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Abstract: 
In this paper, the concept of fuzzy (semi-) topogenous order in 

the framework of fuzzy topologies, fuzzy proximities and fuzzy 

uniformities have been introduced. The refinement of fuzzy 

(semi-) topogenous order has been researched. On this basis, 

the image and inverse image of refinement of fuzzy (semi-) 

topogenous order have been defined by general order 

homomorphism (GOH). Some important properties of them 

have been obtained. 
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1. Introduction 

In his classic paper [1] of 1965, Zadeh introduced the 
fundamental concept of a fuzzy set. Subsequently, Chang 
[2] and others extended some basic concepts from 
general topology to fuzzy sets and developed a theory of 
fuzzy topological spaces. Katsaras [3] combined order 
structure with fuzzy topological structure and made an 
initial research. Recently, katsaras and petalas [4-6] 
introduced the fuzzy syntopogenous structure and studied 
the unified theory of fuzzy topology, fuzzy proximity and 
fuzzy uniformity. Wang [7,8] studied refinement of 
semi-topogenous order on completely distributive lattice 
and refinement of fuzzy (semi-) topogenous order. In this 
paper, we define image and inverse image of refinement 
of fuzzy (semi-) topogenous order by GOH, and study 
some important properties. 

 

2. Preliminaries 

In this paper, we use notation, which is standard for the 
“fuzzy mathematics”, usually with-out explanation. I 
stands for the unit interval [0,1]  and let 1I [0,1)= . 

XI denotes the family of all fuzzy subsets of a given set X. 
We will denote fuzzy sets by lower case Greek letters such 
as , ,µ λ υ . Forα denotes fuzzy set which assumes the 
valueα at each x X∈ . 
 
Definition2.1 [3] A binary relation η on XI is a katsaras 

fuzzy topogenous order on X, if it satisfies the following 
axioms: (1) (1,1), (0,0) η∈ , (2)if ( , ) ,µ λ η∈  

Thenµ λ≤ , (3) if 1 1,µ µ λ λ≤ ≤ and 1 1( , ) ,µ λ η∈ then 

( , )µ λ η∈ , (4) 1 2( , )µ µ λ η∨ ∈  iff 

1 2( , ) , ( , )µ λ η µ λ η∈ ∈  

and 1 2( , )µ λ λ η∧ ∈ iff 1 2( , ) , ( , )µ λ η µ λ η∈ ∈ . 

Definition2.2 [4] A functionτ : XI I→ is called a fuzzy 

 topology on X if it satisfies the following conditions: 

(1) (0) (1) 1 ,τ τ= = (2) 1 2 1 2( ) ( ) ( )τ µ µ τ µ τ µ∧ ≥ ∧ for each 

1 2, XIµ µ ∈ , (3) ( ) ( )i i i iτ µ τ µ∈Γ ∈Γ∨ ≥ ∧ for 

any { } X
i i

Iµ
∈Γ
⊂ . The pair ( , )X τ is called a fuzzy 

topological space. 

Let 1 2andτ τ be fuzzy topologies on X. We say 1τ  
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is finer than 2τ (or 2τ is coarser than 1τ ) iff 2 1( ) ( )τ λ τ λ≤  

for all XIλ∈ . Let 1( , )X τ and 2( , )Y τ be fuzzy 

topological space. A function 1 2: ( , ) ( , )f X Yτ τ→  

is called a fuzzy continuous map if 1
2 1( ) ( ( ))fτ λ τ λ−≤   

for all XIλ∈ . 

Definition2.3 [5] A function { }: 0,1X XP I I× →  is 

called a fuzzy proximity on X, if it satisfies the following 
axioms: (1) ( , ) ( , )P Pµ ρ ρ µ= , (2) (1,0) 0P = , 
(3) if ( , ) 0P µ λ = ，then 1µ λ≤ − , (4) ( , )P µ ρ λ∨  

( , ) ( , )P Pµ ρ µ λ= ∨ , (5) if ( , ) 0P µ λ = , there exists 

XIρ ∈  such that ( , ) 0 (1 , )P Pµ ρ ρ λ= = − .The pair 

( , )X P  is a Artico fuzzy proximity space. 

Notation2.1 [6] Let X be a set and XΩ be the set of all 

mappings : X XI Iα → such that: (1) (0) 0α = , 

(2) ( )α µ µ≥ , (3) ( )i i i iα µ µ∈Γ ∈Γ∨ = ∨ . 

