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Summary 
In this paper, an artificial intelligent tool is proposed using fuzzy 
logic (FL) and recurrent neural networks (RNN) for definition 
and forecast of patient’s clinical condition. The fuzzy logic-based 
proposed first phase of the tool permits the analysis of the current 
state of the patient, which allows the training of the artificial 
neural network. In the second phase, two Elman networks Multi 
Input Single Output (MISO), two Elman networks Multi Input 
Multi Output (MIMO), as well as two Auto-Regressive Neural 
Networks with eXogenous inputs (NNARX) are evaluated with 
and without pruning. The fuzzy model agrees 99.76% with the 
answers given by the experts. After analyzing the six proposed 
networks, it was verified that the pruned NNARX model can 
offer the highest overall accuracy (OA) of 99.82%, whereas the 
others show a decrease of up to 35%. Finally, to implement the 
smart software of this paper, the best scenario was found to be 
the Fuzzy-NNARX solution where an OA of 99.25%, a sensivity 
of 99.62%, and a specificity of 99.83% was obtained by utilizing 
unseen data from thirty patients. More tests made with higher 
prediction periods (10, 30 and 60 seconds) demonstrate a slight 
decrease in the OA reaching up 94.58%. Nevertheless, the OA 
still remained over 94%. For the data used in this work, NARX 
networks capture the dynamics of nonlinear dynamic systems 
much better than Elman networks. Results demonstrate that the 
Fuzzy-NNARX model proposed has a very good performance in 
predicting the patient conditions, and it is a useful tool for 
preventive medicine for chronic patients. 
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1. Introduction 

Usually patient monitoring is necessary in Intensive Care 
Units (ICU) in a hospital for patients that need to be 
connected to pulse oximeters, multi-parameter monitors, 
and/or electrocardiographic devices in order to analyze the 
patient’s vital signs in real-time. Sometimes, the condition 
of these patients is not severe enough to remain in an ICU 
facility. Nonetheless, they need to be monitored 
periodically. This uncomfortable and expensive situation 
can be avoided by using WBANs in hospital regular rooms 
or in the patient’s home if the patient’s condition can be 

monitored. Tools based on artificial intelligence can 
provide support for this type of monitoring. In addition, 
patients with chronic diseases can be continuously 
monitored in their home environments, transferring not 
only the patient’s medical information, but also real-time 
environmental information [1]. 
In order to analyze and forecast human vital signs, it is 
important to work with tools that can aid deciphering 
uncertain and unclear data that is generally dynamic and 
nonlinear. In dynamic networks, output depends not only 
on the current input to the network, but also on current or 
previous inputs, outputs, or states of the network. These 
kind of network have memory facilitating the learning of 
time-varying patterns [2]. In order to solve complex 
problems, often the optimal solution consists of a 
combination of various techniques, each of which with 
some particular benefits for the problem. In this work, the 
definition of the current state of the patient is defined via a 
fuzzy module where experts provide the rules. On the other 
hand, the predictive module is performed with a neural 
network that used the output obtained from the fuzzy 
module. 
Fuzzy logic is a branch of artificial intelligence that helps 
computers to mimic human reasoning, which can be 
induced from incomplete, ambiguous and uncertain data, 
normally by using common sense. 
In cases where process information is insufficient, artificial 
neural networks (ANN) are very useful tools. One of the 
benefits that they provide for systems identification is that 
it is not necessary to have process knowledge in order to 
obtain functional relationships between inputs and outputs 
of the system. ANNs are regarded as non-linear black 
boxes since the process used to reach a result is difficult to 
explain [3]. One important advantage of ANNs is the 
ability to determine complex relationships between 
variables in biological data, based on weighing of these 
variables, while not requiring any background knowledge 
of diagnostic rules [4]. 
In this paper, the architectural approaches proposed to deal 
with dynamic networks are Recurrent Neural Networks 
(RNNs) and the Nonlinear Autoregressive models with 
eXogenous input (NARX Networks or NNARXs). The 
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main objective of this study is to assess the performance of 
a fuzzy model and nonlinear techniques like ANNs, RNNs 
and NNARX to estimate and predict the patient’s condition, 
based on several vital sign inputs. This smart software tool, 
acting in the field of preventive medicine for chronic 
diseases, has the potential to provide early warnings and 
for aiding clinicians to decide upon treatment strategies. 

