
IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.1, January 2015 132

Password Authentication with Secured Login Interface at
Application Layer

Vivek Kumar Agrawal †, R. K. Bharti††

Department of CSE, B.T. Kumaon Institute of Technology, India

Summary
In this paper we present a innovative solution to the old problem
of password security at application layer or input level. In our
solution, each of the various lower case & upper case characters,
special characters, digits from which a password could be
comprised is encoded with a random single digit integer number
and presented to the user through an Login input interface
module. A valid user entered his password in the form of the
sequence of code or numeric value from the login input interface
module that describe his password code in place of his actual
password characters. This approach does not require the input
code to be hidden from anyone (shoulder surfing) or converted to
placeholder characters for security reasons. Our solution engine
every time regenerates new numeric value when user enters
password for each character each time the carriage return key is
struck so our approach is key logger attack protected, producing
a toughened password that is convincingly more secure than an
old and widely used password scheme is conventional password
scheme. In which the system first authenticates the username and
password at the login time from the user database and on the
basis of authentication of the user, allows the user to access the
system. However, such scheme is vulnerable to attacks like
Shoulder Surfing, Key loggers, Phishing Attacks and Login
Spoofing against both online and offline attackers. our approach
is feasible in practice, ease of use, better security and
performance.
Key words:
Randomly generated Alphanumeric value, Password
authentication, password matching Algorithm.

1. Introduction

A password is a secret word or phrase (combination of
alphabet, numbers, special character) that allows the user
to access the system resources. The password assists in
ensuring that unauthorized user don’t access the resources.
In the many password mechanism the password length are
usually small or short, it makes easier to spy and memorize
the passwords via monitoring of keystrokes or through
eavesdropping[8]. In an organization or company every
user has unique password to use system resources and
many employee presence around him. Personal
identification number (PIN) is always used by banks to
allow their customers access to their online banking facility.
Often banks provides to user small length PINS for the
customers’ convenience that is easy to be remembered by

the user but this advantage is create a problem that short
length password easier for attacker to memorize short
keystroke.

In our solution try to make a try to make a spy-resistant
password entry module that looks as a Keyboard or virtual
keyboard to improve more security on publicly observable
[4, 7]. Our approach give a liberty to user to Passwords
secures, is hard to guess and changed frequently. In our
solution user enters a randomly generated single integer
value in place of characters so it makes much difficult to
crack through brute force attack or dictionary attacks
because brute force attack attempt to discover/guess the
correct password by trying every possible key
combinations of letters, numbers and symbols that will
unlock the encryption until you find the right one [1]. It
could take few minutes or may be years to discover it that
is depend on the password's length and complexity; there
could be trillions of possible combinations[3]. For example
a user enters a password of 10 characters and all characters
are lower case letters then to crack this password using the
brute force attack it requires (26)10 possible combinations
which is equal to 141167095653376. If a single computer
takes 1000 passwords to check in one second then total
time will be 141167095653376 / 1000 =
141167095653.376 seconds which is equal to
39213082.125938 hours. It means brute force attack is
effective only for smaller passwords. Dictionary attacks are
very similar to Brute-force attack but little bit faster. These
attacks are called hybrid brute-force attacks; it doesn’t
make combination of input characters but uses dictionary
words. These attacks fail breaking lengthy and stronger
passwords. Many users mostly choose a passwords related
to the cell phone number, famous actors names, date of
Birth and birth place, names of pets, familiar places etc [2].
These passwords can be guessed by dictionary attack. Now
users may choose only one password for all systems in the
case of multiple systems.

In this paper, we are giving an approach or authentication
system module algorithm to solve the password security
problem at Input Level.

Manuscript received January 5, 2015
Manuscript revised January 20, 2015

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.1, January 2015 133

2. System Architecture and Algorithm

This is the architecture of our approach. We

Figure 1: Secured password authentication module Architecture

3. Login Interface Module and Algorithm

Visual Studio 10 used for the implementation of the
algorithm. From the algorithm, a Login interface module
was generated figure:3. The module shows the password
characters with their corresponding single integer value (in
black box). User enter the numeric input value according
to his password in password text box area, if a user take
too more time to enter password then login interface will
be refresh and the randomly generated integer values
corresponding to character, digits, special characters wille
be changed or user can do this itself on clicking
“Regenerate random number set ” button.

3.1 In this, first user registered name, user id and password
that is stored in database in encrypted form. The database
DB, contains all the passwords of legitimate users. The
database is designed to accept 255 characters length
passwords but coder must restrict size of users’ passwords
to a reasonable length, for example 14 characters, for
better security.

Fig 2.1: User registration form

Fig 2.2: User registration form

3.2 Then user login with user id and password using
secure login user interface. In which all printable ASCII
characters available, which may consist of lower and upper
case alphabets (A-Z, a-z), numeric digits (0-9), and special
characters (+ - _ ^ , # % etc).

Fig 3: Secure Login Interface

3.3 User enters a single integer value corresponding to
each characters according to his password. Every time a
new single integer value (0 to 9) generated corresponding
to all characters, digits, special character whenever user
logging that .