Remark2.1 (1) If 1, 2 ,Xα α ∈Ω  then 1 2 Xα α∧ ∈Ω  

where 1 2( )( )α α µ∧ = { 1 1( )α µ∧ }2 2 1 2( )α µ µ µ µ∧ = ∨ , 

(2) If Xα ∈Ω ，then 1
Xα − ∈Ω ，where 

{ }1( ) (1 ) 1XIα µ λ α λ µ− = ∧ ∈ − ≤ − . 

Definition2.4 A subset U of XΩ is called a Hutton fuzzy 

uniformity on X satisfying for , Xα β ∈Ω ，the following 

condition： (1) Uα β∧ ∈  iff Uα ∈  and Uβ ∈ , 

(2)there exists Uα ∈ , (3)If Uα ∈ , there exists 

Uβ ∈ such that β β α≤ , (4) If Uα ∈ ，

then 1 Uα − ∈ . The pair ( , )X U is said to be a Hutton 

fuzzy uniform space. 

3. The Fuzzy (Semi-)Topogenous Order 

Definition3.1 [3] A function : X XI I Iη × → is called a 

fuzzy semi-topogenous order on X, if it satisfies the 
following axioms: (FT1) (1,1) (0,0) 1η η= = , (FT2) if 

( , ) 0η µ λ ≠ ， then µ λ≤ , (FT3) if 1 1,µ µ λ λ≤ ≤ ，

then 1 1( , ) ( , )η µ λ η µ λ≤ .  

Proposition3.1 Let η  be a fuzzy semi-topogenous 

order on X and let the mapping :s X XI I Iη × →  

defined by ( , ) (1 ,1 ), ,s XIη λ µ η µ λ λ µ= − − ∀ ∈ . 

Then sη  be a fuzzy semi-topogenous order on X.  

Definition3.2. A fuzzy semi-topogenous order η  is 

called symmetric if sη η= ，that is  (FT4) 

( , ) (1 ,1 ), , XIη λ µ η µ λ λ µ= − − ∀ ∈ . 

Definition3.3. A fuzzy semi-topogenous order η  is 

called fuzzy topogenous if for any 1 2 1 2, , , , , XIλ λ λ µ µ µ ∈  

(FT5) 1 2 1 2( , ) ( , ) ( , )η λ λ µ η λ µ η λ µ∨ = ∧ , (FT6) 

1 2( , )η λ µ µ∧ 1 2( , ) ( , )η λ µ η λ µ= ∧ . 

Definition3.4. A fuzzy semi-topogenous order η is 

called perfect if  (FT7) ( , ) ( , ),i i i iη λ µ η λ µ∈Γ ∈Γ∨ = ∧ . 

{ }, X
i i Iµ λ ∈Γ ⊂f or  any .  A perfect fuzzy semi- 

topogenous order η is called biperfect if：(FT8)  

( , ) ( , )i i i iη λ µ η λ µ∈Γ ∈Γ∧ = ∧ , for 
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any{ }, X
i i Iλ µ ∈Γ ⊂  

Theorem3.1 Let 1 2, : X XI I Iη η × →  be perfect (resp. 

fuzzy topogenous, biperfect) fuzzy semi-topogenous  
order on X. Define the composition 1 2η η of 1η and 

2η on X by 1 2
ν

η η λ µ η λ υ η υ µ
∈

∧
X 1 2

I
（ ， ）=sup( ( , ) ( , ) ) .  

Then 1 2η η  is a perfect (resp. fuzzy topogenous, 
biperfect) fuzzy semi-topogenous order on X.  

4. The Refinement of Fuzzy Topogenous 
Order 

Definition4.1[7]. Let η  be a fuzzy semi-topogenous 

order on X  and XIξ ∈ ,we consider a binary relation 

η ξ∗  on XI  as follows: ( , )η ξ µ λ∗  iff  there exists 
XIδ ∈  such that ( , )η ξ µ λ∗ = ( , )η µ δ  and 

( )µ δ ξ λ∨ ∧ ≤ . 
 