2. Artificial Intelligence Algorithms 

2.1 Fuzzy Logic 

Fuzzy logic was introduced by Zadeh [5] as a way to 
represent and manipulate data which is not accurate but 
rather diffuse. It is a form of multi-valued logic where one 
variable can have one unique value in two or more classes 
or sets. That is the main difference between classical logic, 
which is bivalent, where an object cannot belong to both a 
set and its complement set or to neither of them [6]. The 
theory of fuzzy logic provides a mathematical strength to 
capture the uncertainties associated with human cognitive 
processes, such as thinking and reasoning. A fuzzy set can 
be represented as a triangle with a peak (center) m, a left 
width (m-a) > 0, a right width (b-m) > 0 when its 
membership function has a form which is shown in 
Equation 1. The membership function can take other 
shapes like bell-shape, trapezoid, Gaussian, piecewise 
linear, depending on how each point in the input space is 
mapped to a membership value. 
Fuzzy logic is used when processes cannot be described by 
exact algorithms or when they are very difficult to model 
with conventional mathematical models. It allows to 
represent, in a mathematical form, sets or imprecise 
concepts like "cold days", "short person", "high wages", 
"slightly accelerated heart rate". Because it works with 
rules and not with equations or tables, it is very often used 
to acquire expert's knowledge and when dealing with 
imprecision and uncertainty. 
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Because fuzzy logic is multivariate, it is very often used in 
medicine, where the domain is continuous and most 
medical data is inaccurate [7-9]. 

2.2 Artificial Neural Networks 

ANNs have been applied successfully across various 
domains including biomedical diagnosis [10-11], to predict 
disease or its progression [4,12], medical signal processing 

[3] and medical decision support [3,13]. When the process 
used to reach a conclusion is not known, and therefore the 
generation of fuzzy rules is difficult, artificial neural 
networks are very helpful tools. That is because they are 
used to model complex relationships between inputs and 
outputs, to find patterns in data, to predict, classify and 
approximate values based on their previous states and to 
identify classes. 
A neural network is a parallel and non-linear system, 
capable of resolving tasks that linear computing might not 
perform satisfactorily. They need training to operate and, 
depending on the size of the network, the processing time 
could be very long. Besides the training, other points that 
define an ANN are its topology, the activation function and 
training stopping criteria. Estimating the network size and 
its parameters is a very challenging task because there are 
no rules or formulas so that trial and error is generally 
utilized. 

2.3 Recurrent Neural Networks 

Depending on the connections between the units and the 
propagation of data, there are two main categories of 
neural network structures: 1) Feed-forward Neural 
Networks (FNNs), which are acyclic networks where the 
signal is propagated only from the input to the output of 
the network (also called networks without memory); and 2) 
Recurrent Neural Networks (RNN), characterized by 
feedback between the layers, allowing the network to have 
a memory of immediately preceding events. FNNs are 
simpler than RNNs in terms of implementation and 
simulation, but they are only useful for applications where 
it is not required to retain information about past events to 
evaluate future events; the output is a result from the inputs 
through feed-forward connections. On the other hand, in 
RNNs the output depends not only on the current inputs, 
but also on the previous inputs and outputs of the network. 
This memory allows the network to learn sequential or 
time-varying patterns [15]. They are quite useful for 
modeling dynamic systems and time series prediction due 
to their high performance and velocity to converge to a 
solution. Summarizing, a dynamic RNN is a static feed-
forward network plus recurrent connections [13]. 
The RNNs can be simple or fully connected, depending on 
the connections between neurons. Examples of partially 
connected RNN are Jordan and Elman types and of fully 
connected RNN is the Hopfield RNN. 
In biomedical diagnosis there are some studies that use 
RNN to predict values, signals or parameters [16-18]. 

