in same syndrome 
and the true error pattern e is just one of them. Determining 
the true error vector e is not easy. The coset leader method 
is used for error correction, by making use of the standard 
array and syndrome decoding described in [17]. The 
standard array is given by Table 4.  
 

Table  4: Standard array for syndrome decoding 
Coset Leaders Codewords Syndrome 

v1 = 0 2v  … 42 kv  s = 0 

e2 2 2e v+  … 2 42 ke v+  
2

Te H  

e3 3 2e v+  … 3 42 ke v+  
3

Te H  
      
el 2le v+  … 42l ke v+  T

le H  
      

4( )2 n ke −  4( ) 22 n ke v− + …

4( ) 422 n k ke v− +  4( )2

T
n ke H−  

 
Here ei 's are coset leaders, 4( )2 2 n ki −≤ ≤ ; vj 's are non zero 
codewords, 42 2 kj≤ ≤ . The corrected codeword vj is 
obtained by using the syndrome of the received codeword 
r. The coset leader ei, related to the syndrome, is added to 
r to obtain the corrected codeword.  

3.3 Hexi Polynomial Codes  

Hexi polynomial codes are of two types, xn + 1 and xn + z 
(z ∈ S  \ {0, 1}). When xn + 1 is used, it forms a usual 
cyclic code, g(x) is a polynomial which divides (xn + 1) 
and its coefficients are from S . To generate a HC (n, k) 
cyclic hexi code, consider only the polynomial of the form 
xn + 1. Instead of xn + 1, consider xn + z (z ∈ S \ {0, 1}), 
then xn + z = g(x) × h(x), g(x) and h(x) are polynomials 
belonging to S[x].  
 Let G be the generator matrix associated with generator 
polynomial g(x). Let H be the parity check matrix 
associated with the parity check polynomial h(x). The 

( , )n kHC  hexi code is not cyclic. Clearly TGH = (0). If (x1 
… xn) ∈ ( , )n kHC , then in general (xn x1 … xn-1) ∉  

( , )n kHC . ( , )n kHC , the hexi polynomial code generated 
by the hexi polynomial g(x) is defined as follows.  

 
Definition 4: Let xn + z ∈ Si [x], z ∈ S \ {0, 1}, be a hexi 
polynomial in Si [x]. If xn + z = g(x)h(x) where g(x) is the 
hexi generator polynomial associated with the generator 
matrix G and h(x) is the hexi parity check polynomial 
associated with the parity check matrix H. If g(x) generates 
a code ( , )n kHC , then ( , )n kHC  is defined as the hexi 
polynomial code associated with the hexi generator 
polynomial g(x).  
Let g(x) = g0 + g1x + … + gmxm  be the hexi generator 
polynomial, then the generator matrix G of the hexi 
polynomial code ( , )n kHC  is as follows:  
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=

0 0

m
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m
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G
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−

 
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 
 
 





    



 

 
gi ∈ S; for 0 ≤ i ≤ m. The rows of the generator matrix G 
are linearly independent and rank of G is k, the dimension 
of ( , )n kHC , k is the number of message symbols and m is 
the highest degree of the generator polynomial g(x) and n = 
m + k, is the length of the codeword. A message u = u0u1 
… uk-1 can be represented as u(x) = u0x0 + u1 x1 +  … + uk-

1 xk-1  and can be encoded as u(x) × g(x). These hexi 
polynomial codes can be generated by splitting xn + z into 
two polynomials g(x) and h(x). Given n, m and k it is not 
possible to easily guess which polynomial has been used as 
the generating polynomial. These codes are not cyclic, 
making it hard to break. In case of hexi polynomial codes 
the original message u expressed in polynomial form as u(x) 
can be encoded as u(x) ×g(x) where g(x) is the generator 
polynomial. Thus without using the generator matrix G the 
encoding of the message can be carried out. Like in the 
case of decoding usual polynomial codes [16], the error 
detection and error correction of hexi polynomial codes can 
be done without the creation of standard array for 
syndrome decoding.  

Let w be the received codeword, w(x) is divided by the 
generator polynomial g(x), if the division results with a 
reminder, it implies that an error has occurred. To perform 
the error correction, the received codeword w(x) is 
multiplied with the parity check polynomial h(x). The 
resultant is then divided by h(x). Since w = v + e, where v(x) 
is the original codeword and e(x) is the error. This division 
results in error e(x) as the quotient, the original codeword is 
obtained by w − e. The message is later obtained by the 
division of the original codeword v(x) by g(x). The hexi 
polynomial code has a error correction capacity of n – k 
and corrects only errors that occur in parity. The algorithm 

for error detection and error correction of hexi polynomial 
codes is given in Algorithm 1.  

