
IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.12, December 2014

113

Manuscript received December 5, 2014
Manuscript revised December 20, 2014

Security Integration in SDLC Analysis Phase

Er. Sunil Patel
Department of computer science, CIIT Indore

Abstract
 SDLC stack is a layered architecture of application or software
development. Effect of any layer is reflected on all the upper
layers in other words base layer outcomes are executed in upper
layers. Thus if a major changes occurred in lower layer than it is
reflected on all the upcoming layers of SDLC stack, in this paper
we provide the concept of vulnerabilities check list scanning in
analysis phase which scan the current vulnerabilities in system
which is required to design. Additionally the system provides the
suggestions for correct them to get fast, secure and less time and
effort consuming system development.
Keywords
security, performance, SDLC, check list, bug free.

1. Introduction

Software development is a complex task in nature; the
same named projects are reflect different behaviours and
changed according to the time, users and environments.
For example if a client wants an inventory management
software for his use according to the need of his inventory
the application is developed but at the same time a new
customer need an inventory management software then the
complete system is changed according to the clients
requirements.
To provide ease in development different software process
models are provided where according to the project length
and environment model is selected. These models are
provide a basic view for develop a software projects.
These models are a combination of different activities by
which quality software is developed and deployed.

Fig 1 shows the development process

Here the stack of SDLC is given in fig which provides the
dependency of the stack elements. If requirement is
gathered well then analysis and other steps are executed
smoothly Else the problems are arises in all phases.
Thus here we select the analysis phase of the development
where the gathered information form the end client are
analysed and refined in this phase, thus the analysis has to
be done appropriately and must be followed by adequate
design and implementation. Too often none of the above
occurs.
Analysis should be discovering what I call the REAL
business requirements deliverable what’s that provide
value when satisfied by the product/system how. Very
often, though, what is called "analysis" actually is design,
which means that the project has skipped to the how
without adequately identifying what’s the how must
accomplish in order to provide value.

2. BACKGROUND

In this section we provide the basic principal of the secure
software development, problem with existing system and
our proposed solution.
Success and quality of software depends on the amount of
projects features are matched to the end client
requirements. Requirement capture and analysis help in
identifying stakeholders and their expectations, and
capturing these expectations in a form that is responsive to
analysis and implementation. Software projects fail to meet
their expectations due to problems in articulation of
requirements, poor quality of analysis and quite often, a
lack of sufficient focus on the business perspective. A
framework to remove vulnerabilities: analysis phase in
SDLC will find out bugs or errors and missing
requirements for analysis.
Developing” A Framework to remove vulnerabilities
through analysis stage of SDLC” is very challenging
because in many papers it is given theoretical way. it can
be demonstrated that changes to the software engineering
process can help to reduce the number of defects in new or
changed software. Programmers alone do not produce
software. Software engineering is a process that has many
players and many steps from concept to deployment. The
analysts and designers have significant implications on the
quality of software being produced. This extension of
inclusive security concepts is important if real changes are

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.12, December 2014

114

to occur in software industry. Empowering on certain
levels of the software engineering life cycle chain will
permit old and bad habits to remain in place. A Framework
to remove vulnerabilities through analysis stage of SDLC
having many sub issues are important for development of
this software.
Figure shows total vulnerability reported in vulnerability
database from 2004 .the remove vulnerability is a very big
challenge .applying secure software engineering
vulnerability will be remove.

Fig 2 vulnerability report

Normally all the requirements which are useful for
development of any software ,but many times requirements
given from customer are not satisfactory or not
complete .so here secure software engineering concept is
very much important . in this project it is possible to find
out the lack of requirements and all missing requirements
are shown after analysis .hence for the next phase of SDLC
it is very easy to take all requirements hence software
development will be possible in proper manner.