2.4 Time Series Prediction 

A time series is a sequence of data points, which can be 
analyzed to extract general characteristics in order to 
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provide a model to predict future values based on 
previously observed values. These models can be used in 
domains like physics, business, economy, biology, 
management, forecasting, signal processing, maintenance 
and control of industrial processes. 
Neural networks have been extensively applied for 
complex time series processing tasks [19-20] since the 
1990s. This is mainly due to their capability of handling 
nonlinear functional dependencies between past time series 
values and estimates of the values to be forecast [19]. 
Some complex problems require the combination of 
various intelligent techniques in order to achieve the 
optimal solution. There is also extensive literature about 
fuzzy neural networks for time series prediction [9,19,21]. 
These models have the advantages of fuzzy inference 
systems, such as high-level human-like reasoning and 
simple creation of rules from the expert’s knowledge, and 
ANNs, such as learning abilities [19]. 

2.5 Neural Network Auto-Regressive model with 
eXogenous inputs (NNARX) 

NNARX is a dynamic network with feedback connections 
enclosing several layers of the network. It is based on the 
discrete linear ARX model, which is commonly used in 
time-series modeling [2]. 
The problem of prediction can be formulated as finding a 
function ϕ through which it is possible to estimate a ŷ(t + 
D) of the vector y up to time t + D (with D = 1, 2, …), 
given the values of y up to time t, plus a set of additional 
time-independent variables (exogenous features) u: 
 
ŷ(t + D) = ϕ[y(t),..., y(t- no),..., u(t) ..., u(t- ni)]              (2) 
where u(t) and y(t) represent the input and output of the 
model at time t, ni and no are the orders associated with 
the input and output of the system and ϕ is a nonlinear 
function. D can take value 1, meaning one-step ahead, or 
any value larger than 1, meaning multi-step ahead. 
NNARX can be implemented in many ways, but the 
simplest is to use a feed-forward neural network with a 
memory. It is highly suitable for modeling nonlinear 
systems and time series. 
NNARX is being widely used in diverse areas like 
financial markets, agriculture production [2], temporal 
pattern representation, signal processing, time series 
prediction [19-22], and the control of industrial processes 
[23]. Additionally, some published works utilizing 
NNARX in medical areas were also found, such as to 
predict the glucose levels in patients with type I diabetes 
[10,24], as well as the hemoglobin level in patients with 
dengue infections [25]. Nevertheless, there are not many 
published applications nowadays for monitoring and 
forecasting general patient conditions. 

During the training, the weights of the model are 
determined. The vector θ  containing the weights 
represents the best prediction of the real outputs of the 
system. In this approach, model training is done by using 
the prediction error method, which attempts to find the 
minimal value of the following criterion: 

[ ] [ ]{ }∑
=

−−=
N

t

T

N tYtYtYtY
N

V
1

)|(ˆ)()|(ˆ)(
2
1 θθ        (3) 

where VN is the training error; N is the number of samples 
used in training; Y(t) = [y1(t), ..., yn(t)] is the vector of real 
outputs; Ŷ(t) = [ŷ1(t|θ), ..., ŷn(t|θ)] is the vector of 
predicted outputs; θ = [W2 W1] is the vector of weights to 
be defined; T is the vector transposition operator; W1 is a 
vector that contains the weights between inputs and the 
hidden layer; W2 contains the weights between the hidden 
layer and outputs. 
The order of the NNARX model may be defined as the 
complexity of the process because it determines the 
number of inputs and delay time of the model. The 
selection of model order is done by using Rissanen’s 
Minimum Description Length (MDL) criterion, which is 
given by 
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where V is the loss function, d is the number of model 
parameters, and N is the number of samples used. 
The best architecture is not necessarily fully connected, so 
in order to regulate the complexity of the model it is 
possible to remove superfluous network weights and units, 
by keeping the training error as small as possible [26]. This 
technique is known as pruning. 
To validate de NNARX model different metrics can be 
used. With the coefficient of correlation it is possible to 
measure the linear dependence between the real and 
predictive outputs. It can be calculated by (5) 
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where X are the inputs, X  is the arithmetic mean of the 