3.4 Chained Hexi Polynomial Codes  

The family of hexi polynomial codes are large enough to 
avoid an exhaustive attack and each hexi polynomial code 

( , )H i ii
n kC  of the family is defined by its generator matrix 

(respectively a parity check matrix) Mi; i = 1 … l. The 
generator matrix G is given by the chaining of the 
respective generator matrices Mi; i = 1 … l of the hexi 
polynomial codes.  

1 0 0 0
0 0 0

=

0 0

 
 
 
 
 
 





   



k

l

M
M

G

M

 

In this case the codewords and syndromes are stocked in 
tables. To decode a word it is compared to the table and 
the nearest one to the word or the equal syndrome is taken. 
The decoding can also be done by using Algorithm 1 and 
the respective generator polynomial of Mi for i =1, 2, …, l.  

4. Chained Hexi Codes Signature Scheme 

The hexi code based digital signature scheme known as 
Chained Hexi Codes signature scheme (CHC signature 
scheme) is introduced in this section. The proposed 
scheme is a variant of the BCHS1 signature scheme. This 
scheme makes use of a family of hexi codes, it has lesser 
key size and better security; when compared to the 
signature scheme based on McEliece cryptosystem and the 
BCHS1 signature scheme. The set up of the signature 
scheme is as given below.  
Parameters / Setup: The secret parameters are known 
only to the entity who is signing the document. The 
generator matrix G is given by the chaining of the 
respective generator matrices Mi; i = 1…l of the hexi 
polynomial codes. The resulting matrix G of the chaining 
of these hexi polynomial codes forms the trapdoor of the 
signature scheme.   
Secret Parameters   
1.  A family Γ  of l hexi polynomial codes. The chained 
hexi code is defined by its generator matrix G of size  
K × N, where  

=1
= ∑

l

i
i

K k  and 
=1

= ;∑
l

i
i

N n  

in  is the length and ik  is the dimension of the thi  code.  
    2.  P is a secret N × N permutation matrix.  
    3.  S is a secret K × K hexi invertible matrix.  
Public Parameters  
The public key  

=′ × ×G S G P  
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′G  is permuted and scrambled K × N generator matrix.  
 
Signing Algorithm:  
The document M  that needs to be signed is of the length 
4N bits is converted to hexi notation of length N nibbles. 
The message ( )h M  is permuted using 1−P , the inverse of 
the permuted matrix P. Then the message pM  is split into 
word xi 's of length ni according to the ith code's length. 
These xi 's are decoded using the table or the decoding 
algorithms. These ai 's are trimmed to the dimension of ith 
code, i.e., ki. The ai 's are concatenated into a of length K. 
The signature y of the document is obtained by multiplying 
a with S-1, the inverse of the invertible matrix S. The 
signing algorithm of the signature scheme is given in 
Algorithm 2.  
 

    
Verification Algorithm:  
Given the signature y, the public key G' and the document 
M . Here C is the sum of error correcting capacity cj 's of 
the codes used.  

=1
= ∑

l

i
i

C c  

The codeword b is obtained by multiplying the signature y 
with the public key G. The Hamming distance dH between 
the codeword b and the document's message ( )h M  is 
calculated. If it is less than the sum of error correcting 
capacities, then the signature is valid and it is accepted, 
else the signature is not valid and it is rejected. The 
verification algorithm of the signature scheme is given in 
Algorithm 3.  
 