Theorem4.1 If η be a semi-topogenous order on X, then 
η ξ∗  is a semi-topogenous order on X..  

proof. (1) Let 0δ = , then 0 (0 ) 0ξ∨ ∧ ≤  and 

(0,0) (0,0) 1=η ξ η∗ = . Let 1δ = , then 1 (1 ) 1ξ∨ ∧ ≤  

and (1,1)η ξ∗ = (1,1) 1η = . (2) if ( , ) 0η ξ µ λ∗ ≠ , 

there exists XIδ ∈ such that ( , )η ξ µ λ∗ = ( , ) 0η µ δ ≠   
then µ δ≤  and ( )µ δ ξ λ∨ ∧ ≤ , so µ λ≤ . (3) if 

1 1,µ µ λ λ≤ ≤ , there exists XIδ ∈  such that 

1 1( ) ( )µ δ ξ µ δ ξ λ λ∨ ∧ ≤ ∨ ∧ ≤ ≤  and 1 1( , )η ξ µ λ∗  

= 1( , )η µ δ ( , )η µ δ≤ ( , )η ξ µ λ= ∗ . So η ξ∗  is a 
semi-topogenous order on X.. 
  
Theorem4.2 If η  be a semi-topogenous order on X ,  

then (1) 0η ∗ =≤; (2) 1η ∗ =η . 

proof. (1) if 0( , )η µ λ∗ , then there exists XIδ ∈  such 

that 0( , )η µ λ∗ = ( , )η µ δ  and ( 0)µ δ λ∨ ∧ ≤  such 

that µ λ≤ . Conversely, if µ λ≤ , let 1δ = , then 

( ,1)η µ  and (1 0)µ λ∨ ∧ ≤ , so 0( , )η µ λ∗ . 

(2) if 1( , )η µ λ∗ , then there exists XIδ ∈  such that 

1( , )η µ λ∗ = ( , )η µ δ  and ( 1)µ δ λ∨ ∧ ≤  i.e. 

δ λ≤  so  ( , )η µ λ . Conversely, if ( , )η µ λ , let 

δ λ= , have ( , )η µ δ  and ( 1)µ δ λ∨ ∧ ≤ , so 

1( , )η µ λ∗ . 
 
Theorem4.3 If 1,η η  be a semi-topogenous order on X 

and 1η η≤ , 1, XIξ ξ ∈ and 1 ,ξ ξ≤ then 1 1η ξ η ξ∗ ≤ ∗ . 

proof. if ( , )η ξ µ λ∗ , then there exists XIδ ∈  such 
that ( , )η ξ µ λ∗ = ( , )η µ δ and ( )µ δ ξ λ∨ ∧ ≤ . Since 

1η η≤  and 1 ,ξ ξ≤ then 1( , )η µ δ and 1( )µ δ ξ∨ ∧  

( )µ δ ξ λ≤ ∨ ∧ ≤  then 1 1( , )η ξ µ λ∗ .so 1 1η ξ η ξ∗ ≤ ∗ . 
 
Remark4.1 If η  be a semi-topogenous order on X and 

1, XIξ ξ ∈ , then (1) if 1 ,ξ ξ≤ then 1η ξ η ξ∗ ≤ ∗ , 

(2) '' ''η η ξ≤ ∗ ≤ ≤ , XIξ∀ ∈  
 
Theorem4.4 If a fuzzy semi-topogenous order η  is 
symmetric, then η ξ∗  is symmetric too. 

Proof: if sη η= ，has ( , ) (1 ,1 )η µ λ η λ µ= − − , 

, XIλ µ∀ ∈ , Since ( ) ( , )sη ξ µ λ∗ = (1 ,1 ),η ξ λ µ∗ − −  

then there exists XIδ ∈ such that (1 ,1 )η ξ λ µ∗ − −  

= (1 , )η λ δ− and1 ( ) 1λ δ ξ µ− ∨ ∧ ≤ − , Then ( , )η µ δ  
and ( )µ δ ξ λ∨ ∧ ≤   has ( , )η ξ µ λ∗ ，so 

( ) ( , )sη ξ µ λ∗ = ( , )η ξ µ λ∗ . 

5. Image and Inverse Image of Refinement of 
Fuzzy Topogenous Order 

Definition5.1 Let 1( , )X η ， 2( , )Y η be fuzzy topogenous  

space,  mapping : X Yf I I→  is called a GOH, if it 
satisfies the following axioms: (1) ( ) 0f α =  iff 0α = , 

(2) For any X
i Iα ∈  ( i I∈ ), ( )i I if α∈∨ = ( )i I if α∈∨ , (3) 

For any Y
j Iβ ∈  ( j J∈ ), 1( )j J jf β−

∈∨ = 1( )-
j J jf β∈∨  

there for any YIβ ∈  have 1( )f β− = { XIα∨ ∈ ( ) }f α β≤ . 