Fig 3 Activities in Vulnerability Life Cycle

In order to prevent vulnerabilities in the software under
development, the VLC is designed keeping the following
objective in mind:

1. Detection of the vulnerabilities.
2. Classification of the detected vulnerabilities.
3. Identification of recurring vulnerabilities.
4. Determination of direct and indirect causes

5. Listing the activities to resolve the causes of the
vulnerability or vulnerability itself.

6. Selection of the optimal set of activities.
7. Suggestions.

To achieve the above objective, the vulnerability life cycle
of VLC is divided into three major phases. Each phase of
Vulnerability Life Cycle performs activities as given in
Figure
The objective of secure software development is to design,
implement, configure, and sustain software systems in
which security is a necessary property from the beginning
of the system’s life cycle (i.e., needs and requirements
definition) to its end (retirement). Experience has taught
that the most effective way to achieve secure software is
for its development life cycle processes to rigorously
conform to secure development, deployment, and
sustainment principles and practices.
Organizations that have adopted a secure software
development life cycle (SDLC) process have found almost
immediately upon doing so that they have begun finding
many more vulnerabilities and weaknesses in their
software early enough in the SDLC that they are able to
eradicate those problems at an acceptable cost. Moreover,
as such secure practices become second nature over time;
these same developers start to notice that they seldom
introduce such vulnerabilities and weaknesses into their
software in the first place.
The goal is to minimize the remaining defects that lead to
vulnerabilities.
Scope of this work is vulnerability detection, analysis and
resolution can be shown on report. Development of
software, all requirements are helpful for next phase. Due
to consideration of security from initial phase of software
development costing of software will less. Because of this
new methodology less time is necessary.
Due to this manual work is reduced because software fed
all requirements to the next phase of SDLC, Due to this
methodology analyst having less work because of
fulfilment of all requirements.

3. Proposed work

In this project requirement objects are entered one by one
and checking out either this given requirements are ok or
some requirement missing. After putting requirement
object there are several link on main page .Detection,
requirements, analysis, text report and image report are
given on main snapshot.

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.12, December 2014 115

Fig 4 Detect & Resolve Vulnerability by Framework

First go on requirements. Put the requirements with sub
requirements if necessary after putting requirement object
goes on detection. It will check the checklist and shows
Y/N .In analysis option shows detail analysis means which
is missing, which is unnecessary .It also shows text and
image report. In this way it removes vulnerabilities in
analysis phase in SDLC.

Fig 5 Vulnerability Removal by Framework

This aims to minimize vulnerabilities in the software. Each
time output of analysis phase of SDLC is to feed the
security checklist where it is verified whether the output
fulfils prerequisites for security of the phase. If yes the
phase is declared as secure. If not, the output is fed to
vulnerability life cycle as an input. In this it is properly
analyzed for the detection of the vulnerabilities. Direct and

indirect causes of the vulnerability and the actions to
resolve the vulnerability are determined. Then documented
suggestions in the form of feedback are sending as input to
the Next phase of SDLC from where the vulnerable output
was received as input.

4. Implementation

To implement such kind of system that is described in the
above sections, we use the visual studio IDE (integrated
development environment) which provide the rich classes
to implement any hard problem in easiest way. For
implementation point of view we create a list of client
requirement and similarly a check list of all necessary
aspects and vulnerabilities.
Using the SQL server database we cross check conflicts,
consistency and after that filtered vulnerabilities form the
project documents which is passing to the design of the
system.
Here we provide some key methods and functions by
which we scan and remove the vulnerabilities form any
project requirements. The previous version of the projects
and methodologies are limited for some particular type of
projects here we implement a generalize this concept by
provide suppling the additional check list for system, here
user can select the check list of any project and remove
vulnerabilities from the system required to develop.