inputs, Y are the outputs and Y  is the arithmetic mean of 
the outputs. 
The correlation index value varies in the range [-1,1], 
where r = 1 or r = -1 represents perfect correlation, while r 
= 0 represents that there is no correlation. 
Another technique used in this paper to validate the model 
structure is Akaike's Final Prediction Error (FPE) criterion 
which is presented on the Equation (6). 
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where d is the number of model parameters, N is the 
number of samples used and V is the loss function. 
Finally, the Mean Square Error (MSE) is an estimator to 
assess the performance of a predictor. The lower the MSE, 
the higher is the prediction accuracy. MSE is given by (7) 
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where N is the number of samples, Ŷ is the vector of 
predicted outputs and Y is the vector of the real outputs. 
In addition to the Coefficient of Correlation, the FPE, and 
the MSE, other three metrics were used: Sensitivity (Se), 
Specificity (Sp), and Overall Accuracy (OA) given by 
Equations (9-10). 
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The problem addressed in this paper requires a ternary 
classification, i.e., the patient is stable, semi-stable or 
unstable, then the matrix confusion takes the form showed 
in the Table 1 and the criteria used to create the confusion 
matrix were as follows: 

• TP (true positive): defines the instants of time 
where the patient was non-stable (semi-stable and 
unstable) and which was correctly classified. In 
the confusion matrix defined in Table 1 these are 
the values e and i. 

• FP (false positive): denotes the time instants 
where the patient's condition was classified more 
severely than it actually was. In the confusion 
matrix these are the values d, g and h. 

• FN (false negative): denotes the time instants 
where the patient's condition was classified less 
serious than it actually was. In the confusion 
matrix these are the values b, c and f. 

• TN (true negative): defines the time instants 
where the patient was stable and was correctly 
classified. In the confusion matrix this would be 
the value a. 

Table 1: Confusion matrix for a three-class classification problem 

`  

Besides the Se, Sp, and OA performance measures, the 
following three formulas of sensitivity for each patient 
condition where used for a more detailed analysis: Sestable, 
Sesemi-stable, and Seunstable in the ANNs. These formulas are 
represented in the Equations 11-13. 

statesstableactualofnumber
statesstabledetectedcorrectlyofnumber

Sestable =      (11) 

statesstablesemiactualofnumber
statesstable-semidetectedcorrectlyofnumber

Se stablesemi −
=−

 

(12) 

statesunstableactualofnumber
statesstableundetectedcorrectlyofnumber

Seunstable =  (13) 

3. Proposed Fuzzy-ANN model 

The proposed Fuzzy-ANN system, integrated into a 
wireless medical sensor networks, will allow to monitor 
patients with chronic diseases or elderly people at home. 
The physiological parameters that it uses are: heart rate 
(HR), non-invasive systolic blood pressure (SP), non-
invasive diastolic blood pressure (DP), non-invasive mean 
blood pressure (MP) and oxygen saturation (SpO2). With 
the continuous monitoring of these physiological 
parameters it is possible to detect tachycardias, 
bradicardias, and hypoxemia. The Fuzzy-ANN model is 
composed by two parts. In the first block, a fuzzy logic 
model mimics human reasoning and create rules for the 
inference system in order to emulate the specialists’ 
knowledge. Its objective is to classify the patient condition, 
in real time, for indicating whether a normal (i.e., vital 
signs with normal values), a semi-stable (i.e., vital signs 
with values close to normal), or an unstable situation (i.e., 
vital sign values fairly abnormal). The outputs generated 
by the fuzzy model, which was fed with the data of real 
patients, will be the targets to train the neural network. 
Afterwards, six neural network topologies will be tested 
and compared with the purpose of selecting the most 
suitable to forecast the patient’s condition in time (t + D). 