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.1, January 2015 134

 private int RandomNumber(int min, int max) {
 return random.Next(min, max);

}
3.4 User enter password in the form of randomly generated
single integer value correspond to valid password
characters after studying the secure login user interface,
If user password length = = original password is false then
a message “incorrect password, must be same” shown.
If condition True means the integer value that is entered
corresponding to password is moved to matching with
original password. For this we use a jagged array[] in
which all user input integer values stored and we create
another array name occurance[] for to store each
characters separately accordingly to their correspond
single integer value zero to nine that is randomly generated
it means it may be assign to more than one characters.

if (txtPassword.Text.Length == General. userpass.Length
&& txtPassword.Text.Trim().Length>0) {
 m=10;

 jaggedArr = new string[m][];
 for (k = 0; k < m; k++) {
 int s = occurance[k];
 jaggedArr[k] = new string[s];
 } fillJaggedArray();
 MatchPassword();
 } else
 { MessageBox.Show

 ("Incorrect Password Length Must be Same");
 } }

Single input integer value correspond to each valid
password characters

Fig 4: Example of Jagged array

This an example of How our algorithm create a table
separately for every integer input value corresponding to
their character.

 for (int j1 = 0; j1 < 10; j1++) {
 occurance[j1] = 0;

 } while (i < 80) {
 num = RandomNumber(00, 10).ToString("D1");
 numarr[i] = num;
 i++;
 ch =Convert.ToInt32(num);
 switch (ch) {
 case 0:
 occurance[0]++;
 break;
 case 1:
 occurance[1]++;
 break;
 case 2:
 occurance[2]++;
 break;
 case 3:
 occurance[3]++;
 break;
 case 4:
 occurance[4]++;
 break;
 case 5:
 occurance[5]++;
 break;
 case 6:
 occurance[6]++;
 break;
 case 7:
 occurance[7]++;
 break;
 case 8:
 occurance[8]++;
 break;
 case 9:
 occurance[9]++;
 break;
 } }
 private void fillJaggedArray(){
 for (int x = 0; x < 10; x++) {
 int z = 0;
 for (int y = 65; y <= 90; y++) {
 string txtCap = "txt" + (y).ToString();
 Control[] txtC = this.Controls.Find(txtCap, true);
 if (txtC != null && txtC.Length > 0) {
 if (txtC[0].Text.CompareTo(x.ToString()) == 0) {
 jaggedArr[x][z] =Convert.ToChar(y).ToString();
 z++;
 }}}
3.5 Our algorithm match the user input value to the actual

password one by one character. Suppose our password
is “Chanakya@123” and user input value corresponding
there is 499699596765 so for this our algorithm create a
table for every user input value fig.4. First we match
user input value 4 with actual password first character
‘C’ if this match then go to next otherwise move out
and a message is shown “ Password Not Matched ” and
if first character is matched then this process move next
until we find actual password.

IJCSNS International Journal of Computer Science and Network Security, VOL.15 No.1, January 2015 135

 private void MatchPassword() {
 bool flag=false;
 string test = "";
 for(int w=0;w<txtPassword.Text.Length;w++) {
 int d;
 flag = false;
 d=Convert.ToInt32(txtPassword.Text.Substring(w,1));
 for(int v=0;v<jaggedArr[d].Length;v++) {

 if (General.userpass.Substring(w, 1). CompareTo
(jaggedArr[d][v]) == 0) {

 test = test + jaggedArr[d][v];
 flag = true;
 break;
 } } }
 if (flag == true) {
 MessageBox.Show("Password has been Matched");
 MessageBox.Show("Your Password was : " + test);
 }
 else {
 MessageBox.Show("Password Not Matched");
 } }

4. Conclusion

In this paper we have been given our approach Randomly
generated single integer input digits corresponding to
password characters on login interface module makes it
impossible for for attackers to hack or electronically
eavesdrop, shoulder surfing, brute force attack on user
password at input level(at application layer). It will
improve the security and integrity of the password systems.

References
[1] Fujita, K. and Y. Hirakawa, 2008, “A study of password

authentication method against observing attacks”,6th
International Symposium on Intelligent Systems and
Informatics, SISY 2008.

[2] Kessler, Gary C., 2002. Passwords - Strengths and
Weaknesses. Jan-1996.URL:
http://www.garykessler.net/library/password.html

[3] G. Sowmya, D. Jamuna, M.Venkata Krishna Reddy,
“Blocking of Brute Force Attack” International Journal of
Computer Applications & Information Technology, Vol. I,
Issue II, September 2012.

[4] Desney S. Tan, Pedram Keyani, Mary Czerwinski .“Spy-
Resistant Keyboard: Towards More Secure Password Entry
on Publicly Observable Touch Screens”.

[5]
[6] Schneider, B., "Applied Cryptography Second Edition:

protocols, algorithms, and source code in C", John Wiley &
Sons, Inc., 1996.

[7] Mathias Kolsch, Matthew Turk. “A Survey of Virtual
Keyboards”, Dept. of Computer Science, University of
California at Santa Barbara, CA.

[8] [Mark, 2005] Mark S., (2005), “Information Security,
Principles and Practice”, Wiley Interscience.

[9] I. Scott MacKenzie, “KSPC as a Characteristic of Text
Entry Techniques”, Dept. of Computer Science, York
University Toronto, Ontario, Canada M3J 1P3.

Vivek Kumar Agrawal received the
B.Tech. degree in Computer science &
Engineering from AAIDU in 2008 and
pursuing M.Tech from department of CSE,
B.T.Kumaon Institute of Technology, India.

R.K.Bharti received PhD in Data
Compression department of CS. He has
published many research paper in
Cryptography & network Security and Data
compression area. He is working in
department of CSE, B.T.Kumaon Institute
of Technology, India as an Assistant
Professor since 10 years.

http://www.garykessler.net/library/password.html