 
Definition5.2 Let mapping : X Yf I I→  be a GOH, and   
η ξ∗  be a semi-topogenous order on X, define a binary 
relation ( )f η ξ∗ on Y as follows: ( )f η ξ∗ ( , )α β  iff 

there exists , XIµ λ∈  such that η ξ∗ ( , )µ λ  and 
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( )fα µ≤ , ( )f λ β≤ . 
 
Theorem5.1 Let η ξ∗  be a semi-topogenous order on 
X , then ( )f η ξ∗  be a semi-topogenous order on Y , 
and we call ( )f η ξ∗  is image of η ξ∗  by f .                                                      
proof. (1) Since η ξ∗ (0, 0) 1=  and (0) 0f = , then 

( )f η ξ∗ (0, 0) 1= . As η ξ∗ (1, 1) 1=  and (1) 1f = , 
then ( )f η ξ∗ (1, 1) 1= . (2) If ( )f η ξ∗ ( , ) 0α β ≠  iff  

there exists , XIµ λ∈  such that η ξ∗ ( , ) 0µ λ ≠  and 
( )fα µ≤ , ( )f λ β≤ , then ( )fα µ≤ ( )f λ β≤ ≤  so 

α β≤ . (3) Let 1α α≤ , 1β β≤ and ( )f η ξ∗ 1 1( , )α β iff 

there exists , XIµ λ∈ such that η ξ∗ ( , )µ λ  and 1α α≤             

( )f µ≤ , ( )f λ 1β β≤ ≤ , then ( )f η ξ∗ ( , )α β , namely  

( )f η ξ∗ 1 1( , )α β ( )f η ξ≤ ∗ ( , )α β .                                                               
 
Theorem5.2 Let : X Yf I I→  be a GOH, then 

( )f η ξ∗ ( ) ( )f fη ξ≤ ∗  

proof. If ( )f η ξ∗ ( , )α β  iff there exists , XIµ λ∈  such 
that η ξ∗ ( , )µ λ  and ( )fα µ≤ , ( )f λ β≤ ，iff  there 

exists XIδ ∈ such that ( , )η µ δ  and ( )µ δ ξ λ∨ ∧ ≤ , 

and ( )fα µ≤ , ( )f λ β≤ . Then there exist ( ) Yf Iδ ∈ , 
such that ( ) ( ( ), ( ))f f fη µ δ  and ( )fα µ≤ , then 

( ) ( , ( ))f fη α δ  and ( ( ) ( ))f fα δ ξ∨ ∧ ( ( ))f µ δ ξ≤ ∨ ∧  

( )f λ β≤ ≤ , i.e. there exists ( ) Yf Iδ ∈  such that  
( ) ( , ( ))f fη α δ  and ( ( ) ( ))f fα δ ξ∨ ∧ β≤ , so 
( ) ( )f fη ξ∗ ( , )α β . 

 
Proposition5.1 Let : X Yf I I→  be a GOH, 1,η η  be a 

semi-topogenous order on X , and 1, XIξ ξ ∈ , then (1) If 

1η η≤  implies 1( ) ( )f fη ξ η ξ∗ ≤ ∗ . (2) If 1ξ ξ≤  

Implies 1( ) ( )f fη ξ η ξ∗ ≤ ∗ . (3) ( ) ( )f fη η ξ≤ ∗ ( )f≤ ≤ , 

(for any XIξ ∈ ). 
 
Proposition5.2 Let : X Yf I I→ and : Y zg I I→  be GOH, 

η  be semi-topogenous order on X , and XIξ ∈ , then 
( )g f ( )η ξ∗ ( ( ))g f η ξ= ∗ ( ( )) ( ( )).g f g fη ξ≤ ∗  
 
Definition5.3 Let mapping : X Yf I I→ be a GOH, and 
η ξ∗  be a semi-topogenous order on Y, define a binary 

relation 1( )f η ξ− ∗ on X as follows: 1( )f η ξ− ∗ ( , )µ λ iff    
( ( ), 1 (1 ))f fη ξ µ λ∗ − − .  

 
Theorem5.3 Let mapping : X Yf I I→ be a GOH, and 
η ξ∗  be a semi-topogenous order on Y, then for any  

, XIµ λ∈ have 1( )f η ξ− ∗ ( , )µ λ iff there exists 

( , ) YIα β ∈ , such that η ξ∗ ( , )α β and 1( )fµ α−≤ ,  
1( )f β λ− ≤ .  

proof. If 1( )f η ξ− ∗ ( , )µ λ , then ( ( ), 1 (1 ))f fη ξ µ λ∗ − − , 
let ( )fα µ= , 1 (1 )fβ λ= − − , so have η ξ∗ ( , )α β  

and 1( ( ))f fµ µ−≤ 1( )f α−= , 1 1( ) (1 (1 ))f f fβ λ λ− −= − − ≤ .  