3.1 Data Acquisition 

In order to work with real patient data, all vital signs were 
obtained from the MIMIC (Multi-parameter Intelligent 
Monitoring for Intensive Care) database available in 
PhysioNet [27], which is a freely accessible collection of 
recorded physiologic signals from healthy and unhealthy 
patients. Three databases were consulted: MIMIC II 
Waveform DB version 2, MIMIC II Waveform DB version 
3 and MIMIC Database Numerics. Matlab (Mathworks, 
Natick, MA, U.S.A.) was used to read, load and pre-
process data for the patients. 
For the training, 2,000 samples from ten different patients 
were used, i.e., the network was trained with 20,000 
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samples. For the validation, 1,000 samples from new ten 
different patients were used. 
The pre-processing of the data consisted in selecting those 
patients with non-zero values in all selected parameters. 
However, when some small sections of the data had zero-
values, mostly caused by loosening of the sensors, they 
were restored using the previous measured value. 

3.2 Fuzzy Model 

Fuzzy sets for each variable were determined based on the 
responses of four experts to questions about the ranges of 
values for every parameter they considered very low, low, 
normal, high and very high in healthy adult patients aged 
between 50 and 65. The values from experts shown in 
Table 2 are used to calculate the degree of membership of 
the respective fuzzy sets. 

Table 2: Range of values of non-invasive vital signs for a healthy adult 

 
In the inference stage, each rule is a particular combination 
of the fuzzy sets and represents one “condition” of the 
patient. Some examples of the fifty-one generated rules are 
shown below: 
Rule #1: If (HR=N and SP=N and DP=N and MP=N and 
SPO2=N) Then (Status=S) 
Rule #2: If (HR=L and SP=N and DP=N and MP=N and 
SPO2=N) Then (Status=SS) 
Rule #3: If (HR=L and SPO2=L) Then (Status=U) 

where VL = very low, L = low, N = normal, H = high, VH 
= very high, S = stable, SS = semi-stable, U =  unstable. 
The output of the Fuzzy-ANN system indicates the patient 
condition, which can be stable, semi-stable or unstable, 
depending on the values of the physiological parameters 
and the rules of the fuzzy model. 

3.3 Proposed Artificial Neural Networks  

To verify the suitability of ANNs, six different 
architectures were used. Four of them are different 
approaches to Elman RNNs and the others are two 
different topologies of NNARX.  
The training of all tested networks was interrupted every 
200 cycles (epochs) in order to perform an estimation of 
the generalization error of the network on the validation 
dataset. When the generalization error was higher than the 
previous obtained, the training was stopped and was 

considered the set of weights obtained in the previous 
epoch. This technique is known as “early stopping” [28]. 
In order to obtain the arithmetic mean of the MSE value, 
for each combination of “training algorithm & number of 
hidden neurons” the system was trained ten times. 

3.3.1 Elman MISO (E-MISO) 

The Elman – MISO Network, which is shown in Figure 1, 
was built with five inputs and one output. To decide the 
optimal number of neurons in the hidden layer, and which 
training functions to use, several tests were performed. In 
order to obtain the targets, which allow the training of the 
network, the input vectors were pre-processed using the 
fuzzy model proposed in the previous section. 

 

Fig. 1 - Elman MISO network 

The criterion to evaluate the best architecture was to obtain 
the lowest MSE, with the lowest number of neurons in the 
hidden layer with a short training time. The six training 
algorithms tested were: Resilient Backpropagation (RB), 
Levenberg-Marquardt Backpropagation (LM), BFGS 
quasi-Newton Backpropagation (BFG), Gradient Descendt 
with Momentum and Adaptative Learning 
Backpropagation (GDX), Gradient Descendt 
Backpropagation (GD) e Scaled Conjugate Gradient 
Backpropagation (SCGB). 
After the tests, the best structure was built with five 
neurons in an unique hidden layer and the algorithm used 
to train the network was Scaled Conjugate Gradient 
Backpropagation. In the first layer and in the hidden layer 
a sigmoid and a linear transfer function were utilized, 
respectively. 