Table 1 vulnerability checklist
S.
No

method Description

1 Requirement() This method is user defined method
by which requirements are listed in a
user interface

2 Search() This function is used to search the
main requirement and their sub
requirements and prepare the list of
the search objects in database

3 Vulnerability
Analysis()

Using this method system scan
Vulnerability and provide the list of
gaps and conflicts

4 Suggestion() This function is executed to prepare a
list of suggestion and corrections that
are predefined in a database

5 Report() This function generate the complete
report for input and output, with
Vulnerability and suggestions in a
text file

6 Vulnerability
Classification()

This function categorize the different
Vulnerabilities found under the
project requirement

IJCSNS International Journal of Computer Science and Network Security, VOL.14 No.12, December 2014

116

5. Conclusion and Results

Our proposed work is to provide the security and quality
improvement in software development. For that purpose
we make efforts and starts with the analysis of SDLC and
software processes models. After analysis we found that all
the process models having its own limitations and
advantages. And additionally we found that the effect of
changes are reflects in all the activities and software
quality if any problem are remain in any phase of SDLC.
thus we starts working with analysis phase of SDLC where
all the requirement of clients are understand and reviewed
for making design. so if we improve the initial step then we
found the best quality of software and all the remain steps
are go smoother. The main advantage of this is reducing
efforts and time in application development; additionally it
helps on testing and reduces the testing and debugging
efforts.
during implementation of the proposed system we found
some limitation which is provided by the author in [1].
which is recovered and we implement a generalized
software analysis tool for improving QoS and security.

References
[1] A Framework to Detect and Analyze Software

Vulnerabilities -Development Phase Perspective-,
International Journal of Recent Trends in Engineering, Vol
2, No. 2, November 2009

[2] NEXT GENERATION SOFTWARE SECURITY
THROUGH TESTING STAGE OF SDLC, Vidyabhushan A.
Upadhye1 and Shashank D. Joshi2, International Journal of
Computer Science and Communication Vol. 2, No. 2, July-
December 2011, pp. 311-313

[3] New Approach for Predicting Vulnerability at Design Stage
for Object Oriented Design, ISSN : 2229-4333(Print) |
ISSN : 0976-8491(Online) www.ijcst.com, IJCST VOL. 2,
ISSUE 3, SEPTEMBER 2011

[4] Baking in Security During the Systems Development Life
Cycle, CROSSTALK The Journal of Defense Software
Engineering March 2007

[5] REVIEW ON COMMON CRITERIA AS A SECURE
SOFTWARE DEVELOPMENT MODEL, International
Journal of Computer Science & Information Technology
(IJCSIT) Vol 4, No 2, April 2012, DOI :
10.5121/ijcsit.2012.4207 83

[6] An Integrated Approach to Software Process Improvement
at Wipro Technologies: veloci-Q V. Subramanyam
Sambuddha Deb Priya Krishnaswamy Rituparna Ghosh
March 2004

[7] Secure Software Development Life Cycle Processes: A
Technology Scouting Report, Noopur Davis, December
2005 Software Engineering Process Management

[8] Topological Vulnerability Analysis: A Powerful New
Approach For Network Attack Prevention, Detection, and
Response, Sushil Jajodia and Steven Noel Center for Secure
Information Systems, George Mason University 4400
University Drive, S-113 85 Fairfax, Virginia, USA

[9] A Framework for Identifying Software Vulnerabilities
within SDLC Phases, (IJCSIS) International Journal of
Computer Science and Information Security, Vol. 9, No. 6,
2011

[10] SOURCE CODE ANALYSIS TO REMOVE SECURITY
VULNERABILITIES IN JAVA SOCKET PROGRAMS: A
CASE STUDY, International Journal of Network Security
& Its Applications (IJNSA), Vol.5, No.1, January 2013

[11] Studying Software Vulnerabilities, Dr. Robin A. Gandhi, Dr.
Harvey Siy, and Yan Wu, The University of Nebraska at
Omaha, The Journal of Defense Software Engineering
September/October 2010
http://www.ieice.org/eng/shiori/mokuji.html

http://www.ijcst.com/
http://www.ieice.org/eng/shiori/mokuji.html