 
 

Implementation: 
In the implementation of the CHC signature scheme using 
hexi polynomial codes, these are the following ways in 
which a family of hexi polynomial codes can be chained 
together to produce the generator matrix G. A comparison 
of these cases is given in Table 5.  
Case 1: A family based on 5 hexi polynomial codes of 
length 50 each, these codes can be of different dimensions 
like HC (50, 25, 25), HC (50, 20, 30), HC (50, 30, 20), HC  
(50, 40, 10) and HC (50, 24, 26). The dimensions can be 
selected according to ones wishes. Here three such cases 
are handled i.e., Case 1a with HC (50, 20, 30), Case 1b 
with HC (50, 30, 20) and Case 1c with HC (50, 25, 25).  
Case 2: A family based on 3 hexi polynomial codes, 2 
codes of length 100 each and one code of length 50, these 
codes can be of different dimensions like HC (100, 50, 50), 

HC (100, 60, 40), HC (100, 80, 20) and so on. The code of 
length 50 can be of any of HC (50, 25, 25), HC  (50, 20, 30), 

HC (50, 30, 20), HC (50, 40, 10) or HC (50, 24, 26).  
Case 3: A family based on 10 hexi polynomial codes of 
length 25 each, These codes can be different dimensions 
like HC  (25, 15, 10), HC (25, 10, 15), HC (25, 12, 13), HC  
(25, 20, 5) and so on.  
Case 4: A family based on 11 hexi polynomial codes, 10 
codes of length 20 each and one code of length 50. These 
codes can be different dimensions like HC (20, 10, 10), HC
(20, 15, 5), HC (20, 16, 14) and so on. The codes of length 
50 can be of any of HC (50, 25, 25), HC (50, 20, 30), HC (50, 
30, 20), HC (50, 40, 10), HC (50, 24, 26) and so on.  
Case 5: A family based on several hexi polynomial codes 
of different lengths. These codes can be different 
dimensions and of different lengths. These codes can be of 
length 100, 50, 25, 20, 10 or 5. They can be of any 
dimensions given in the before cases. These codes can be 
different dimensions like HC (20, 10, 10), HC (20, 15, 5), 

HC (20, 16, 14) and so on. These codes of length 10 and 5 
like HC (10, 5, 5), HC (10, 7, 3), HC (5, 3, 2) can also be 
used.  
 
Table 5: Comparison of CHC signature schemes with different 
dimensions 

Signature   N  K   Code dimensions  no 
Case 1a:   250  150   50, 20,30   5 
Case 1b:   250  100   50, 30,20   5  
Case 1c:   250  125   50, 25, 25   5 
Case 2   250  

  
125  
  

 100, 50,50  
 50, 25,25  

 2  
 1  

Case 3   250  130   25, 12,13   10  
Case 4   250  

  
125  
  

 50, 25,25  
 20, 10, 10  

 1  
 10  
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Case 5:   250  
  
  
  
  

127  
  
  
  
  

 100, 50, 50  
 50, 25, 25  
 25,12, 13  
 20, 10, 10  
 5, 2,3  

 1  
 1  
 3  
 1  
 1 

 
Comparison with other signature schemes  
The CHC signature scheme is compared with the signature 
schemes like the signature scheme based on McEliece 
cryptosystem and the BCHS1 signature scheme. It is 
evident that the CHC signature scheme has smaller public 
key size and also a smaller signature size. A comparison of 
the best cases of the CHC signature schemes with the other 
signature schemes is given in Table 6.  
 
Table 6: Comparison of the CHC signature scheme with other signature 
schemes 

Signature McEliece BCHS1 
CHC 

Case 1a Case 
1b 

Case 
1c 

Data Size 65536 1000 250 250 250 
Signature 

length 65392 500 150 100 125 

Key length 4292069312 500000 37500 25000 31250 
 
When compared with the BCHS1 signature scheme the 
advantages of the CHC signature scheme are as follows:   

• The signature length is 3times smaller for Case 1a, 
5 times smaller for Case 1b, and 4 times smaller for 
Case 1c.  

• The public key size is 13 times smaller for Case 1a, 
20 times smaller for Case 1b, and 16 times smaller 
for Case 1c,  

• The working of this scheme is faster because it 
works with a smaller key size.  

 The variant of the CHC signature scheme which is 
introduced in the next section is both space and time 
saving.  

5. A Variant of the CHC Signature Scheme 

Given the fact that the CHC signature scheme makes use 
of polynomial codes, the decoding of the codes can be 
done using Algorithm 5. In that case, the time complexity 
can be reduced significantly. That is the decoding of the 
message can be done in time complexity of 
( ) ( )− −n k lg n k , if = ( )Θ −n n k . Then there will be no 
necessity to have a look-up table with the codewords and 
the syndromes. Only some cases of CHC signature scheme 
can be considered. Case 1c and Case 2 will work perfectly 
fine with this decoding algorithm as the condition 

= ( )Θ −n n k  is satisfied. Then there will be no necessity 
to have a stocked up table of 2k codewords and syndromes. 
To find the nearest codeword from the table, atleast 2k  
comparisons of length n is necessary. The time complexity 

of 2k comparisons of length n is more than ( ) ( )− −n k lg n k . 
Thus this variant will result in lesser space and time being 
utilized for decoding.  