3.3.2 Pruned Elman MISO (PE-MISO) 

The fully connected E-MISO network has thirty-six active 
weights and five hidden neurons. In order to improve the 
network performance, a pruning was performed by using 
the Optimal Brain Surgeon (OBS) network pruning 
strategy [26]. The achieved results consisted of five hidden 
neurons and twenty-one active weights. 
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3.3.3 Elman MIMO (E-MIMO) 

In this case, the Elman – MIMO network was built with 
five inputs at time (t) and five outputs corresponding to the 
future values of the inputs at the time (t + D), where D = 1. 
Since the Elman neural network has five outputs, but only 
requires one output (stable, semi-stable or unstable 
patient’s condition), it was necessary to add the fuzzy 
module at the end of the Elman network. Therefore, the 
third architecture proposed is composed of the modules 
"E-MIMO" and "Fuzzy module". This network, whose 
schematic diagram is shown in Figure 2, uses a sigmoid 
hyperbolic tangent transfer function (known as tansig) and 
a linear transfer function (known as purelin) for the first 
layer and the hidden layer, respectively. 
 

 

Fig. 2 - Elman MIMO network with the Fuzzy Model to predict the final 
output 

In this architecture, as in E-MISO, the criteria for 
evaluating the best combination of neurons in the hidden 
layer were: reduce MSE, keep the number of neurons at the 
hidden layer as low as possible, and reduce training time. 
Likewise, the same six training algorithms used for E-
MISO were used for the E-MIMO, i.e., RB, LM, BFG, 
GDX, GD and SCGB. 
After the tests, the best structure was built with nine 
neurons in an unique hidden layer, the algorithm used to 
best train the network was Levenberg-Marquardt 
Backpropagation. In the first layer, the hyperbolic tangent 
transfer function was used and in the hidden layer, the 
linear transfer function. 

3.3.4 Pruned Elman MIMO (PE-MIMO) 

The fully connected E-MIMO obtained in the previous 
section has hundred and four active weights and nine 
hidden neurons. In order to improve the network 
performance, a pruning was performed by using the OBS 
network pruning strategy. The achieved results consisted 
of nine hidden neurons and fifty-three active weights in the 
PE-MIMO network. 

3.3.7 NARX Network (NNARX) 

To select the appropriated model order, two criteria were 
tested: Rissanen’s Minimum Description Length (MDL), 
and Akaike Information Criterion (AIC). In all cases tested, 
MDL was the one which offered a lower order, which is 
[1,1,1] for the HR, SP, DP, MP and SpO2 vectors. These 
values correspond to [na,nb,nk], where na is the number of 
previous outputs used to determine the prediction; nb is the 
number of previous inputs used to determine the 
prediction; and nk is the delay time. 
Several tests were made in order to find the optimal 
number of neurons in the hidden layer. With three neurons 
in an unique hidden layer the network provides lower MSE 
and higher accuracy, with acceptable sensitivity, specificity 
and accuracy values. 
The activation functions for non-linear hidden neurons are 
the hyperbolic tangent f(x) = tanh(x) and for the output 
neuron the linear activation function f(x) = x was selected. 
Once all the training parameters were optimized, the 
NNARX model was trained and validated. The network 
was trained using the Levenberg-Marquardt algorithm 
applying the tool developed by Nørgaard [29]. 

3.3.8 Pruned NNARX (P-NNARX) 

The fully connected NNARX obtained in the previous 
section has twenty-five weights and three hidden neurons. 
By using the OBS network pruning strategy to remove 
superfluous weights, the best suited model was found. It 
has twenty-three weights and three hidden neurons. 

3.3.9 Fuzzy-NNARX (FNNARX) system 

The FNNARX model for monitoring patients consists on 
the fuzzy module to monitor patients in the current time (t) 
and on the NNARX module to forecast the patient 
condition on time (t + D), with D = 1, 10, 30 and 60. This 
software was tested with data of thirty new patients 
obtained from the website PhysioNet [27]. 