Conversely, if there exists , YIα β ∈ such that 

η ξ∗ ( , )α β and 1( )fµ α−≤ , 1( )f β λ− ≤ , then ( )f µ   
1( ( ))f f α α−≤ ≤ , 11 [ (1 )] 1 (1 ))ffβ β λ−≤ − − ≤ − − , so  

( ( ), 1 (1 ))f fη ξ µ λ∗ − − , i.e. 1( )f η ξ− ∗ ( , )µ λ . 
 
Theorem5.4 Let η ξ∗  be a semi-topogenous order on Y, 

then 1( )f η ξ− ∗  be a semi-topogenous order on X ,  

and we call 1( )f η ξ− ∗ is inverse image of η ξ∗  by f . 

proof. (1) Since η ξ∗ (0, 0) 1=  and 1(0) 0f − = , then 
1( )f η ξ− ∗ (0, 0) 1= . As η ξ∗ (1, 1) 1=  and 1(1) 1f − = , 

then 1( )f η ξ− ∗ (1, 1) 1= . (2) If 1( )f η ξ− ∗ ( , ) 0µ λ ≠  iff  

there exists , YIα β ∈  such that η ξ∗ ( , ) 0α β ≠  and 
1( )fµ α−≤ , 1( )f β λ− ≤ , then 1( )fµ α−≤ 1( )f β λ−≤ ≤  

so µ λ≤ . (3) Let 1µ µ≤ , 1λ λ≤  and 1( )f η ξ− ∗ 1 1( , )µ λ iff 

there exists , YIα β ∈ such that η ξ∗ ( , )α β  and 1µ µ≤             
1( )f α−≤ , 1( )f β−

1λ λ≤ ≤ , then 1( )f η ξ− ∗ ( , )µ λ , 

namely 1( )f η ξ− ∗ 1 1( , )µ λ 1( )f η ξ−≤ ∗ ( , )µ λ . 
 
Theorem5.5 Let : X Yf I I→  be a GOH, 1( )f η ξ− ∗  

1 1( ) ( )f fη ξ− −≤ ∗ . 

proof. If 1( )f η ξ− ∗ ( , )µ λ iff there exists , YIα β ∈ , such 

that η ξ∗ ( , )α β and 1( )fµ α−≤ , 1( )f β λ− ≤ . iff there 

exists YIδ ∈ , such that ( , )η α δ and ( )α δ ξ β∨ ∧ ≤ , 

and 1( )fµ α−≤ , 1( )f β λ− ≤ .Then there exists 
1( ) Xf Iδ− ∈ , such that 1 1 1( ) ( ( ), ( ))f f fη α δ− − −  and 
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1( )fµ α−≤ , then 1 1( ) ( , ( ))f fη µ δ− −  and 
1 1( ( ) ( ))f fµ δ ξ− −∨ ∧ 1( ( ))f α δ ξ−≤ ∨ ∧ 1( )f β λ−≤ ≤ , 

i.e. there exists 1( ) Xf Iδ− ∈ , such then 1 1( ) ( , ( ))f fη µ δ− −  

and 1 1( ( ) ( ))f fµ δ ξ− −∨ ∧ λ≤ , so 1 1( ) ( )f fη ξ− −∗ ( , )µ λ . 
 
Proposition5.3 Let : X Yf I I→  be a GOH, 1,η η  be a 

semi-topogenous order on Y , and 1, YIξ ξ ∈ , then (1) If 

1η η≤  implies 1 1
1( ) ( )f fη ξ η ξ− −∗ ≤ ∗ . (2) If 1ξ ξ≤  

Implie 1 1
1( ) ( )f fη ξ η ξ− −∗ ≤ ∗ . (3) 1 1( ) ( )f fη η ξ− −≤ ∗  

1( )f −≤ ≤ , (for any YIξ ∈ ). 
 
Proposition5.4 Let : X Yf I I→ and : Y zg I I→  be GOH, 

η  be semi-topogenous order on Z , and ZIξ ∈ , then 
1( )g f − ( )η ξ∗ 1 1( ( ))f g η ξ− −= ∗ . 
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