6. Security of the CHC Signature Scheme 

Decoding Attack: The signature scheme depends on the 
well known NP complete problem. The most efficient 
algorithms in this case are based on the information set 
decoding. An analysis was done by Stern [22] and several 
others. The analysis by Canteaut and Chabaud [5] which is 
the most efficient one is considered here. Given already 
for the BCHS1 signature scheme [10]. Consider a code of 
length n, of dimension k and of correction capacity t, if one 
uses information set decoding, one chooses a random set 
of k columns, an error is decodable when its support 
doesn't meet the k random columns. The probability for an 
error to be decodable is  

= −
t
n k

dec t
n

C
P

C
 

Then the estimated work factor WF to find a word of 
weight t can be estimated as follows  

( )=
dec

P kWF
P

 

where P(k) corresponds to the cost of Gaussian elimination, 
P(k) can be first thought as a cost in O(k3). It is given that 
the work factor for the BCHS1 signature scheme in 288. 
When the CHC signature scheme is considered, it is clear 
that in all cases t = n − k and hence the probability for an 
error to be decodable is  

1= = =−
t t
n k t

dec t t t
n n n

C C
P

C C C
 

Then the estimated work factor WF to find a word of 
weight t can be estimated as  

( )=
dec

P kWF
P

 

 
( )= = ( )
1

× t
n

t
n

P kWF P k C

C

 

where P(k) corresponds to the cost of Gaussian elimination, 
P(k) can be first thought as a cost in O(k3). The calculated 
work factor for the CHC signature scheme is greater than 
2100. The gap between this calculated work factor and the 
workfactor calculated from [9] is very small. It clearly 
shows that the signature scheme is more secure. 
The codes used are neither quasi cyclic nor dyadic, hence 
the attacks in [8] can not be carried out on these codes. 
 
Information Set Decoding Attack:  
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A generic decoding method, the information set decoding 
attack is a top threat against the original McEliece 
cryptosystem. Information set decoding depends on 
syndrome decoding and systematic form of the generator 
matrix G to break the cryptosystem. But this newly 
introduced hexi McEliece cryptosystem does not depend 
on syndrome decoding. The generator matrix G of the hexi 
polynomial code that is used in this cryptosystem is not 
given in its systematic form, hence information set 
decoding attack is not easily carried out on the 
cryptosystem.  
 
Generalized Birthday Algorithm:  
The generalised birthday algorithm is not as efficient as 
the information set decoding attack on code based 
cryptosystems. The CFS signature scheme was attacked 
using this method. The method makes use of very large 
lists. For a sufficiently large n, this cryptosystem is secure.  
 
Structural Attack:  
The complexity of structural attack on the proposed 
signature scheme and its public key can be measured by 
searching exhaustively for all possible combination of 
permutation ( !N ), secret codes and invertible matrix (16K). 
The security of this scheme is increased due to the fact that 
the secret code is formed using several different hexi 
polynomial codes.  

7. Conclusion and Further Direction 

A signature scheme known as Chained Hexi Codes 
signature scheme (CHC signature scheme) is introduced in 
this paper. The proposed scheme depends on the well 
known Syndrome Decoding problem (SD problem), is a 
variant of the BCHS1 signature scheme. The scheme is 
based on the chaining of the generator matrix of several 
hexi polynomial codes of different dimensions. The major 
advantage of this scheme is the massive decrease in the 
public key size and there is also a good decrease in the 
signature size. Due to the small public key size, the 
decoding, signing and verification can be done faster. As 
shown in Table 7, the CHC signature scheme has smaller 
key and signature size, it is also faster and secure when 
compared to the signature scheme based on McEliece 
cryptosystem an BCHS1. The variant of the CHC 
signature scheme proposed in this paper, avoids the 
necessity to maintain syndrome-codeword look up tables. 
The decoding can be done in ( ) ( )− −n k lg n k  times. This 
variant is faster and it is also secure.  
 
Further Direction: A signature scheme based on the 
BCHS2 signature scheme using the parity check matrices 
of different hexi polynomial codes can be proposed and its 
security analysed.    
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