4. Experiments and Results  

In order to test the fuzzy model, a reduction in the amount 
of the samples was performed. Of the 30,000 samples 
(20,000 used as training and 10,000 as validation data), 
only those completely different samples were selected, 
achieving 4,513 totally different measurements. The 
accuracy of the fuzzy model results compared to the 
information given was 99.76%. The 0.24% (11 
measurements) of errors occurred in the cases where the 
fuzzy model generated semi-stable state when experts 
classified the patients as unstable. 
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All the differences found between the results provided by 
the experts and the answers given by the model occur on 
the thresholds of the different functions of membership. 
For example, a value of 101 bpm of heart rate corresponds 
to a high level, according to the Table 2 provided by 
experts, but for the fuzzy model it represents a value nearly 
normal (quite normal but a little high). This difference in 
results does not mean that the system was poorly modeled. 
It is precisely an expected outcome of a multivalued logic. 
After successive tests of the six network topologies, by 
testing training algorithms and varying the number of 
neurons in the hidden layer, the best combination of every 
network topology was found and is shown in the Table 3. 

Table 3: Architectures with the lowest MSE for every network model 

  
By using Equations 7 to 13, every approach was tested 
obtaining the results shown in Table 4. 
The answer of the E-MISO model is represented in the 
Figure 3. The x-axis shows the number of samples used in 
the validation of the model and the y-axis represents the 
different conditions in which a patient may be: Stable, 
Semi-stable, and Unstable. The curve generated with the 
data validation reveals some deviations and problems in 
the classification of the stable and semi-stable states. 
With the pruning of the E-MISO a new topology was 
obtained. The answer of the PE-MISO model, which is 
represented in Figure 4, shows a somewhat different curve 
from that generated by E-MISO network, but also with 
evident problems in the classification of the stable and 
semi-sable states. 

 

Fig. 3 – E-MISO for the validation dataset 

The results of the Elman MISO networks, which can be 
observed in the Table 4, show that the fully connected E-
MISO and its pruned version PE-MISO have a moderate 
relationship between the forecasted outputs and the targets. 

Both networks have similar values in MSE, Sp and OA, 
having some significant difference only in the Se. The Sp 
and Sestable close to 0% indicate that both networks have 
problems to classify the stable condition of the patient. 

 

Fig. 4 – PE- MISO for the validation dataset 

The answer of the E-MIMO is represented in Figure 5. As 
one can see in the resulting curve, the model trained with 
the LMB algorithm, for any combination of input data, can 
only emit the unstable state as output. 
Pruning the E-MIMO a new topology was obtained. The 
answer of the PE-MIMO model shows the same curve that 
was generated by E-MIMO network, i.e., the models E-
MIMO and PE-MIMO cannot represent accurately the 
desired output. 
The results of the Elman MIMO networks, which can be 
observed in the Table 4, show that both topologies exhibit 
the same results. The Sp, Sestable  and Sesemi-stable in 
0% indicates that none of these topologies can correctly 
classify the stable and semi-stable conditions of the patient. 
The correlation coefficient close to zero indicates that 
there is no linear relationship between the targets and the 
forecasted outputs. 

 

Fig. 5 – E-MIMO and PE-MIMO for the validation dataset 

Figure 06 shows the patients’ condition - y(t) or targets - 
and the estimated patients’ condition - ŷ(t) or prediction - 
for the NNARX model described in Equation (2). The 
curve obtained shows that this network can very well 
classify all the three possible conditions. 
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Fig. 6 - NNARX model for the validation set 

The answer of the P-NNARX, represented in Figure 7, 
shows better performance than NNARX. In both networks, 
the correlation coefficient close to one indicates that there 
is a strong linear relationship between the targets and the 
forecasted outputs. The values of Se, Sp, and OA above 
98% indicate that the NNARX model is able to classify all 
the three possible conditions. 
According to Table 4, the network model that has the best 
indicators is the P-NNARX with a better correlation 
coeficient than NNARX and the values of Se, Sp, OA, 
Sestable, Sesemi-stable, and Seunstable above 98%, 
indicating that this network has the potential for 
forecasting the clinical patient condition. 
While the previous results show the performance of the 
Fuzzy or the ANN structures, a test set of thirty new 
patients’ data was used to test the FNNARX complete 
solution. For a prediction period D = 1 an OA of 99.25%, 
a Se of 99.62% and a Sp of 99.83% was obtained. These 
results demonstrate an appropriate performance to predict 
the three possible states for the proposed intelligent system. 

 

Fig. 7 – P-NNARX model for the validation set 

Table 4: Performance indicators of different network architectures 
analyzed 

 

This FNNARX solution was also tested for prediction 
period D of 10s, 30s and 60s, in addition to the D = 1 
previously presented. These results are presented in Table 
5. It is shown that networks with higher prediction periods 
produce a gradual increase of the MSE and a slight 
decrease in the accuracy, demonstrating that the higher the 
period to be predicted, the lower the accuracy is. 
Nevertheless, the values still remain over 94%. 
The OA of the FNNARX system, with a value of 99.25% 
is very close to the accuracy obtained on the validation set 
for the P-NNARX, which was 99.82%. This slight 
difference was expected since the FNNARX system was 
tested with data from 30 patients that were never used in 
the training section. This high value of OA of the proposed 
smart system demonstrates the high generalization level of 
the system. 

Table 5: Indicators tendency with different prediction times 

 

5. Conclusions  

To our knowledge this is the first study on creating a 
Fuzzy-NNARX model to monitor and forecast chronic 
patients conditions by using five vital signs (HR, SP, DP, 
MP and SpO2). In this paper, a fuzzy model, four recurrent 
neural networks and two NARX networks have been 
analyzed in order to model the nonlinear behavior of the 
vital signs of patients.  

The fuzzy model responses were excellent, agreeing in 
99.76% of the cases with the answers given by the experts, 
shown in Table 1.  

Two Elman MISO networks, two Elman MIMO networks, 
as well as two NARX networks were analyzed. The results 
showed a higher performance of the NNARX models 
compared to the Elman MISO and Elman MIMO networks. 
Only the NARX networks were able to hold an accuracy 
above 99% on the validation dataset, whereas the Elman 
networks shows a decrease in performance of up to 35%. 

In both NNARX architectures, the MDL criterion was used 
to select the number of input variables to the functional 
approximator (model order). This method allows to 
identify the autoregressive orders of the model, allowing 
the removal of irrelevant inputs simplifying its structure 
and improving its performance. 
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Furthermore, the Elman networks and the NNARX model 
were pruned in order to obtain the optimal number of 
hidden neurons, regressors and connections. However, the 
results demonstrate that the pruning of the networks 
offered no a much higher performance. The application of 
the early stopping technique during the training with the 
repeated training in order to obtain the mean MSE, FPE 
and correlation coefficients, have shown its effectiveness 
in finding the best network topology, making unnecessary 
in these cases the pruning of the networks. 
According to the results observed in Table 4, P-NNARX is 
the optimal model for the system under test conditions 
capturing the dynamics of nonlinear dynamic system much 
better than Elman networks. For this reason, it was chosen 
to develop the FNNARX system. 
Accuracy obtained with the FNNARX in the time 
prediction D = 1s was of 99.25%. This result exhibits the 
actual behavior of the system since it was tested with the 
data of thirty new patients (unseen data) and illustrates the 
high generalization level of the system. Further tests with 
time prediction D of 10s, 30s and 60s denoted a slight 
decrease in the accuracy reaching up 94.58% with D = 60s. 
That indicates that the higher the period to be predicted, 
the lower the accuracy is. 
The integration of this Fuzzy-NNARX-based proposed 
solution into wireless medical sensor networks will become 
a useful tool for preventive medicine. Staff in hospitals, 
elderly care homes or even private clinics could use it in 
order to carry out telemonitoring, thus transforming itself 
into a complementary tool for clinicians, allowing a better 
quality of life for patients, reducing hospitalization costs, 
and decreasing the risk of hospital-acquired infections. 
In future work, in order to improve the intelligent system 
here proposed, others variable patient characteristics, like 
gender, age, height, weight, medication, mobility, time of 
day should be considered. 
Reliability and security of patient data is another very 
important issue that cannot be neglected. Issues like delays, 
datasets with zeros, and values of vital signs out of range 
would have to be treated. In addition, since better results 
are shown when previous data from a patient is used in the 
training stage, customization of the system to the needs of 
every patient could be achieved by integrating a 
customization module, in which the expert can configure 
the normal and abnormal values of each vital signal for 
that given patient during a training period. 
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